subsurface/dive.h

816 lines
24 KiB
C
Raw Normal View History

#ifndef DIVE_H
#define DIVE_H
#include <stdlib.h>
#include <stdint.h>
#include <time.h>
#include <math.h>
#include <zip.h>
/* Windows has no MIN/MAX macros - so let's just roll our own */
#define MIN(x, y) ({ \
typeof(x) _min1 = (x); \
typeof(y) _min2 = (y); \
(void) (&_min1 == &_min2); \
_min1 < _min2 ? _min1 : _min2; })
#define MAX(x, y) ({ \
typeof(x) _max1 = (x); \
typeof(y) _max2 = (y); \
(void) (&_max1 == &_max2); \
_max1 > _max2 ? _max1 : _max2; })
#define IS_FP_SAME(_a,_b) (abs((_a) - (_b)) < 0.000001 * MAX(abs(_a), abs(_b)))
#include <libxml/tree.h>
#include <libxslt/transform.h>
#include "sha1.h"
#ifdef __cplusplus
extern "C" {
#else
#include <stdbool.h>
#endif
#define O2_IN_AIR 209 // permille
#define N2_IN_AIR 781
#define O2_DENSITY 1429 // mg/Liter
#define N2_DENSITY 1251
#define HE_DENSITY 179
#define SURFACE_PRESSURE 1013 // mbar
#define SURFACE_PRESSURE_STRING "1013"
#define ZERO_C_IN_MKELVIN 273150 // mKelvin
/* Salinity is expressed in weight in grams per 10l */
#define SEAWATER_SALINITY 10300
#define FRESHWATER_SALINITY 10000
/*
* Some silly typedefs to make our units very explicit.
*
* Also, the units are chosen so that values can be expressible as
* integers, so that we never have FP rounding issues. And they
* are small enough that converting to/from imperial units doesn't
* really matter.
*
* We also strive to make '0' a meaningless number saying "not
* initialized", since many values are things that may not have
* been reported (eg cylinder pressure or temperature from dive
* computers that don't support them). But sometimes -1 is an even
* more explicit way of saying "not there".
*
* Thus "millibar" for pressure, for example, or "millikelvin" for
* temperatures. Doing temperatures in celsius or fahrenheit would
* make for loss of precision when converting from one to the other,
* and using millikelvin is SI-like but also means that a temperature
* of '0' is clearly just a missing temperature or cylinder pressure.
*
* Also strive to use units that can not possibly be mistaken for a
* valid value in a "normal" system without conversion. If the max
* depth of a dive is '20000', you probably didn't convert from mm on
* output, or if the max depth gets reported as "0.2ft" it was either
* a really boring dive, or there was some missing input conversion,
* and a 60-ft dive got recorded as 60mm.
*
* Doing these as "structs containing value" means that we always
* have to explicitly write out those units in order to get at the
* actual value. So there is hopefully little fear of using a value
* in millikelvin as Fahrenheit by mistake.
*
* We don't actually use these all yet, so maybe they'll change, but
* I made a number of types as guidelines.
