subsurface/stats/statsvariables.cpp

1765 lines
56 KiB
C++
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
#include "statsvariables.h"
#include "statstranslations.h"
#include "core/dive.h"
#include "core/divemode.h"
#include "core/divesite.h"
#include "core/gas.h"
#include "core/pref.h"
#include "core/qthelper.h" // for get_depth_unit() et al.
#include "core/string-format.h"
#include "core/subsurface-time.h"
#include <cmath>
#include <limits>
#include <QLocale>
#if QT_VERSION >= QT_VERSION_CHECK(5, 14, 0)
#define SKIP_EMPTY Qt::SkipEmptyParts
#else
#define SKIP_EMPTY QString::SkipEmptyParts
#endif
static const constexpr double NaN = std::numeric_limits<double>::quiet_NaN();
// Typedefs for year / quarter or month binners
using year_quarter = std::pair<unsigned short, unsigned short>;
using year_month = std::pair<unsigned short, unsigned short>;
// Small helper template: add an item to an unsorted vector, if its not already there.
template<typename T>
static void add_to_vector_unique(std::vector<T> &v, const T &item)
{
if (std::find(v.begin(), v.end(), item) == v.end())
v.push_back(item);
}
// Small helper: make a comma separeted list of a vector of QStrings
static QString join_strings(const std::vector<QString> &v)
{
QString res;
for (const QString &s: v) {
if (!res.isEmpty())
res += ", ";
res += s;
}
return res;
}
// Note: usually I dislike functions defined inside class/struct
// declarations ("Java style"). However, for brevity this is done
// in this rather template-heavy source file more or less consistently.
// Templates to define invalid values for variables and test for said values.
// This is used by the binners: returning such a value means "ignore this dive".
template<typename T> T invalid_value();
template<> int invalid_value<int>()
{
return std::numeric_limits<int>::max();
}
template<> double invalid_value<double>()
{
return std::numeric_limits<double>::quiet_NaN();
}
template<> QString invalid_value<QString>()
{
return QString();
}
template<> StatsQuartiles invalid_value<StatsQuartiles>()
{
double NaN = std::numeric_limits<double>::quiet_NaN();
return { NaN, NaN, NaN, NaN, NaN };
}
static bool is_invalid_value(int i)
{
return i == std::numeric_limits<int>::max();
}
static bool is_invalid_value(double d)
{
return std::isnan(d);
}
static bool is_invalid_value(const QString &s)
{
return s.isEmpty();
}
// Currently, we don't support invalid dates - should we?
static bool is_invalid_value(const year_quarter &)
{
return false;
}
static bool is_invalid_value(const dive_site *d)
{
return !d;
}
static bool is_invalid_value(const StatsOperationResults &res)
{
return !res.isValid();
}
// Describes a gas-content bin. Since we consider O2 and He, these bins
// are effectively two-dimensional. However, they are given a linear order
// by sorting lexicographically.
// This is different from the general type of the gas, which is defined in
// gas.h as the gastype enum. The latter does not bin by fine-grained
// percentages.
struct gas_bin_t {
// Depending on the gas content, we format the bins differently.
// Eg. in the absence of helium and inreased oxygen, the bin is
// formatted as "EAN32". The format is specified by the type enum.
enum class Type {
Air,
Oxygen,
EAN,
Trimix
} type;
int o2, he;
static gas_bin_t air() {
return { Type::Air, 0, 0 };
}
static gas_bin_t oxygen() {
return { Type::Oxygen, 0, 0 };
}
static gas_bin_t ean(int o2) {
return { Type::EAN, o2, 0 };
}
static gas_bin_t trimix(int o2, int h2) {
return { Type::Trimix, o2, h2 };
}
};
// We never generate gas_bins of invalid gases.
static bool is_invalid_value(const gas_bin_t &)
{
return false;
}
static bool is_invalid_value(const std::vector<StatsValue> &v)
{
return v.empty();
}
static bool is_invalid_value(const StatsQuartiles &q)
{
return std::isnan(q.min);
}
bool StatsQuartiles::isValid() const
{
return !is_invalid_value(*this);
}
// Define an ordering for gas types
// invalid < air < ean (including oxygen) < trimix
// The latter two are sorted by (helium, oxygen)
// This is in analogy to the global get_dive_gas() function.
static bool operator<(const gas_bin_t &t1, const gas_bin_t &t2)
{
if (t1.type != t2.type)
return (int)t1.type < (int)t2.type;
switch (t1.type) {
default:
case gas_bin_t::Type::Oxygen:
case gas_bin_t::Type::Air:
return false;
case gas_bin_t::Type::EAN:
return t1.o2 < t2.o2;
case gas_bin_t::Type::Trimix:
return std::tie(t1.o2, t1.he) < std::tie(t2.o2, t2.he);
}
}
static bool operator==(const gas_bin_t &t1, const gas_bin_t &t2)
{
return std::tie(t1.type, t1.o2, t1.he) ==
std::tie(t2.type, t2.o2, t2.he);
}
static bool operator!=(const gas_bin_t &t1, const gas_bin_t &t2)
{
return !operator==(t1, t2);
}
// First, let's define the virtual destructors of our base classes
StatsBin::~StatsBin()
{
}
StatsBinner::~StatsBinner()
{
}
QString StatsBinner::unitSymbol() const
{
return QString();
}
StatsVariable::~StatsVariable()
{
}
QString StatsBinner::name() const
{
return QStringLiteral("N/A"); // Some dummy string that should never reach the UI
}
QString StatsBinner::formatWithUnit(const StatsBin &bin) const
{
QString unit = unitSymbol();
QString name = format(bin);
return unit.isEmpty() ? name : QStringLiteral("%1 %2").arg(name, unit);
}
QString StatsBinner::formatLowerBound(const StatsBin &bin) const
{
return QStringLiteral("N/A"); // Some dummy string that should never reach the UI
}
QString StatsBinner::formatUpperBound(const StatsBin &bin) const
{
return QStringLiteral("N/A"); // Some dummy string that should never reach the UI
}
double StatsBinner::lowerBoundToFloat(const StatsBin &bin) const
{
return 0.0;
}
double StatsBinner::upperBoundToFloat(const StatsBin &bin) const
{
return 0.0;
}
bool StatsBinner::preferBin(const StatsBin &bin) const
{
return true;
}
// Default implementation for discrete variables: there are no bins between discrete bins.
