subsurface/equipment.c

236 lines
6.5 KiB
C
Raw Normal View History

/* equipment.c */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <time.h>
#include "gettext.h"
#include "dive.h"
#include "display.h"
#include "divelist.h"
/* placeholders for a few functions that we need to redesign for the Qt UI */
void add_cylinder_description(cylinder_type_t *type)
{
const char *desc;
int i;
desc = type->description;
if (!desc)
return;
for (i = 0; i < 100 && tank_info[i].name != NULL; i++) {
if (strcmp(tank_info[i].name, desc) == 0)
return;
}
if (i < 100) {
// FIXME: leaked on exit
tank_info[i].name = strdup(desc);
tank_info[i].ml = type->size.mliter;
tank_info[i].bar = type->workingpressure.mbar / 1000;
}
}
void add_weightsystem_description(weightsystem_t *weightsystem)
{
const char *desc;
int i;
desc = weightsystem->description;
if (!desc)
return;
for (i = 0; i < 100 && ws_info[i].name != NULL; i++) {
if (strcmp(ws_info[i].name, desc) == 0) {
ws_info[i].grams = weightsystem->weight.grams;
return;
}
}
if (i < 100) {
// FIXME: leaked on exit
ws_info[i].name = strdup(desc);
ws_info[i].grams = weightsystem->weight.grams;
}
}
bool cylinder_nodata(cylinder_t *cyl)
{
return !cyl->type.size.mliter &&
!cyl->type.workingpressure.mbar &&
!cyl->type.description &&
!cyl->gasmix.o2.permille &&
!cyl->gasmix.he.permille &&
!cyl->start.mbar &&
!cyl->end.mbar &&
!cyl->gas_used.mliter &&
!cyl->deco_gas_used.mliter;
}
static bool cylinder_nosamples(cylinder_t *cyl)
Fix missing save of (almost empty) cylinder information If we have no explicit cylinder info at all (it's normal air, no size or working pressure information, and no beginning/end pressure information), we don't save the cylinders in question because that would be redundant. Such non-saved cylinders may still show up in the equipment list because there may be implicit mention of them elsewhere, notably due to sample data, so not saving them is the right thing to do - there is nothing to save. However, we missed one case: if there were other cylinders that *did* have explicit information in it following such an uninteresting cylinder, we do need to save the cylinder information for the useless case - if only in order to be able to save the non-useless information for subsequent cylinders. This patch does that. Now, if you had an air-filled cylinder with no information as your first cylinder, and a 51% nitrox as your second one, it will save that information as <cylinder /> <cylinder o2='51.0%' /> rather than dropping the cylinder information entirely. This bug has been there for a long time, and was hidden by the fact that normally you'd fill in cylinder descriptions etc after importing new dives. It also used to be that we saved the cylinder beginning/end pressure even if that was generated from the sample data, so if you imported from a air-integrated computer and had samples for that cylinder, we used to save it even though it was technically redundant. We stopped saving redundant air sample information in commit 0089dd8819b7 ("Don't save cylinder start/end pressures unless set by hand"). Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Removed start and end in save_cylinder_info(). These two variables are no longer used. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-09-21 21:06:57 +00:00
{
return !cyl->sample_start.mbar &&
!cyl->sample_end.mbar;
Fix missing save of (almost empty) cylinder information If we have no explicit cylinder info at all (it's normal air, no size or working pressure information, and no beginning/end pressure information), we don't save the cylinders in question because that would be redundant. Such non-saved cylinders may still show up in the equipment list because there may be implicit mention of them elsewhere, notably due to sample data, so not saving them is the right thing to do - there is nothing to save. However, we missed one case: if there were other cylinders that *did* have explicit information in it following such an uninteresting cylinder, we do need to save the cylinder information for the useless case - if only in order to be able to save the non-useless information for subsequent cylinders. This patch does that. Now, if you had an air-filled cylinder with no information as your first cylinder, and a 51% nitrox as your second one, it will