*/
typedef int64_t timestamp_t;
typedef struct {
int seconds;
} duration_t;
typedef struct {
int mm;
} depth_t;
typedef struct {
int mbar;
} pressure_t;
typedef struct {
int mkelvin;
} temperature_t;
typedef struct {
int mliter;
} volume_t;
typedef struct {
int permille;
} fraction_t;
typedef struct {
int grams;
} weight_t;
typedef struct {
int udeg;
} degrees_t;
struct gasmix {
fraction_t o2;
fraction_t he;
};
typedef struct {
volume_t size;
pressure_t workingpressure;
const char *description; /* "LP85", "AL72", "AL80", "HP100+" or whatever */
} cylinder_type_t;
typedef struct {
cylinder_type_t type;
struct gasmix gasmix;
pressure_t start, end, sample_start, sample_end;
depth_t depth;
bool used;
} cylinder_t;
typedef struct {
weight_t weight;
const char *description; /* "integrated", "belt", "ankle" */
} weightsystem_t;
extern int get_pressure_units(unsigned int mb, const char **units);
extern double get_depth_units(unsigned int mm, int *frac, const char **units);
extern double get_volume_units(unsigned int ml, int *frac, const char **units);
extern double get_temp_units(unsigned int mk, const char **units);
extern double get_weight_units(unsigned int grams, int *frac, const char **units);
extern double get_vertical_speed_units(unsigned int mms, int *frac, const char **units);
extern unsigned int units_to_depth(double depth);
static inline double grams_to_lbs(int grams)
{
return grams / 453.6;
}
static inline int lbs_to_grams(double lbs)
{
return lbs * 453.6 + 0.5;
}
static inline double ml_to_cuft(int ml)
{
return ml / 28316.8466;
}
static inline double cuft_to_l(double cuft)
{
return cuft * 28.3168466;
}
static inline double mm_to_feet(int mm)
{
return mm * 0.00328084;
}
static inline unsigned long feet_to_mm(double feet)
{
return feet * 304.8 + 0.5;
}
static inline int to_feet(depth_t depth)
{
return mm_to_feet(depth.mm) + 0.5;
}
static inline double mkelvin_to_C(int mkelvin)
{
return (mkelvin - ZERO_C_IN_MKELVIN) / 1000.0;
}
static inline double mkelvin_to_F(int mkelvin)
{
return mkelvin * 9 / 5000.0 - 459.670;
}
static inline unsigned long F_to_mkelvin(double f)
{
return (f-32) * 1000 / 1.8 + ZERO_C_IN_MKELVIN + 0.5;
}
static inline unsigned long C_to_mkelvin(double c)
{
return c * 1000 + ZERO_C_IN_MKELVIN + 0.5;
}
static inline double psi_to_bar(double psi)
{
return psi / 14.5037738;
}
static inline long psi_to_mbar(double psi)
{
return psi_to_bar(psi)*1000 + 0.5;
}
static inline int to_PSI(pressure_t pressure)
{
return pressure.mbar * 0.0145037738 + 0.5;
}
static inline double bar_to_atm(double bar)
{
return bar / SURFACE_PRESSURE * 1000;
}
/* Volume in mliter of a cylinder at pressure 'p' */
extern int gas_volume(cylinder_t *cyl, pressure_t p);
extern int wet_volume(double cuft, pressure_t p);
static inline int mbar_to_PSI(int mbar)
{
pressure_t p = {mbar};
return to_PSI(p);
}
static inline int get_o2(const struct gasmix *mix)
{
return mix->o2.permille ? : O2_IN_AIR;
}
static inline int get_he(const struct gasmix *mix)
{
return mix->he.permille;
}
static inline bool is_air(int o2, int he)
{
return (he == 0) && (o2 == 0 || ((o2 >= O2_IN_AIR - 1) && (o2 <= O2_IN_AIR + 1)));
}
/* Linear interpolation between 'a' and 'b', when we are 'part'way into the 'whole' distance from a to b */
static inline int interpolate(int a, int b, int part, int whole)
{
/* It is doubtful that we actually need floating point for this, but whatever */
double x = (double) a * (whole - part) + (double) b * part;
return rint(x / whole);
}
struct sample {
duration_t time;
depth_t depth;
temperature_t temperature;
pressure_t cylinderpressure;
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
int sensor; /* Cylinder pressure sensor index */
duration_t ndl;
duration_t stoptime;
depth_t stopdepth;
bool in_deco;
int cns;
int po2;
};
struct divetag {
/*
* The name of the divetag. If a translation is available, name contains
* the translated tag
*/
char *name;
/*
* If a translation is available, we write the original tag to source.
* This enables us to write a non-localized tag to the xml file.
*/
char *source;
};
struct tag_entry {
struct divetag *tag;
struct tag_entry *next;
};
/*
* divetags are only stored once, each dive only contains
* a list of tag_entries which then point to the divetags
* in the global g_tag_list
*/
extern struct tag_entry *g_tag_list;
struct divetag *taglist_add_tag(struct tag_entry *tag_list, const char *tag);
/*
* Writes all divetags in tag_list to buffer, limited by the buffer's (len)gth.
* Returns the characters written
*/
int taglist_get_tagstring(struct tag_entry *tag_list, char *buffer, int len);
void taglist_init(struct tag_entry **tag_list);
void taglist_clear(struct tag_entry *tag_list);
void taglist_init_global();
/*
* Events are currently pretty meaningless. This is
* just based on the random data that libdivecomputer
* gives us. I'm not sure what a real "architected"
* event model would actually look like, but right
* now you can associate a list of events with a dive,
* and we'll do something about it.