std::vector<StatsBinPtr> StatsBinner::bins_between(const StatsBin &bin1, const StatsBin &bin2) const
{
return {};
}
QString StatsVariable::unitSymbol() const
{
return {};
}
QString StatsVariable::diveCategories(const dive *) const
{
return QString();
}
int StatsVariable::decimals() const
{
return 0;
}
double StatsVariable::toFloat(const dive *d) const
{
return invalid_value<double>();
}
QString StatsVariable::nameWithUnit() const
{
QString s = name();
QString symb = unitSymbol();
return symb.isEmpty() ? s : QStringLiteral("%1 [%2]").arg(s, symb);
}
QString StatsVariable::nameWithBinnerUnit(const StatsBinner &binner) const
{
QString s = name();
QString symb = binner.unitSymbol();
return symb.isEmpty() ? s : QStringLiteral("%1 [%2]").arg(s, symb);
}
const StatsBinner *StatsVariable::getBinner(int idx) const
{
std::vector<const StatsBinner *> b = binners();
if (b.empty())
return nullptr;
return idx >= 0 && idx < (int)b.size() ? b[idx] : b[0];
}
std::vector<StatsOperation> StatsVariable::supportedOperations() const
{
return {};
}
// Attn: The order must correspond to the StatsOperation enum
static const char *operation_names[] = {
QT_TRANSLATE_NOOP("StatsTranslations", "Median"),
QT_TRANSLATE_NOOP("StatsTranslations", "Mean"),
QT_TRANSLATE_NOOP("StatsTranslations", "Time-weighted mean"),
QT_TRANSLATE_NOOP("StatsTranslations", "Sum")
};
QStringList StatsVariable::supportedOperationNames() const
{
std::vector<StatsOperation> ops = supportedOperations();
QStringList res;
res.reserve(ops.size());
for (StatsOperation op: ops)
res.push_back(operationName(op));
return res;
}
StatsOperation StatsVariable::idxToOperation(int idx) const
{
std::vector<StatsOperation> ops = supportedOperations();
if (ops.empty()) {
qWarning("Stats variable %s does not support operations", qPrintable(name()));
return StatsOperation::Median; // oops!
}
return idx < 0 || idx >= (int)ops.size() ? ops[0] : ops[idx];
}
QString StatsVariable::operationName(StatsOperation op)
{
int idx = (int)op;
return idx < 0 || idx >= (int)std::size(operation_names) ? QString()
: operation_names[(int)op];
}
double StatsVariable::mean(const std::vector<dive *> &dives) const
{
StatsOperationResults res = applyOperations(dives);
return res.isValid() ? res.mean : invalid_value<double>();
}
std::vector<StatsValue> StatsVariable::values(const std::vector<dive *> &dives) const
{
std::vector<StatsValue> vec;
vec.reserve(dives.size());
for (dive *d: dives) {
double v = toFloat(d);
if (!is_invalid_value(v))
vec.push_back({ v, d });
}
std::sort(vec.begin(), vec.end(),
[](const StatsValue &v1, const StatsValue &v2)
{ return v1.v < v2.v; });
return vec;
}
QString StatsVariable::valueWithUnit(const dive *d) const
{
QLocale loc;
double v = toFloat(d);
if (is_invalid_value(v))
return QStringLiteral("-");
return QString("%1 %2").arg(loc.toString(v, 'f', decimals()),
unitSymbol());
}
// Small helper to calculate quartiles - section of intervals of
// two consecutive elements in a vector. It's not strictly correct
// to interpolate linearly. However, on the one hand we don't know
// the actual distribution, on the other hand for a discrete
// distribution the quartiles are ranges. So what should we do?
static double q1(const StatsValue *v)
{
return (3.0*v[0].v + v[1].v) / 4.0;
}
static double q2(const StatsValue *v)
{
return (v[0].v + v[1].v) / 2.0;
}
static double q3(const StatsValue *v)
{
return (v[0].v + 3.0*v[1].v) / 4.0;
}
StatsQuartiles StatsVariable::quartiles(const std::vector<dive *> &dives) const
{
return quartiles(values(dives));
}
// This expects the value vector to be sorted!
StatsQuartiles StatsVariable::quartiles(const std::vector<StatsValue> &vec)
{
size_t s = vec.size();
if (s == 0)
return invalid_value<StatsQuartiles>();
switch (s % 4) {
default:
// gcc doesn't recognize that we catch all possible values. disappointing.
case 0:
return { vec[0].v, q3(&vec[s/4 - 1]), q2(&vec[s/2 - 1]), q1(&vec[s - s/4 - 1]), vec[s - 1].v };
case 1:
return { vec[0].v, vec[s/4].v, vec[s/2].v, vec[s - s/4 - 1].v, vec[s - 1].v };
case 2:
return { vec[0].v, q1(&vec[s/4]), q2(&vec[s/2 - 1]), q3(&vec[s - s/4 - 2]), vec[s - 1].v };
case 3:
return { vec[0].v, q2(&vec[s/4]), vec[s/2].v, q2(&vec[s - s/4 - 2]), vec[s - 1].v };
}
}
StatsOperationResults StatsVariable::applyOperations(const std::vector<dive *> &dives) const
{
StatsOperationResults res;
std::vector<StatsValue> val = values(dives);
double sumTime = 0.0;
res.count = (int)val.size();
res.median = quartiles(val).q2;
if (res.count <= 0)
return res;
for (auto [v, d]: val) {
res.sum += v;
res.mean += v;
sumTime += d->duration.seconds;
res.timeWeightedMean += v * d->duration.seconds;
}
res.mean /= res.count;
res.timeWeightedMean /= sumTime;
return res;
}
StatsOperationResults::StatsOperationResults() :
count(0), median(0.0), mean(0.0), timeWeightedMean(0.0), sum(0.0)
{
}
bool StatsOperationResults::isValid() const
{
return count > 0;
}
double StatsOperationResults::get(StatsOperation op) const
{
switch (op) {
case StatsOperation::Median: return median;
case StatsOperation::Mean: return mean;
case StatsOperation::TimeWeightedMean: return timeWeightedMean;
case StatsOperation::Sum: return sum;
case StatsOperation::Invalid:
default: return invalid_value<double>();
}
}
std::vector<StatsScatterItem> StatsVariable::scatter(const StatsVariable &t2, const std::vector<dive *> &dives) const
{
std::vector<StatsScatterItem> res;
res.reserve(dives.size());
for (dive *d: dives) {
double v1 = toFloat(d);
double v2 = t2.toFloat(d);
if (is_invalid_value(v1) || is_invalid_value(v2))
continue;
res.push_back({ v1, v2, d });
}
std::sort(res.begin(), res.end(),
[](const StatsScatterItem &i1, const StatsScatterItem &i2)
{ return std::tie(i1.x, i1.y) < std::tie(i2.x, i2.y); }); // use std::tie() for lexicographical comparison
return res;
}
template <typename T, typename DivesToValueFunc>
std::vector<StatsBinValue<T>> bin_convert(const StatsVariable &variable, const StatsBinner &binner, const std::vector<dive *> &dives,
bool fill_empty, DivesToValueFunc func)
{
std::vector<StatsBinDives> bin_dives = binner.bin_dives(dives, fill_empty);
std::vector<StatsBinValue<T>> res;
res.reserve(bin_dives.size());
for (auto &[bin, dives]: bin_dives) {
T v = func(dives);
if (is_invalid_value(v) && (res.empty() || !fill_empty))
continue;
res.push_back({ std::move(bin), v });
}
if (res.empty())
return res;
// Check if we added invalid items at the end.