save that information as <cylinder /> <cylinder o2='51.0%' /> rather than dropping the cylinder information entirely. This bug has been there for a long time, and was hidden by the fact that normally you'd fill in cylinder descriptions etc after importing new dives. It also used to be that we saved the cylinder beginning/end pressure even if that was generated from the sample data, so if you imported from a air-integrated computer and had samples for that cylinder, we used to save it even though it was technically redundant. We stopped saving redundant air sample information in commit 0089dd8819b7 ("Don't save cylinder start/end pressures unless set by hand"). Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Removed start and end in save_cylinder_info(). These two variables are no longer used. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-09-21 21:06:57 +00:00
}
bool cylinder_none(void *_data)
Fix missing save of (almost empty) cylinder information If we have no explicit cylinder info at all (it's normal air, no size or working pressure information, and no beginning/end pressure information), we don't save the cylinders in question because that would be redundant. Such non-saved cylinders may still show up in the equipment list because there may be implicit mention of them elsewhere, notably due to sample data, so not saving them is the right thing to do - there is nothing to save. However, we missed one case: if there were other cylinders that *did* have explicit information in it following such an uninteresting cylinder, we do need to save the cylinder information for the useless case - if only in order to be able to save the non-useless information for subsequent cylinders. This patch does that. Now, if you had an air-filled cylinder with no information as your first cylinder, and a 51% nitrox as your second one, it will save that information as <cylinder /> <cylinder o2='51.0%' /> rather than dropping the cylinder information entirely. This bug has been there for a long time, and was hidden by the fact that normally you'd fill in cylinder descriptions etc after importing new dives. It also used to be that we saved the cylinder beginning/end pressure even if that was generated from the sample data, so if you imported from a air-integrated computer and had samples for that cylinder, we used to save it even though it was technically redundant. We stopped saving redundant air sample information in commit 0089dd8819b7 ("Don't save cylinder start/end pressures unless set by hand"). Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Removed start and end in save_cylinder_info(). These two variables are no longer used. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-09-21 21:06:57 +00:00
{
cylinder_t *cyl = _data;
return cylinder_nodata(cyl) && cylinder_nosamples(cyl);
}
void get_gas_string(const struct gasmix *gasmix, char *text, int len)
{
if (gasmix_is_air(gasmix))
snprintf(text, len, "%s", translate("gettextFromC", "air"));
else if (get_he(gasmix) == 0 && get_o2(gasmix) < 1000)
snprintf(text, len, translate("gettextFromC", "EAN%d"), (get_o2(gasmix) + 5) / 10);
else if (get_he(gasmix) == 0 && get_o2(gasmix) == 1000)
snprintf(text, len, "%s", translate("gettextFromC", "oxygen"));
else
snprintf(text, len, "(%d/%d)", (get_o2(gasmix) + 5) / 10, (get_he(gasmix) + 5) / 10);
}
/* Returns a static char buffer - only good for immediate use by printf etc */
const char *gasname(const struct gasmix *gasmix)
{
static char gas[64];
get_gas_string(gasmix, gas, sizeof(gas));
return gas;
}
bool weightsystem_none(void *_data)
{
weightsystem_t *ws = _data;
return !ws->weight.grams && !ws->description;
}
bool no_weightsystems(weightsystem_t *ws)
{
int i;
for (i = 0; i < MAX_WEIGHTSYSTEMS; i++)
if (!weightsystem_none(ws + i))
return false;
return true;
}
static bool one_weightsystem_equal(weightsystem_t *ws1, weightsystem_t *ws2)
{
return ws1->weight.grams == ws2->weight.grams &&
same_string(ws1->description, ws2->description);
}
bool weightsystems_equal(weightsystem_t *ws1, weightsystem_t *ws2)
{
int i;
for (i = 0; i < MAX_WEIGHTSYSTEMS; i++)
if (!one_weightsystem_equal(ws1 + i, ws2 + i))
return false;
return true;
}
/*
* We hardcode the most common standard cylinders,
* we should pick up any other names from the dive
* logs directly.