*/
struct event {
struct event *next;
duration_t time;
int type, flags, value;
bool deleted;
char name[];
};
/*
* NOTE! The deviceid and diveid are model-specific *hashes* of
* whatever device identification that model may have. Different
* dive computers will have different identifying data, it could
* be a firmware number or a serial ID (in either string or in
* numeric format), and we do not care.
*
* The only thing we care about is that subsurface will hash
* that information the same way. So then you can check the ID
* of a dive computer by comparing the hashes for equality.
*
* A deviceid or diveid of zero is assumed to be "no ID".
*/
struct divecomputer {
timestamp_t when;
duration_t duration, surfacetime;
depth_t maxdepth, meandepth;
temperature_t airtemp, watertemp;
pressure_t surface_pressure;
int salinity; // kg per 10000 l
const char *model;
uint32_t deviceid, diveid;
int samples, alloc_samples;
struct sample *sample;
struct event *events;
struct divecomputer *next;
};
#define MAX_CYLINDERS (8)
#define MAX_WEIGHTSYSTEMS (6)
#define W_IDX_PRIMARY 0
#define W_IDX_SECONDARY 1
typedef enum { TF_NONE, NO_TRIP, IN_TRIP, ASSIGNED_TRIP, NUM_TRIPFLAGS } tripflag_t;
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
typedef struct dive_trip {
timestamp_t when;
char *location;
char *notes;
struct dive *dives;
2012-11-10 18:51:03 +00:00
int nrdives;
Allow overlapping (and disjoint) dive trips We used to have the rule that a dive trip has to have all dives in it in sequential order, even though our XML file really is much more flexible, and allows arbitrary nesting of dives within a dive trip. Put another way, the old model had fairly inflexible rules: - the dive array is sorted by time - a dive trip is always a contiguous slice of this sorted array which makes perfect sense when you think of the dive and trip list as a physical activity by one person, but leads to various very subtle issues in the general case when there are no guarantees that the user then uses subsurface that way. In particular, if you load the XML files of two divers that have overlapping dive trips, the end result is incredibly messy, and does not conform to the above model at all. There's two ways to enforce such conformance: - disallow that kind of behavior entirely. This is actually hard. Our XML files aren't date-based, they are based on XML nesting rules, and even a single XML file can have nesting that violates the date ordering. With multiple XML files, it's trivial to do in practice, and while we could just fail at loading, the failure would have to be a hard failure that leaves the user no way to use the data at all. - try to "fix it up" by sorting, splitting, and combining dive trips automatically. Dirk had a patch to do this, but it really does destroy the actual dive data: if you load both mine and Dirk's dive trips, you ended up with a result that followed the above two technical rules, but that didn't actually make any *sense*. So this patch doesn't try to enforce the rules, and instead just changes them to be more generic: - the dive array is still sorted by dive time - a dive trip is just an arbitrary collection of dives. The relaxed rules means that mixing dives and dive trips for two people is trivial, and we can easily handle any XML file. The dive trip is defined by the XML nesting level, and is totally independent of any date-based sorting. It does require a few things: - when we save our dive data, we have to do it hierarchically by dive trip, not just by walking the dive array linearly. - similarly, when we create the dive tree model, we can't just blindly walk the array of dives one by one, we have to look up the correct trip (parent) - when we try to merge two dives that are adjacent (by date sorting), we can't do it if they are in different trips. but apart from that, nothing else really changes. NOTE! Despite the new relaxed model, creating totally disjoing dive trips is not all that easy (nor is there any *reason* for it to be easty). Our GUI interfaces still are "add dive to trip above" etc, and the automatic adding of dives to dive trips is obviously still based on date. So this does not really change the expected normal usage, the relaxed data structure rules just mean that we don't need to worry about the odd cases as much, because we can just let them be. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
int index;
unsigned expanded:1, selected:1, autogen:1, fixup:1;
struct dive_trip *next;
} dive_trip_t;
/* List of dive trips (sorted by date) */
extern dive_trip_t *dive_trip_list;
struct dive {
int number;
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
tripflag_t tripflag;
dive_trip_t *divetrip;
struct dive *next, **pprev;
int selected;
bool downloaded;
timestamp_t when;
char *location;
char *notes;
char *divemaster, *buddy;
int rating;
degrees_t latitude, longitude;
int visibility; /* 0 - 5 star rating */
cylinder_t cylinder[MAX_CYLINDERS];
weightsystem_t weightsystem[MAX_WEIGHTSYSTEMS];
char *suit;
int sac, otu, cns, maxcns;
/* Calculated based on dive computer data */