// Note: we added at least one valid item.
auto it = res.end() - 1;
while (it != res.begin() && is_invalid_value(it->value))
--it;
res.erase(it + 1, res.end());
return res;
}
std::vector<StatsBinQuartiles> StatsVariable::bin_quartiles(const StatsBinner &binner, const std::vector<dive *> &dives, bool fill_empty) const
{
return bin_convert<StatsQuartiles>(*this, binner, dives, fill_empty,
[this](const std::vector<dive *> &d) { return quartiles(d); });
}
std::vector<StatsBinOp> StatsVariable::bin_operations(const StatsBinner &binner, const std::vector<dive *> &dives, bool fill_empty) const
{
return bin_convert<StatsOperationResults>(*this, binner, dives, fill_empty,
[this](const std::vector<dive *> &d) { return applyOperations(d); });
}
std::vector<StatsBinValues> StatsVariable::bin_values(const StatsBinner &binner, const std::vector<dive *> &dives, bool fill_empty) const
{
return bin_convert<std::vector<StatsValue>>(*this, binner, dives, fill_empty,
[this](const std::vector<dive *> &d) { return values(d); });
}
// Silly template, which spares us defining type() member functions.
template<StatsVariable::Type t>
struct StatsVariableTemplate : public StatsVariable {
Type type() const override { return t; }
};
// A simple bin that is based on copyable value and can be initialized from
// that value. This template spares us from writing one-line constructors.
template<typename Type>
struct SimpleBin : public StatsBin {
Type value;
SimpleBin(const Type &v) : value(v) { }
// This must not be called for different types. It will crash with an exception.
bool operator<(StatsBin &b) const {
return value < dynamic_cast<SimpleBin &>(b).value;
}
bool operator==(StatsBin &b) const {
return value == dynamic_cast<SimpleBin &>(b).value;
}
};
using IntBin = SimpleBin<int>;
using StringBin = SimpleBin<QString>;
using GasTypeBin = SimpleBin<gas_bin_t>;
// A general binner template that works on trivial bins that are based
// on a type that is equality and less-than comparable. The derived class
// must possess:
// - A to_bin_value() function that turns a dive into a value from
// which the bins can be constructed.
// - A lowerBoundToFloatBase() function that turns the value form
// into a double which is understood by the StatsVariable.
// The bins must possess:
// - A member variable "value" of the type it is constructed with.
// Note: this uses the curiously recurring template pattern, which I
// dislike, but it is the easiest thing for now.
template<typename Binner, typename Bin>
struct SimpleBinner : public StatsBinner {
public:
using Type = decltype(Bin::value);
std::vector<StatsBinDives> bin_dives(const std::vector<dive *> &dives, bool fill_empty) const override;
std::vector<StatsBinCount> count_dives(const std::vector<dive *> &dives, bool fill_empty) const override;
const Binner &derived() const {
return static_cast<const Binner &>(*this);
}
const Bin &derived_bin(const StatsBin &bin) const {
return dynamic_cast<const Bin &>(bin);
}
};
// Wrapper around std::lower_bound that searches for a value in a
// vector of pairs. Comparison is made with the first element of the pair.
// std::lower_bound does a binary search and this is used to keep a
// vector in ascending order.
template<typename T1, typename T2>
auto pair_lower_bound(std::vector<std::pair<T1, T2>> &v, const T1 &value)
{
return std::lower_bound(v.begin(), v.end(), value,
[] (const std::pair<T1, T2> &entry, const T1 &value) {
return entry.first < value;
});
}
// Register a dive in a (bin_value, value) pair. The second value can be
// anything, for example a count or a list of dives. If the bin does not
// exist, it is created. The add_dive_func() function increase the second
// value accordingly.
template<typename BinValueType, typename ValueType, typename AddDiveFunc>
void register_bin_value(std::vector<std::pair<BinValueType, ValueType>> &v,
const BinValueType &bin,
AddDiveFunc add_dive_func)
{
// Does that value already exist?
auto it = pair_lower_bound(v, bin);
if (it == v.end() || it->first != bin)
it = v.insert(it, { bin, ValueType() }); // Bin does not exist -> insert at proper location.
add_dive_func(it->second); // Register dive
}
// Turn a (bin-value, value)-pair vector into a (bin, value)-pair vector.
// The values are moved out of the first vectors.
// If fill_empty is true, missing bins will be completed with a default constructed
// value.
template<typename Bin, typename Binner, typename BinValueType, typename ValueType>
std::vector<StatsBinValue<ValueType>>
value_vector_to_bin_vector(const Binner &binner, std::vector<std::pair<BinValueType, ValueType>> &value_bins,
bool fill_empty)
{
std::vector<StatsBinValue<ValueType>> res;
res.reserve(value_bins.size());
for (const auto &[bin_value, value]: value_bins) {
StatsBinPtr b = std::make_unique<Bin>(bin_value);
if (fill_empty && !res.empty()) {
// Add empty bins, if any
for (StatsBinPtr &bin: binner.bins_between(*res.back().bin, *b))
res.push_back({ std::move(bin), ValueType() });
}
res.push_back({ std::move(b), std::move(value)});
}
return res;
}
template<typename Binner, typename Bin>
std::vector<StatsBinDives> SimpleBinner<Binner, Bin>::bin_dives(const std::vector<dive *> &dives, bool fill_empty) const
{
// First, collect a value / dives vector and then produce the final vector
// out of that. I wonder if that is premature optimization?
