subsurface/qt-models/diveplotdatamodel.cpp

211 lines
4.8 KiB
C++
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "qt-models/diveplotdatamodel.h"
#include "qt-models/diveplannermodel.h"
#include "core/profile.h"
#include "core/divelist.h"
#include "core/color.h"
DivePlotDataModel::DivePlotDataModel(QObject *parent) :
QAbstractTableModel(parent),
dcNr(0)
{
init_plot_info(&pInfo);
memset(&plot_deco_state, 0, sizeof(struct deco_state));
}
DivePlotDataModel::~DivePlotDataModel()
{
free_plot_info_data(&pInfo);
}
int DivePlotDataModel::columnCount(const QModelIndex&) const
{
return COLUMNS;
}
QVariant DivePlotDataModel::data(const QModelIndex &index, int role) const
{
if ((!index.isValid()) || (index.row() >= pInfo.nr) || pInfo.entry == 0)
return QVariant();
plot_data item = pInfo.entry[index.row()];
if (role == Qt::DisplayRole) {
switch (index.column()) {
case DEPTH:
return item.depth;
case TIME:
return item.sec;
case PRESSURE:
return get_plot_sensor_pressure(&pInfo, index.row(), 0);
case TEMPERATURE:
return item.temperature;
case COLOR:
return item.velocity;
case USERENTERED:
return false;
case SENSOR_PRESSURE:
return get_plot_sensor_pressure(&pInfo, index.row(), 0);
case INTERPOLATED_PRESSURE:
return get_plot_interpolated_pressure(&pInfo, index.row(), 0);
case CEILING:
return item.ceiling;
case SAC:
return item.sac;
case PN2:
return item.pressures.n2;
case PHE:
return item.pressures.he;
case PO2:
return item.pressures.o2;
case O2SETPOINT:
return item.o2setpoint.mbar / 1000.0;
case CCRSENSOR1:
return item.o2sensor[0].mbar / 1000.0;
case CCRSENSOR2:
return item.o2sensor[1].mbar / 1000.0;
case CCRSENSOR3:
return item.o2sensor[2].mbar / 1000.0;
case SCR_OC_PO2:
return item.scr_OC_pO2.mbar / 1000.0;
case HEARTBEAT:
return item.heartbeat;
case INSTANT_MEANDEPTH:
return item.running_sum;
}
}
if (role == Qt::DisplayRole && index.column() >= TISSUE_1 && index.column() <= TISSUE_16) {
return item.ceilings[index.column() - TISSUE_1];
}
if (role == Qt::BackgroundRole) {
switch (index.column()) {
case COLOR:
return getColor((color_index_t)(VELOCITY_COLORS_START_IDX + item.velocity));
}
}
return QVariant();
}
const plot_info &DivePlotDataModel::data() const
{
return pInfo;
}
int DivePlotDataModel::rowCount(const QModelIndex&) const
{
return pInfo.nr;
}
QVariant DivePlotDataModel::headerData(int section, Qt::Orientation orientation, int role) const
{
if (orientation != Qt::Horizontal)
return QVariant();
if (role != Qt::DisplayRole)
return QVariant();
switch (section) {
case DEPTH:
return tr("Depth");
case TIME:
return tr("Time");
case PRESSURE:
return tr("Pressure");
case TEMPERATURE:
return tr("Temperature");
case COLOR:
return tr("Color");
case USERENTERED:
return tr("User entered");
case SENSOR_PRESSURE:
return tr("Pressure S");
case INTERPOLATED_PRESSURE:
return tr("Pressure I");
case CEILING:
return tr("Ceiling");
case SAC:
return tr("SAC");
case PN2:
return tr("pN₂");
case PHE:
return tr("pHe");
case PO2:
return tr("pO₂");
case O2SETPOINT:
return tr("Setpoint");
case CCRSENSOR1:
return tr("Sensor 1");
case CCRSENSOR2:
return tr("Sensor 2");
case CCRSENSOR3:
return tr("Sensor 3");
case HEARTBEAT:
return tr("Heart rate");
case INSTANT_MEANDEPTH:
return tr("Mean depth @ s");
}
if (role == Qt::DisplayRole && section >= TISSUE_1 && section <= TISSUE_16) {
return QString("Ceiling: %1").arg(section - TISSUE_1);
}
return QVariant();
}
void DivePlotDataModel::clear()
{
if (rowCount() != 0) {
beginRemoveRows(QModelIndex(), 0, rowCount() - 1);
pInfo.nr = 0;
free(pInfo.entry);
free(pInfo.pressures);
pInfo.entry = nullptr;
pInfo.pressures = nullptr;
dcNr = -1;
endRemoveRows();
}
}
void DivePlotDataModel::setDive(const plot_info &info)
{
beginResetModel();
dcNr = dc_number;
free(pInfo.entry);
free(pInfo.pressures);
pInfo = info;
pInfo.entry = (plot_data *)malloc(sizeof(plot_data) * pInfo.nr);
memcpy(pInfo.entry, info.entry, sizeof(plot_data) * pInfo.nr);
pInfo.pressures = (plot_pressure_data *)malloc(sizeof(plot_pressure_data) * pInfo.nr_cylinders * pInfo.nr);
memcpy(pInfo.pressures, info.pressures, sizeof(plot_pressure_data) * pInfo.nr_cylinders * pInfo.nr);
endResetModel();
}
unsigned int DivePlotDataModel::dcShown() const
{
return dcNr;
}
static double max_gas(const plot_info &pi, double gas_pressures::*gas)
{
double ret = -1;
for (int i = 0; i < pi.nr; ++i) {
if (pi.entry[i].pressures.*gas > ret)
ret = pi.entry[i].pressures.*gas;
}
return ret;
}
double DivePlotDataModel::pheMax() const
{
return max_gas(pInfo, &gas_pressures::he);
}
double DivePlotDataModel::pn2Max() const
{
return max_gas(pInfo, &gas_pressures::n2);
}
double DivePlotDataModel::po2Max() const
{
return max_gas(pInfo, &gas_pressures::o2);
}