temperature_t mintemp, maxtemp, watertemp, airtemp;
depth_t maxdepth, meandepth;
pressure_t surface_pressure;
duration_t duration;
int salinity; // kg per 10000 l
struct tag_entry *tag_list;
struct divecomputer dc;
int id; // unique ID for this dive
};
static inline int dive_has_gps_location(struct dive *dive)
{
return dive->latitude.udeg || dive->longitude.udeg;
}
static inline void copy_gps_location(struct dive *from, struct dive *to)
{
if (from && to) {
to->latitude.udeg = from->latitude.udeg;
to->longitude.udeg = from->longitude.udeg;
}
}
static inline int get_surface_pressure_in_mbar(const struct dive *dive, bool non_null)
{
int mbar = dive->surface_pressure.mbar;
if (!mbar && non_null)
mbar = SURFACE_PRESSURE;
return mbar;
}
/* Pa = N/m^2 - so we determine the weight (in N) of the mass of 10m
* of water (and use standard salt water at 1.03kg per liter if we don't know salinity)
* and add that to the surface pressure (or to 1013 if that's unknown) */
static inline int calculate_depth_to_mbar(int depth, pressure_t surface_pressure, int salinity)
{
double specific_weight;
int mbar = surface_pressure.mbar;
if (!mbar)
mbar = SURFACE_PRESSURE;
if (!salinity)
salinity = SEAWATER_SALINITY;
specific_weight = salinity / 10000.0 * 0.981;
mbar += depth / 10.0 * specific_weight + 0.5;
return mbar;
}
static inline int depth_to_mbar(int depth, struct dive *dive)
{
return calculate_depth_to_mbar(depth, dive->surface_pressure, dive->salinity);
}
/* for the inverse calculation we use just the relative pressure
* (that's the one that some dive computers like the Uemis Zurich
* provide - for the other models that do this libdivecomputer has to
* take care of this, but the Uemis we support natively */
static inline int rel_mbar_to_depth(int mbar, struct dive *dive)
{
int cm;
double specific_weight = 1.03 * 0.981;
if (dive->dc.salinity)
specific_weight = dive->dc.salinity / 10000.0 * 0.981;
/* whole mbar gives us cm precision */
cm = mbar / specific_weight + 0.5;
return cm * 10;
}
#define SURFACE_THRESHOLD 750 /* somewhat arbitrary: only below 75cm is it really diving */
/* this is a global spot for a temporary dive structure that we use to
* be able to edit a dive without unintended side effects */
extern struct dive edit_dive;
extern short autogroup;
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
/* random threashold: three days without diving -> new trip
* this works very well for people who usually dive as part of a trip and don't
* regularly dive at a local facility; this is why trips are an optional feature */
#define TRIP_THRESHOLD 3600*24*3
#define UNGROUPED_DIVE(_dive) ((_dive)->tripflag == NO_TRIP)
#define DIVE_IN_TRIP(_dive) ((_dive)->tripflag == IN_TRIP || (_dive)->tripflag == ASSIGNED_TRIP)
#define DIVE_NEEDS_TRIP(_dive) ((_dive)->tripflag == TF_NONE)
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
2012-11-10 18:51:03 +00:00
extern void add_dive_to_trip(struct dive *, dive_trip_t *);
extern void delete_single_dive(int idx);
extern void add_single_dive(int idx, struct dive *dive);
extern void insert_trip(dive_trip_t **trip);
First cut of explicit trip tracking This code establishes the explicit trip data structures and loads and saves them in the XML data. No attempts are made to edit / modify the trips, yet. Loading XML files without trip data creates the trips based on timing as before. Saving out the same, unmodified data will create 'trip' entries in the XML file with a 'number' that reflects the number of dives in that trip. The trip tag also stores the beginning time of the first dive in the trip and the location of the trip (which we display in the summary entries in the UI). The logic allows for dives that aren't part of a dive trip. All other dives simply belong to the "previous" dive trip - i.e. the dive trip with the latest start time that is earlier or equal to the start time of this dive. This logic significantly simplifies the tracking of trips compared to other approaches that I have tried. The automatic grouping into trips now is an option that defaults to off (as it makes changes to the XML file - and people who don't want this feature shouldn't have trips added to their XML files that they then need to manually remove). For now you have to select this option, then exit the program and start it again. Still to do is to trigger the trip generation at run time. We also need a way to mark dives as not part of trips and to allow options to combine trips, split trips, edit trip location data, etc. The code has only had some limited testing when opening multiple files. The code is known to fail if a location name contains unquoted special characters like an "'". This commit also fixes a visual inconsistency in the preferences dialog where the font selector button didn't have a frame around it that told you what this option was about. Inspired-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-08-22 05:04:24 +00:00
/*
* We keep our internal data in well-specified units, but
* the input and output may come in some random format. This
* keeps track of those units.