using Pair = std::pair<Type, std::vector<dive *>>;
std::vector<Pair> value_bins;
for (dive *d: dives) {
Type value = derived().to_bin_value(d);
if (is_invalid_value(value))
continue;
register_bin_value(value_bins, value,
[d](std::vector<dive *> &v) { v.push_back(d); });
}
// Now, turn that into our result array with allocated bin objects.
return value_vector_to_bin_vector<Bin>(*this, value_bins, fill_empty);
}
template<typename Binner, typename Bin>
std::vector<StatsBinCount> SimpleBinner<Binner, Bin>::count_dives(const std::vector<dive *> &dives, bool fill_empty) const
{
// First, collect a value / counts vector and then produce the final vector
// out of that. I wonder if that is premature optimization?
using Pair = std::pair<Type, int>;
std::vector<Pair> value_bins;
for (const dive *d: dives) {
Type value = derived().to_bin_value(d);
if (is_invalid_value(value))
continue;
register_bin_value(value_bins, value, [](int &i){ ++i; });
}
// Now, turn that into our result array with allocated bin objects.
return value_vector_to_bin_vector<Bin>(*this, value_bins, fill_empty);
}
// A simple binner (see above) that works on continuous (or numeric) variables
// and can return bin-ranges. The binner must implement an inc() function
// that turns a bin into the next-higher bin.
template<typename Binner, typename Bin>
struct SimpleContinuousBinner : public SimpleBinner<Binner, Bin>
{
using SimpleBinner<Binner, Bin>::derived;
std::vector<StatsBinPtr> bins_between(const StatsBin &bin1, const StatsBin &bin2) const override;
// By default the value gives the lower bound, so the format is the same
QString formatLowerBound(const StatsBin &bin) const override {
return derived().format(bin);
}
// For the upper bound, simply go to the next bin
QString formatUpperBound(const StatsBin &bin) const override {
Bin b = SimpleBinner<Binner,Bin>::derived_bin(bin);
derived().inc(b);
return formatLowerBound(b);
}
// Cast to base value type so that the derived class doesn't have to do it
double lowerBoundToFloat(const StatsBin &bin) const override {
const Bin &b = SimpleBinner<Binner,Bin>::derived_bin(bin);
return derived().lowerBoundToFloatBase(b.value);
}
// For the upper bound, simply go to the next bin
double upperBoundToFloat(const StatsBin &bin) const override {
Bin b = SimpleBinner<Binner,Bin>::derived_bin(bin);
derived().inc(b);
return derived().lowerBoundToFloatBase(b.value);
}
};
// A continuous binner, where the bin is based on an integer value
// and subsequent bins are adjacent integers.
template<typename Binner, typename Bin>
struct IntBinner : public SimpleContinuousBinner<Binner, Bin>
{
void inc(Bin &bin) const {
++bin.value;
}
};
// An integer based binner, where each bin represents an integer
// range with a fixed size.
template<typename Binner, typename Bin>
struct IntRangeBinner : public IntBinner<Binner, Bin> {
int bin_size;
IntRangeBinner(int size)
: bin_size(size)
{
}
QString format(const StatsBin &bin) const override {
int value = IntBinner<Binner, Bin>::derived_bin(bin).value;
QLocale loc;
return StatsTranslations::tr("%1%2").arg(loc.toString(value * bin_size),
loc.toString((value + 1) * bin_size));
}
QString formatLowerBound(const StatsBin &bin) const override {
int value = IntBinner<Binner, Bin>::derived_bin(bin).value;
return QStringLiteral("%L1").arg(value * bin_size);
}
double lowerBoundToFloatBase(int value) const {
return static_cast<double>(value * bin_size);
}
};
template<typename Binner, typename Bin>
std::vector<StatsBinPtr> SimpleContinuousBinner<Binner, Bin>::bins_between(const StatsBin &bin1, const StatsBin &bin2) const
{
const Bin &b1 = SimpleBinner<Binner,Bin>::derived_bin(bin1);
const Bin &b2 = SimpleBinner<Binner,Bin>::derived_bin(bin2);
std::vector<StatsBinPtr> res;
Bin act = b1;
derived().inc(act);
while (act.value < b2.value) {
res.push_back(std::make_unique<Bin>(act));
derived().inc(act);
}
return res;
}
// A binner template for discrete variables that where each dive can belong to
// multiple bins. The bin-type must be less-than comparable. The derived class
// must possess:
// - A to_bin_values() function that turns a dive into a value from
// which the bins can be constructed.
// The bins must possess:
// - A member variable "value" of the type it is constructed with.
template<typename Binner, typename Bin>
struct MultiBinner : public StatsBinner {
public:
using Type = decltype(Bin::value);
std::vector<StatsBinDives> bin_dives(const std::vector<dive *> &dives, bool fill_empty) const override;
std::vector<StatsBinCount> count_dives(const std::vector<dive *> &dives, bool fill_empty) const override;
const Binner &derived() const {
return static_cast<const Binner &>(*this);
}
const Bin &derived_bin(const StatsBin &bin) const {
return dynamic_cast<const Bin &>(bin);
}
};
template<typename Binner, typename Bin>
std::vector<StatsBinDives> MultiBinner<Binner, Bin>::bin_dives(const std::vector<dive *> &dives, bool) const
{
// First, collect a value / dives vector and then produce the final vector
// out of that. I wonder if that is premature optimization?
using Pair = std::pair<Type, std::vector<dive *>>;
std::vector<Pair> value_bins;
for (dive *d: dives) {
for (const Type &val: derived().to_bin_values(d)) {
if (is_invalid_value(val))
continue;
register_bin_value(value_bins, val,
[d](std::vector<dive *> &v) { v.push_back(d); });
}
}
// Now, turn that into our result array with allocated bin objects.
return value_vector_to_bin_vector<Bin>(*this, value_bins, false);
}
template<typename Binner, typename Bin>
std::vector<StatsBinCount> MultiBinner<Binner, Bin>::count_dives(const std::vector<dive *> &dives, bool) const
{
// First, collect a value / counts vector and then produce the final vector
// out of that. I wonder if that is premature optimization?
using Pair = std::pair<Type, int>;
std::vector<Pair> value_bins;
for (const dive *d: dives) {
for (const Type &s: derived().to_bin_values(d)) {
if (is_invalid_value(s))
continue;
register_bin_value(value_bins, s, [](int &i){ ++i; });
}
}
// Now, turn that into our result array with allocated bin objects.
return value_vector_to_bin_vector<Bin>(*this, value_bins, false);
}
// A binner that works on string-based bins whereby each dive can
// produce multiple strings (e.g. dive buddies). The binner must
// feature a to_bin_values() function that produces a vector of
// QStrings and bins that can be constructed from QStrings.