*/
struct tank_info_t tank_info[100] = {
/* Need an empty entry for the no-cylinder case */
{ "", },
/* Size-only metric cylinders */
{ "10.0", .ml = 10000 },
{ "11.1", .ml = 11100 },
/* Most common AL cylinders */
{ "AL40", .cuft = 40, .psi = 3000 },
{ "AL50", .cuft = 50, .psi = 3000 },
{ "AL63", .cuft = 63, .psi = 3000 },
{ "AL72", .cuft = 72, .psi = 3000 },
{ "AL80", .cuft = 80, .psi = 3000 },
{ "AL100", .cuft = 100, .psi = 3300 },
/* Metric AL cylinders */
{ "ALU7", .ml = 7000, .bar = 200 },
/* Somewhat common LP steel cylinders */
{ "LP85", .cuft = 85, .psi = 2640 },
{ "LP95", .cuft = 95, .psi = 2640 },
{ "LP108", .cuft = 108, .psi = 2640 },
{ "LP121", .cuft = 121, .psi = 2640 },
/* Somewhat common HP steel cylinders */
{ "HP65", .cuft = 65, .psi = 3442 },
{ "HP80", .cuft = 80, .psi = 3442 },
{ "HP100", .cuft = 100, .psi = 3442 },
{ "HP119", .cuft = 119, .psi = 3442 },
{ "HP130", .cuft = 130, .psi = 3442 },
/* Common European steel cylinders */
{ "3 232 bar", .ml = 3000, .bar = 232 },
{ "3 300 bar", .ml = 3000, .bar = 300 },
{ "10 300 bar", .ml = 10000, .bar = 300 },
{ "12 200 bar", .ml = 12000, .bar = 200 },
{ "12 232 bar", .ml = 12000, .bar = 232 },
{ "12 300 bar", .ml = 12000, .bar = 300 },
{ "15 200 bar", .ml = 15000, .bar = 200 },
{ "15 232 bar", .ml = 15000, .bar = 232 },
{ "D7 300 bar", .ml = 14000, .bar = 300 },
{ "D8.5 232 bar", .ml = 17000, .bar = 232 },
{ "D12 232 bar", .ml = 24000, .bar = 232 },
{ "D13 232 bar", .ml = 26000, .bar = 232 },
{ "D15 232 bar", .ml = 30000, .bar = 232 },
{ "D16 232 bar", .ml = 32000, .bar = 232 },
{ "D18 232 bar", .ml = 36000, .bar = 232 },
{ "D20 232 bar", .ml = 40000, .bar = 232 },
/* We'll fill in more from the dive log dynamically */
{ NULL, }
};
/*
* We hardcode the most common weight system types
* This is a bit odd as the weight system types don't usually encode weight
*/
struct ws_info_t ws_info[100] = {
{ QT_TRANSLATE_NOOP("gettextFromC", "integrated"), 0 },
{ QT_TRANSLATE_NOOP("gettextFromC", "belt"), 0 },
{ QT_TRANSLATE_NOOP("gettextFromC", "ankle"), 0 },
{ QT_TRANSLATE_NOOP("gettextFromC", "backplate weight"), 0 },
{ QT_TRANSLATE_NOOP("gettextFromC", "clip-on"), 0 },
};
void remove_cylinder(struct dive *dive, int idx)
{
cylinder_t *cyl = dive->cylinder + idx;
int nr = MAX_CYLINDERS - idx - 1;
memmove(cyl, cyl + 1, nr * sizeof(*cyl));
memset(cyl + nr, 0, sizeof(*cyl));
}
void remove_weightsystem(struct dive *dive, int idx)
{
weightsystem_t *ws = dive->weightsystem + idx;
int nr = MAX_WEIGHTSYSTEMS - idx - 1;
memmove(ws, ws + 1, nr * sizeof(*ws));
memset(ws + nr, 0, sizeof(*ws));
}
/* when planning a dive we need to make sure that all cylinders have a sane depth assigned
* and if we are tracking gas consumption the pressures need to be reset to start = end = workingpressure */
void reset_cylinders(struct dive *dive, bool track_gas)
{
int i;
pressure_t decopo2 = {.mbar = prefs.decopo2};
for (i = 0; i < MAX_CYLINDERS; i++) {
cylinder_t *cyl = &dive->cylinder[i];
if (cylinder_none(cyl))
continue;
if (cyl->depth.mm == 0) /* if the gas doesn't give a mod, calculate based on prefs */
cyl->depth = gas_mod(&cyl->gasmix, decopo2, dive, M_OR_FT(3,10));
if (track_gas)
cyl->start.mbar = cyl->end.mbar = cyl->type.workingpressure.mbar;
cyl->gas_used.mliter = 0;
cyl->deco_gas_used.mliter = 0;
}
}