*/
/* turns out in Win32 PASCAL is defined as a calling convention */
#ifdef WIN32
#undef PASCAL
#endif
struct units {
enum { METERS, FEET } length;
enum { LITER, CUFT } volume;
enum { BAR, PSI, PASCAL } pressure;
enum { CELSIUS, FAHRENHEIT, KELVIN } temperature;
enum { KG, LBS } weight;
enum { SECONDS, MINUTES } vertical_speed_time;
};
/*
* We're going to default to SI units for input. Yes,
* technically the SI unit for pressure is Pascal, but
* we default to bar (10^5 pascal), which people
* actually use. Similarly, C instead of Kelvin.
* And kg instead of g.
*/
#define SI_UNITS { \
.length = METERS, \
.volume = LITER, \
.pressure = BAR, \
.temperature = CELSIUS, \
.weight = KG, \
.vertical_speed_time = MINUTES \
}
#define IMPERIAL_UNITS { \
.length = FEET, \
.volume = CUFT, \
.pressure = PSI, \
.temperature = FAHRENHEIT, \
.weight = LBS, \
.vertical_speed_time = MINUTES \
}
extern const struct units SI_units, IMPERIAL_units;
extern struct units xml_parsing_units;
extern struct units *get_units(void);
extern int verbose, quit;
struct dive_table {
int nr, allocated, preexisting;
struct dive **dives;
};
extern struct dive_table dive_table;
extern int selected_dive;
#define current_dive (get_dive(selected_dive))
#define current_dc (get_dive_dc(current_dive, dc_number))
static inline struct dive *get_gps_location(int nr, struct dive_table *table)
{
if (nr >= table->nr || nr < 0)
return NULL;
return table->dives[nr];
}
static inline struct dive *get_dive(int nr)
{
if (nr >= dive_table.nr || nr < 0)
return NULL;
return dive_table.dives[nr];
}
static inline struct divecomputer *get_dive_dc(struct dive *dive, int nr)
{
struct divecomputer *dc = NULL;
if (nr >= 0)
dc = &dive->dc;
while (nr-- > 0)
dc = dc->next;
return dc;
}
/*
* Iterate over each dive, with the first parameter being the index
* iterator variable, and the second one being the dive one.
*
* I don't think anybody really wants the index, and we could make
* it local to the for-loop, but that would make us requires C99.