// Other than that, see SimpleBinner.
template<typename Binner, typename Bin>
struct StringBinner : public MultiBinner<Binner, Bin> {
public:
QString format(const StatsBin &bin) const override {
return dynamic_cast<const Bin &>(bin).value;
}
};
// ============ The date of the dive by year, quarter or month ============
// (Note that calendar week is defined differently in different parts of the world and therefore omitted for now)
double date_to_double(int year, int month, int day)
{
struct tm tm = { 0 };
tm.tm_year = year;
tm.tm_mon = month;
tm.tm_mday = day;
timestamp_t t = utc_mktime(&tm);
return t / 86400.0; // Turn seconds since 1970 to days since 1970, if that makes sense...?
}
struct DateYearBinner : public IntBinner<DateYearBinner, IntBin> {
QString name() const override {
return StatsTranslations::tr("Yearly");
}
QString format(const StatsBin &bin) const override {
return QString::number(derived_bin(bin).value);
}
int to_bin_value(const dive *d) const {
return utc_year(d->when);
}
double lowerBoundToFloatBase(int year) const {
return date_to_double(year, 0, 0);
}
};
using DateQuarterBin = SimpleBin<year_quarter>;
struct DateQuarterBinner : public SimpleContinuousBinner<DateQuarterBinner, DateQuarterBin> {
QString name() const override {
return StatsTranslations::tr("Quarterly");
}
QString format(const StatsBin &bin) const override {
year_quarter value = derived_bin(bin).value;
return StatsTranslations::tr("%1 Q%2").arg(QString::number(value.first),
QString::number(value.second));
}
// As histogram axis: show full year for new years and then Q2, Q3, Q4.
QString formatLowerBound(const StatsBin &bin) const override {
year_quarter value = derived_bin(bin).value;
return value.second == 1
? QString::number(value.first)
: StatsTranslations::tr("Q%1").arg(QString::number(value.second));
}
double lowerBoundToFloatBase(year_quarter value) const {
return date_to_double(value.first, (value.second - 1) * 3, 0);
}
// Prefer bins that show full years
bool preferBin(const StatsBin &bin) const override {
year_quarter value = derived_bin(bin).value;
return value.second == 1;
}
year_quarter to_bin_value(const dive *d) const {
struct tm tm;
utc_mkdate(d->when, &tm);
int year = tm.tm_year;
switch (tm.tm_mon) {
case 0 ... 2: return { year, 1 };
case 3 ... 5: return { year, 2 };
case 6 ... 8: return { year, 3 };
default: return { year, 4 };
}
}
void inc(DateQuarterBin &bin) const {
if (++bin.value.second > 4) {
bin.value.second = 1;
++bin.value.first;
}
}
};
using DateMonthBin = SimpleBin<year_month>;
struct DateMonthBinner : public SimpleContinuousBinner<DateMonthBinner, DateMonthBin> {
QString name() const override {
return StatsTranslations::tr("Monthly");
}
QString format(const StatsBin &bin) const override {
year_month value = derived_bin(bin).value;
return QString("%1 %2").arg(monthname(value.second), QString::number(value.first));
}
// In histograms, output year for fill years, month otherwise
QString formatLowerBound(const StatsBin &bin) const override {
year_month value = derived_bin(bin).value;
return value.second == 0 ? QString::number(value.first)
: QString(monthname(value.second));
}
double lowerBoundToFloatBase(year_quarter value) const {
return date_to_double(value.first, value.second, 0);
}
// Prefer bins that show full years
bool preferBin(const StatsBin &bin) const override {
year_month value = derived_bin(bin).value;
return value.second == 0;
}
year_month to_bin_value(const dive *d) const {
struct tm tm;
utc_mkdate(d->when, &tm);
return { tm.tm_year, tm.tm_mon };
}
void inc(DateMonthBin &bin) const {
if (++bin.value.second > 11) {
bin.value.second = 0;
++bin.value.first;
}
}
};
static DateYearBinner date_year_binner;
static DateQuarterBinner date_quarter_binner;
static DateMonthBinner date_month_binner;
struct DateVariable : public StatsVariableTemplate<StatsVariable::Type::Continuous> {
QString name() const {
return StatsTranslations::tr("Date");
}
double toFloat(const dive *d) const override {
return d->when / 86400.0;
}
std::vector<const StatsBinner *> binners() const override {
return { &date_year_binner, &date_quarter_binner, &date_month_binner };
}
};
// ============ Dive depth, binned in 5, 10, 20 m or 15, 30, 60 ft bins ============
struct DepthBinner : public IntRangeBinner<DepthBinner, IntBin> {
bool metric;
DepthBinner(int bin_size, bool metric) : IntRangeBinner(bin_size), metric(metric)
{
}
QString name() const override {
QLocale loc;
return StatsTranslations::tr("in %1 %2 steps").arg(loc.toString(bin_size),
get_depth_unit(metric));
}
QString unitSymbol() const override {
return get_depth_unit(metric);
}
int to_bin_value(const dive *d) const {
return metric ? d->maxdepth.mm / 1000 / bin_size
: lrint(mm_to_feet(d->maxdepth.mm)) / bin_size;
}
};
static DepthBinner meter_binner5(5, true);
static DepthBinner meter_binner10(10, true);
static DepthBinner meter_binner20(20, true);
static DepthBinner feet_binner15(15, false);
static DepthBinner feet_binner30(30, false);
static DepthBinner feet_binner60(60, false);
struct DepthVariable : public StatsVariableTemplate<StatsVariable::Type::Numeric> {
QString name() const override {
return StatsTranslations::tr("Max. Depth");
}
QString unitSymbol() const override {
return get_depth_unit();
}
int decimals() const override {
return 1;
}
std::vector<const StatsBinner *> binners() const override {
if (prefs.units.length == units::METERS)
return { &meter_binner5, &meter_binner10, &meter_binner20 };
else
return { &feet_binner15, &feet_binner30, &feet_binner60 };
}
double toFloat(const dive *d) const override {
return prefs.units.length == units::METERS ? d->maxdepth.mm / 1000.0
: mm_to_feet(d->maxdepth.mm);
}
std::vector<StatsOperation> supportedOperations() const override {
return { StatsOperation::Median, StatsOperation::Mean, StatsOperation::Sum };
}
};
// ============ Bottom time, binned in 5, 10, 30 min or 1 h bins ============
struct MinuteBinner : public IntRangeBinner<MinuteBinner, IntBin> {
using IntRangeBinner::IntRangeBinner;
QString name() const override {