*/
#define for_each_dive(_i,_x) \
for ((_i) = 0; ((_x) = get_dive(_i)) != NULL; (_i)++)
#define for_each_dc(_dive,_dc) \
for (_dc = &_dive->dc; _dc; _dc = _dc->next)
#define for_each_gps_location(_i,_x) \
for ((_i) = 0; ((_x) = get_gps_location(_i, &gps_location_table)) != NULL; (_i)++)
static inline struct dive *get_dive_by_diveid(uint32_t diveid, uint32_t deviceid)
{
int i;
struct dive *dive;
for_each_dive(i, dive) {
struct divecomputer *dc = &dive->dc;
do {
if (dc->diveid == diveid && dc->deviceid == deviceid)
return dive;
} while ((dc = dc->next) != NULL);
}
return NULL;
}
// this is very different from get_dive_by_diveid() (which is only used
// by the UEMIS downloader) -- this uses the unique diveID to allow us
// to hold an identifier for a dive across operations that might change
// the dive_table
static inline struct dive *getDiveById(int id)
{
int i;
struct dive *dive = NULL;
for_each_dive(i, dive) {
if (dive->id == id)
break;
}
return dive;
}
extern struct dive *find_dive_including(timestamp_t when);
extern bool dive_within_time_range(struct dive *dive, timestamp_t when, timestamp_t offset);
struct dive *find_dive_n_near(timestamp_t when, int n, timestamp_t offset);
/* Check if two dive computer entries are the exact same dive (-1=no/0=maybe/1=yes) */
extern int match_one_dc(struct divecomputer *a, struct divecomputer *b);
extern void parse_xml_init(void);
extern void parse_xml_buffer(const char *url, const char *buf, int size, struct dive_table *table, const char **params, char **error);
extern void parse_xml_exit(void);
extern void set_filename(const char *filename, bool force);
extern int parse_dm4_buffer(const char *url, const char *buf, int size, struct dive_table *table, char **error);
extern void parse_file(const char *filename, char **error);
extern void parse_csv_file(const char *filename, int time, int depth, int temp, int po2f, int cnsf, int stopdepthf, int sepidx, const char *csvtemplate, char **error);
extern void parse_manual_file(const char *filename, int separator_index, int units, int number, int date, int time, int duration, int location, int gps, int maxdepth, int meandepth, int buddy, int notes, int weight, int tags, char **error);
extern void save_dives(const char *filename);
extern void save_dives_logic(const char *filename, bool select_only);
extern void save_dive(FILE *f, struct dive *dive);
extern void export_dives_uddf(const char *filename, const bool selected);
extern int subsurface_open(const char *path, int oflags, mode_t mode);
extern FILE *subsurface_fopen(const char *path, const char *mode);
extern void *subsurface_opendir(const char *path);
extern struct zip *subsurface_zip_open_readonly(const char *path, int flags, int *errorp);
extern int subsurface_zip_close(struct zip *zip);
extern void shift_times(const timestamp_t amount);
extern xsltStylesheetPtr get_stylesheet(const char *name);
extern timestamp_t utc_mktime(struct tm *tm);
extern void utc_mkdate(timestamp_t, struct tm *tm);
extern struct dive *alloc_dive(void);
extern void record_dive(struct dive *dive);
extern struct sample *prepare_sample(struct divecomputer *dc);
extern void finish_sample(struct divecomputer *dc);
extern void sort_table(struct dive_table *table);
extern struct dive *fixup_dive(struct dive *dive);
extern int getUniqID(struct dive *d);
extern unsigned int dc_airtemp(struct divecomputer *dc);
extern unsigned int dc_watertemp(struct divecomputer *dc);
extern struct dive *merge_dives(struct dive *a, struct dive *b, int offset, bool prefer_downloaded);
extern struct dive *try_to_merge(struct dive *a, struct dive *b, bool prefer_downloaded);
extern void renumber_dives(int nr);
extern void copy_events(struct dive *s, struct dive *d);
extern void copy_cylinders(struct dive *s, struct dive *d);
extern void copy_samples(struct dive *s, struct dive *d);
extern void fill_default_cylinder(cylinder_t *cyl);
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
extern void add_gas_switch_event(struct dive *dive, struct divecomputer *dc, int time, int idx);
extern void add_event(struct divecomputer *dc, int time, int type, int flags, int value, const char *name);
extern void per_cylinder_mean_depth(struct dive *dive, struct divecomputer *dc, int *mean, int *duration);