return StatsTranslations::tr("in %1 min steps").arg(bin_size);
}
QString unitSymbol() const override {
return StatsTranslations::tr("min");
}
int to_bin_value(const dive *d) const {
return d->duration.seconds / 60 / bin_size;
}
};
struct HourBinner : public IntBinner<HourBinner, IntBin> {
QString name() const override {
return StatsTranslations::tr("in hours");
}
QString format(const StatsBin &bin) const override {
return QString::number(derived_bin(bin).value);
}
QString unitSymbol() const override {
return StatsTranslations::tr("h");
}
int to_bin_value(const dive *d) const {
return d->duration.seconds / 3600;
}
double lowerBoundToFloatBase(int hour) const {
return static_cast<double>(hour);
}
};
static MinuteBinner minute_binner5(5);
static MinuteBinner minute_binner10(10);
static MinuteBinner minute_binner30(30);
static HourBinner hour_binner;
struct DurationVariable : public StatsVariableTemplate<StatsVariable::Type::Numeric> {
QString name() const override {
return StatsTranslations::tr("Duration");
}
QString unitSymbol() const override {
return StatsTranslations::tr("min");
}
int decimals() const override {
return 0;
}
std::vector<const StatsBinner *> binners() const override {
return { &minute_binner5, &minute_binner10, &minute_binner30, &hour_binner };
}
double toFloat(const dive *d) const override {
return d->duration.seconds / 60.0;
}
std::vector<StatsOperation> supportedOperations() const override {
return { StatsOperation::Median, StatsOperation::Mean, StatsOperation::Sum };
}
};
// ============ SAC, binned in 2, 5, 10 l/min or 0.1, 0.2, 0.4, 0.8 cuft/min bins ============
struct MetricSACBinner : public IntRangeBinner<MetricSACBinner, IntBin> {
using IntRangeBinner::IntRangeBinner;
QString name() const override {
QLocale loc;
return StatsTranslations::tr("in %1 %2/min steps").arg(loc.toString(bin_size),
get_volume_unit());
}
QString unitSymbol() const override {
return get_volume_unit(true) + StatsTranslations::tr("/min");
}
int to_bin_value(const dive *d) const {
if (d->sac <= 0)
return invalid_value<int>();
return d->sac / 1000 / bin_size;
}
};
// "Imperial" SACs are annoying, since we have to bin to sub-integer precision.
// We store cuft * 100 as an integer, to avoid troubles with floating point semantics.
struct ImperialSACBinner : public IntBinner<ImperialSACBinner, IntBin> {
int bin_size;
ImperialSACBinner(double size)
: bin_size(lrint(size * 100.0))
{
}
QString name() const override {
QLocale loc;
return StatsTranslations::tr("in %1 %2/min steps").arg(loc.toString(bin_size / 100.0, 'f', 2),
get_volume_unit());
}
QString format(const StatsBin &bin) const override {
int value = derived_bin(bin).value;
QLocale loc;
return StatsTranslations::tr("%1%2").arg(loc.toString((value * bin_size) / 100.0, 'f', 2),
loc.toString(((value + 1) * bin_size) / 100.0, 'f', 2));
}
QString unitSymbol() const override {
return get_volume_unit(false) + StatsTranslations::tr("/min");
}
QString formatLowerBound(const StatsBin &bin) const override {
int value = derived_bin(bin).value;
return QStringLiteral("%L1").arg((value * bin_size) / 100.0, 0, 'f', 2);
}
double lowerBoundToFloatBase(int value) const {
return static_cast<double>((value * bin_size) / 100.0);
}
int to_bin_value(const dive *d) const {
if (d->sac <= 0)
return invalid_value<int>();
return lrint(ml_to_cuft(d->sac) * 100.0) / bin_size;
}
};
MetricSACBinner metric_sac_binner2(2);
MetricSACBinner metric_sac_binner5(5);
MetricSACBinner metric_sac_binner10(10);
ImperialSACBinner imperial_sac_binner1(0.1);
ImperialSACBinner imperial_sac_binner2(0.2);
ImperialSACBinner imperial_sac_binner4(0.4);
ImperialSACBinner imperial_sac_binner8(0.8);
struct SACVariable : public StatsVariableTemplate<StatsVariable::Type::Numeric> {
QString name() const override {
return StatsTranslations::tr("SAC");
}
QString unitSymbol() const override {
return get_volume_unit() + StatsTranslations::tr("/min");
}
int decimals() const override {
return prefs.units.volume == units::LITER ? 0 : 2;
}
std::vector<const StatsBinner *> binners() const override {
if (prefs.units.volume == units::LITER)
return { &metric_sac_binner2, &metric_sac_binner5, &metric_sac_binner10 };
else
return { &imperial_sac_binner1, &imperial_sac_binner2, &imperial_sac_binner4, &imperial_sac_binner8 };
}
double toFloat(const dive *d) const override {
if (d->sac <= 0)
return invalid_value<double>();
return prefs.units.volume == units::LITER ? d->sac / 1000.0 :
ml_to_cuft(d->sac);
}
std::vector<StatsOperation> supportedOperations() const override {
return { StatsOperation::Median, StatsOperation::Mean, StatsOperation::TimeWeightedMean };
}
};
// ============ Water and air temperature, binned in 2, 5, 10, 20 °C/°F bins ============
struct TemperatureBinner : public IntRangeBinner<TemperatureBinner, IntBin> {
bool air;
bool metric;
TemperatureBinner(int bin_size, bool air, bool metric) :
IntRangeBinner(bin_size),
air(air),
metric(metric)
{
}
QString name() const override {
QLocale loc;
return StatsTranslations::tr("in %1 %2 steps").arg(loc.toString(bin_size),
get_temp_unit(metric));
}
QString unitSymbol() const override {
return get_temp_unit(metric);
}
int to_bin_value(const struct dive *d) const {
temperature_t t = air ? d->airtemp : d->watertemp;
if (t.mkelvin <= 0)
return invalid_value<int>();
int temp = metric ? static_cast<int>(mkelvin_to_C(t.mkelvin))
: static_cast<int>(mkelvin_to_F(t.mkelvin));
return temp / bin_size;
}
};
struct TemperatureVariable : public StatsVariableTemplate<StatsVariable::Type::Numeric> {
TemperatureBinner bin2C, bin5C, bin10C, bin20C;
TemperatureBinner bin2F, bin5F, bin10F, bin20F;
TemperatureVariable(bool air) :
bin2C(2, air, true), bin5C(5, air, true), bin10C(10, air, true), bin20C(20, air, true),
bin2F(2, air, false), bin5F(5, air, false), bin10F(10, air, false), bin20F(20, air, false)
{
}
QString unitSymbol() const override {
return get_temp_unit();
}
int decimals() const override {
return 1;
}
double tempToFloat(temperature_t t) const {
if (t.mkelvin <= 0)
return invalid_value<double>();
return prefs.units.temperature == units::CELSIUS ?