extern int get_cylinder_index(struct dive *dive, struct event *ev);
/* UI related protopypes */
// extern void report_error(GError* error);
extern void add_cylinder_description(cylinder_type_t *);
extern void add_weightsystem_description(weightsystem_t *);
extern void remember_event(const char *eventname);
#if WE_DONT_USE_THIS /* this is a missing feature in Qt - selecting which events to display */
extern int evn_foreach(void (*callback)(const char *, bool *, void *), void *data);
#endif /* WE_DONT_USE_THIS */
extern void clear_events(void);
extern void set_dc_nickname(struct dive *dive);
extern void set_autogroup(bool value);
extern int total_weight(struct dive *);
#define DIVE_ERROR_PARSE 1
#define DIVE_ERROR_PLAN 2
const char *weekday(int wday);
const char *monthname(int mon);
#define UTF8_DEGREE "\xc2\xb0"
#define UTF8_DELTA "\xce\x94"
#define UTF8_UPWARDS_ARROW "\xE2\x86\x91"
#define UTF8_DOWNWARDS_ARROW "\xE2\x86\x93"
#define UTF8_AVERAGE "\xc3\xb8"
#define UCS4_DEGREE 0xb0
#define UTF8_SUBSCRIPT_2 "\xe2\x82\x82"
#define UTF8_WHITESTAR "\xe2\x98\x86"
#define UTF8_BLACKSTAR "\xe2\x98\x85"
#define ZERO_STARS UTF8_WHITESTAR UTF8_WHITESTAR UTF8_WHITESTAR UTF8_WHITESTAR UTF8_WHITESTAR
#define ONE_STARS UTF8_BLACKSTAR UTF8_WHITESTAR UTF8_WHITESTAR UTF8_WHITESTAR UTF8_WHITESTAR
#define TWO_STARS UTF8_BLACKSTAR UTF8_BLACKSTAR UTF8_WHITESTAR UTF8_WHITESTAR UTF8_WHITESTAR
#define THREE_STARS UTF8_BLACKSTAR UTF8_BLACKSTAR UTF8_BLACKSTAR UTF8_WHITESTAR UTF8_WHITESTAR
#define FOUR_STARS UTF8_BLACKSTAR UTF8_BLACKSTAR UTF8_BLACKSTAR UTF8_BLACKSTAR UTF8_WHITESTAR
#define FIVE_STARS UTF8_BLACKSTAR UTF8_BLACKSTAR UTF8_BLACKSTAR UTF8_BLACKSTAR UTF8_BLACKSTAR
extern const char *star_strings[];
extern const char *existing_filename;
extern void subsurface_command_line_init(int *, char ***);
extern void subsurface_command_line_exit(int *, char ***);
#define FRACTION(n,x) ((unsigned)(n)/(x)),((unsigned)(n)%(x))
extern double add_segment(double pressure, const struct gasmix *gasmix, int period_in_seconds, int setpoint, const struct dive *dive);
extern void clear_deco(double surface_pressure);
extern void dump_tissues(void);
extern unsigned int deco_allowed_depth(double tissues_tolerance, double surface_pressure, struct dive *dive, bool smooth);
extern void set_gf(short gflow, short gfhigh, bool gf_low_at_maxdepth);
extern void cache_deco_state(double, char **datap);
extern double restore_deco_state(char *data);
First stab at simplistic dive planning This comes with absolutely no gui - so the plan literally needs to be compiled into Subsurface. Not exactly a feature, but this allowed me to focus on the planning part instead of spending time on tedious UI work. A new menu "Planner" with entry "Test Planner" calls into the hard-coded function in planner.c. There a simple dive plan can be constructed with calls to plan_add_segment(&diveplan, duration, depth at the end, fO2, pO2) Calling plan(&diveplan) does the deco calculations and creates deco stops that keep us below the ceiling (with the GFlow/high values currently configured). The stop levels used are defined at the top of planner.c in the stoplevels array - there is no need to do the traditional multiples of 3m or anything like that. The dive including the ascents and deco stops all the way to the surface is completed and then added as simulated dive to the end of the divelist (I guess we could automatically select it later) and can be viewed. This is crude but shows the direction we can go with this. Envision a nice UI that allows you to simply enter the segments and pick the desired stops. What is missing is the ability to give the algorithm additional gases that it can use during the deco phase - right now it simply keeps using the last gas used in the diveplan. All that said, there are clear bugs here - and sadly they seem to be in the deco calculations, as with the example given the ceiling that is calculated makes no sense. When displayed in smooth mode it has very strange jumps up and down that I wouldn't expect. For example with GF 35/75 (the default) the deco ceiling when looking at the simulated dive jumps from 16m back up to 13m around 14:10 into the dive. That seems very odd. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-05 07:11:42 +00:00
struct divedatapoint {
int time;
unsigned int depth;
int o2;
int he;
int po2;
bool entered;
struct divedatapoint *next;
};
struct diveplan {
timestamp_t when;
int lastdive_nr;
int surface_pressure; /* mbar */
int bottomsac; /* ml/min */
int decosac; /* ml/min */
short gflow;
short gfhigh;
struct divedatapoint *dp;
};
struct divedatapoint *plan_add_segment(struct diveplan *diveplan, int duration, int depth, int o2, int he, int po2);
void get_gas_string(int o2, int he, char *buf, int len);
struct divedatapoint *create_dp(int time_incr, int depth, int o2, int he, int po2);
void dump_plan(struct diveplan *diveplan);
void plan(struct diveplan *diveplan, char **cached_datap, struct dive **divep, bool add_deco, const char **error_string_p);
void delete_single_dive(int idx);
First stab at simplistic dive planning This comes with absolutely no gui - so the plan literally needs to be compiled into Subsurface. Not exactly a feature, but this allowed me to focus on the planning part instead of spending time on tedious UI work. A new menu "Planner" with entry "Test Planner" calls into the hard-coded function in planner.c. There a simple dive plan can be constructed with calls to plan_add_segment(&diveplan, duration, depth at the end, fO2, pO2) Calling plan(&diveplan) does the deco calculations and creates deco stops that keep us below the ceiling (with the GFlow/high values currently configured). The stop levels used are defined at the top of planner.c in the stoplevels array - there is no need to do the traditional multiples of 3m or anything like that. The dive including the ascents and deco stops all the way to the surface is completed and then added as simulated dive to the end of the divelist (I guess we could automatically select it later) and can be viewed. This is crude but shows the direction we can go with this. Envision a nice UI that allows you to simply enter the segments and pick the desired stops. What is missing is the ability to give the algorithm additional gases that it can use during the deco phase - right now it simply keeps using the last gas used in the diveplan. All that said, there are clear bugs here - and sadly they seem to be in the deco calculations, as with the example given the ceiling that is calculated makes no sense. When displayed in smooth mode it has very strange jumps up and down that I wouldn't expect. For example with GF 35/75 (the default) the deco ceiling when looking at the simulated dive jumps from 16m back up to 13m around 14:10 into the dive. That seems very odd. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-01-05 07:11:42 +00:00
struct event *get_next_event(struct event *event, char *name);
/* these structs holds the information that
* describes the cylinders / weight systems.
* they are global variables initialized in equipment.c
* used to fill the combobox in the add/edit cylinder
* dialog
*/
struct tank_info_t {
const char *name;
int cuft, ml, psi, bar;
};
extern struct tank_info_t tank_info[100];
struct ws_info_t {
const char *name;
int grams;
};
extern struct ws_info_t ws_info[100];
extern bool cylinder_nodata(cylinder_t *cyl);
extern bool cylinder_none(void *_data);
extern bool weightsystem_none(void *_data);
extern bool no_weightsystems(weightsystem_t *ws);
extern bool weightsystems_equal(weightsystem_t *ws1, weightsystem_t *ws2);
extern void remove_cylinder(struct dive *dive, int idx);
extern void remove_weightsystem(struct dive *dive, int idx);
/*
* String handling.
*/
#define STRTOD_NO_SIGN 0x01
#define STRTOD_NO_DOT 0x02
#define STRTOD_NO_COMMA 0x04
#define STRTOD_NO_EXPONENT 0x08
extern double strtod_flags(const char *str, const char **ptr, unsigned int flags);
#define STRTOD_ASCII (STRTOD_NO_COMMA)
#define ascii_strtod(str,ptr) strtod_flags(str,ptr,STRTOD_ASCII)
#ifdef __cplusplus
}
#endif
extern weight_t string_to_weight(const char *str);
extern depth_t string_to_depth(const char *str);
extern pressure_t string_to_pressure(const char *str);
extern volume_t string_to_volume(const char *str, pressure_t workp);
extern fraction_t string_to_fraction(const char *str);
#include "pref.h"
#endif /* DIVE_H */