mkelvin_to_C(t.mkelvin) : mkelvin_to_F(t.mkelvin);
}
std::vector<const StatsBinner *> binners() const override {
if (prefs.units.temperature == units::CELSIUS)
return { &bin2C, &bin5C, &bin10C, &bin20C };
else
return { &bin2F, &bin5F, &bin10F, &bin20F };
}
std::vector<StatsOperation> supportedOperations() const override {
return { StatsOperation::Median, StatsOperation::Mean, StatsOperation::TimeWeightedMean };
}
};
struct WaterTemperatureVariable : TemperatureVariable {
WaterTemperatureVariable() : TemperatureVariable(false)
{
}
QString name() const override {
return StatsTranslations::tr("Water temperature");
}
double toFloat(const dive *d) const override {
return tempToFloat(d->watertemp);
}
};
struct AirTemperatureVariable : TemperatureVariable {
AirTemperatureVariable() : TemperatureVariable(true)
{
}
QString name() const override {
return StatsTranslations::tr("Air temperature");
}
double toFloat(const dive *d) const override {
return tempToFloat(d->airtemp);
}
};
// ============ Weight, binned in 1, 2, 5, 10 kg or 2, 4, 10 or 20 lbs bins ============
struct WeightBinner : public IntRangeBinner<WeightBinner, IntBin> {
bool metric;
WeightBinner(int bin_size, bool metric) : IntRangeBinner(bin_size), metric(metric)
{
}
QString name() const override {
QLocale loc;
return StatsTranslations::tr("in %1 %2 steps").arg(loc.toString(bin_size),
get_weight_unit(metric));
}
QString unitSymbol() const override {
return get_weight_unit(metric);
}
int to_bin_value(const dive *d) const {
return metric ? total_weight(d) / 1000 / bin_size
: lrint(grams_to_lbs(total_weight(d))) / bin_size;
}
};
static WeightBinner weight_binner_1kg(1, true);
static WeightBinner weight_binner_2kg(2, true);
static WeightBinner weight_binner_5kg(5, true);
static WeightBinner weight_binner_10kg(10, true);
static WeightBinner weight_binner_2lbs(2, false);
static WeightBinner weight_binner_5lbs(4, false);
static WeightBinner weight_binner_10lbs(10, false);
static WeightBinner weight_binner_20lbs(20, false);
struct WeightVariable : public StatsVariableTemplate<StatsVariable::Type::Numeric> {
QString name() const override {
return StatsTranslations::tr("Weight");
}
QString unitSymbol() const override {
return get_weight_unit();
}
int decimals() const override {
return 1;
}
std::vector<const StatsBinner *> binners() const override {
if (prefs.units.weight == units::KG)
return { &weight_binner_1kg, &weight_binner_2kg, &weight_binner_5kg, &weight_binner_10kg };
else
return { &weight_binner_2lbs, &weight_binner_5lbs, &weight_binner_10lbs, &weight_binner_20lbs };
}
double toFloat(const dive *d) const override {
return prefs.units.weight == units::KG ? total_weight(d) / 1000.0
: grams_to_lbs(total_weight(d));
}
std::vector<StatsOperation> supportedOperations() const override {
return { StatsOperation::Median, StatsOperation::Mean, StatsOperation::Sum };
}
};
// ============ Dive mode ============
struct DiveModeBinner : public SimpleBinner<DiveModeBinner, IntBin> {
QString format(const StatsBin &bin) const override {
return QString(divemode_text_ui[derived_bin(bin).value]);
}
int to_bin_value(const dive *d) const {
int res = (int)d->dc.divemode;
return res >= 0 && res < NUM_DIVEMODE ? res : OC;
}
};
static DiveModeBinner dive_mode_binner;
struct DiveModeVariable : public StatsVariableTemplate<StatsVariable::Type::Discrete> {
QString name() const override {
return StatsTranslations::tr("Dive mode");
}
QString diveCategories(const dive *d) const override {
int mode = (int)d->dc.divemode;
return mode >= 0 && mode < NUM_DIVEMODE ?
QString(divemode_text_ui[mode]) : QString();
}
std::vector<const StatsBinner *> binners() const override {
return { &dive_mode_binner };
}
};
// ============ Buddy (including dive guides) ============
struct BuddyBinner : public StringBinner<BuddyBinner, StringBin> {
std::vector<QString> to_bin_values(const dive *d) const {
std::vector<QString> dive_people;
for (const QString &s: QString(d->buddy).split(",", SKIP_EMPTY))
dive_people.push_back(s.trimmed());
for (const QString &s: QString(d->divemaster).split(",", SKIP_EMPTY))
dive_people.push_back(s.trimmed());
return dive_people;
}
};
static BuddyBinner buddy_binner;
struct BuddyVariable : public StatsVariableTemplate<StatsVariable::Type::Discrete> {
QString name() const override {
return StatsTranslations::tr("Buddies");
}
QString diveCategories(const dive *d) const override {
QString buddy = QString(d->buddy).trimmed();
QString divemaster = QString(d->divemaster).trimmed();
if (!buddy.isEmpty() && !divemaster.isEmpty())
buddy += ", ";
return buddy + divemaster;
}
std::vector<const StatsBinner *> binners() const override {
return { &buddy_binner };
}
};
// ============ Gas type, in 2%, 5%, 10% and 20% steps ============
// This is a bit convoluted: We differentiate between four types: air, pure oxygen, EAN and trimix
// The latter two are binned in x% steps. The problem is that we can't use the "simple binner",
// because a dive can have more than one cylinder. Moreover, the string-binner might not be optimal
// because we don't want to format a string for every gas types, when there are thousands of dives!
// Note: when the same dive has multiple cylinders that fall inside a bin, that cylinder will
// only be counted once. Thus, depending on the bin size, the number of entries may change!
// In addition to a binner with percent-steps also provide a general-type binner (air, nitrox, etc.)
// bin gasmix with size given in percent
struct gas_bin_t bin_gasmix(struct gasmix mix, int size)
{
if (gasmix_is_air(mix))
return gas_bin_t::air();
if (mix.o2.permille == 1000)
return gas_bin_t::oxygen();
return mix.he.permille == 0 ?
gas_bin_t::ean(mix.o2.permille / 10 / size * size) :
gas_bin_t::trimix(mix.o2.permille / 10 / size * size,
mix.he.permille / 10 / size * size);
}
struct GasTypeBinner : public MultiBinner<GasTypeBinner, GasTypeBin> {
int bin_size;
GasTypeBinner(int size)
: bin_size(size)
{
}
QString name() const override {
return StatsTranslations::tr("in %1% steps").arg(bin_size);
}
std::vector<gas_bin_t> to_bin_values(const dive *d) const {
std::vector<gas_bin_t> res;
res.reserve(d->cylinders.nr);
for (int i = 0; i < d->cylinders.nr; ++i) {
struct gasmix mix = d->cylinders.cylinders[i].gasmix;
if (gasmix_is_invalid(mix))
continue;
// Add dive to each bin only once.
add_to_vector_unique(res, bin_gasmix(mix, bin_size));
}
return res;
}
QString format(const StatsBin &bin) const override {
gas_bin_t type = derived_bin(bin).value;
QLocale loc;
switch (type.type) {
default:
case gas_bin_t::Type::Air:
return StatsTranslations::tr("Air");
case gas_bin_t::Type::Oxygen:
return StatsTranslations::tr("Oxygen");
case gas_bin_t::Type::EAN:
return StatsTranslations::tr("EAN%1%2").arg(loc.toString(type.o2),
loc.toString(type.o2 + bin_size - 1));
case gas_bin_t::Type::Trimix:
return StatsTranslations::tr("%1/%2%3/%4").arg(loc.toString(type.o2),
loc.toString(type.he),
loc.toString(type.o2 + bin_size - 1),
loc.toString(type.he + bin_size - 1));
}
}
};
struct GasTypeGeneralBinner : public MultiBinner<GasTypeGeneralBinner, IntBin> {
using MultiBinner::MultiBinner;
QString name() const override {
return StatsTranslations::tr("General");
}
std::vector<int> to_bin_values(const dive *d) const {
std::vector<int> res;
res.reserve(d->cylinders.nr);
for (int i = 0; i < d->cylinders.nr; ++i) {
struct gasmix mix = d->cylinders.cylinders[i].gasmix;
if (gasmix_is_invalid(mix))
continue;
res.push_back(gasmix_to_type(mix));
}
return res;
}
QString format(const StatsBin &bin) const override {
int type = derived_bin(bin).value;
return gastype_name((gastype)type);
}
};
static GasTypeGeneralBinner gas_type_general_binner;
static GasTypeBinner gas_type_binner2(2);
static GasTypeBinner gas_type_binner5(5);
static GasTypeBinner gas_type_binner10(10);
static GasTypeBinner gas_type_binner20(20);
struct GasTypeVariable : public StatsVariableTemplate<StatsVariable::Type::Discrete> {
QString name() const override {
return StatsTranslations::tr("Gas type");
}
QString diveCategories(const dive *d) const override {
QString res;
std::vector<gasmix> mixes; // List multiple cylinders only once
mixes.reserve(d->cylinders.nr);
for (int i = 0; i < d->cylinders.nr; ++i) {
struct gasmix mix = d->cylinders.cylinders[i].gasmix;
if (gasmix_is_invalid(mix))
continue;
if (std::find_if(mixes.begin(), mixes.end(),
[mix] (gasmix mix2)
{ return same_gasmix(mix, mix2); }) != mixes.end())
continue;
mixes.push_back(mix);
if (!res.isEmpty())
res += ", ";
res += get_gas_string(mix);
}
return res;
}
std::vector<const StatsBinner *> binners() const override {
return { &gas_type_general_binner,
&gas_type_binner2, &gas_type_binner5, &gas_type_binner10, &gas_type_binner20 };
}
};
// ============ O2 and H2 content, binned in 2, 5, 10, 20 % bins ============
// Get the gas content in permille of a dive, based on two flags:
// - he: get he content, otherwise o2
// - max_he: get cylinder with maximum he content, otherwise with maximum o2 content
static int get_gas_content(const struct dive *d, bool he, bool max_he)
{
if (d->cylinders.nr <= 0)
return invalid_value<int>();
// If sorting be He, the second sort criterion is O2 descending, because
// we are interested in the "bottom gas": highest He and lowest O2.
auto comp = max_he ? [] (const cylinder_t &c1, const cylinder_t &c2)
{ return std::make_tuple(get_he(c1.gasmix), -get_o2(c1.gasmix)) <
std::make_tuple(get_he(c2.gasmix), -get_o2(c2.gasmix)); }
: [] (const cylinder_t &c1, const cylinder_t &c2)
{ return get_o2(c1.gasmix) < get_o2(c2.gasmix); };
auto it = std::max_element(d->cylinders.cylinders, d->cylinders.cylinders + d->cylinders.nr, comp);
return he ? get_he(it->gasmix) : get_o2(it->gasmix);
}
// We use the same binner for all gas contents
struct GasContentBinner : public IntRangeBinner<GasContentBinner, IntBin> {
bool he; // true if this returns He content, otherwise O2
bool max_he; // true if this takes the gas with maximum helium, otherwise maximum O2
GasContentBinner(int bin_size, bool he, bool max_he) : IntRangeBinner(bin_size),
he(he), max_he(max_he)
{
}
QString name() const override {
return StatsTranslations::tr("In %L1% steps").arg(bin_size);
}
QString unitSymbol() const override {
return "%";
}
int to_bin_value(const struct dive *d) const {
int res = get_gas_content(d, he, max_he);
// Convert to percent and then bin, but take care not to mangle the invalid value.
return is_invalid_value(res) ? res : res / 10 / bin_size;
}
};
struct GasContentVariable : public StatsVariableTemplate<StatsVariable::Type::Numeric> {
// In the constructor, generate binners with 2, 5, 10 and 20% bins.
GasContentBinner b1, b2, b3, b4;
bool he, max_he;
GasContentVariable(bool he, bool max_he) :
b1(2, he, max_he), b2(5, he, max_he),
b3(10, he, max_he), b4(20, he, max_he),
he(he), max_he(max_he)
{
}
std::vector<const StatsBinner *> binners() const override {
return { &b1, &b2, &b3, &b4 };
}
QString unitSymbol() const override {
return "%";
}
int decimals() const override {
return 1;
}
std::vector<StatsOperation> supportedOperations() const override {
return { StatsOperation::Median, StatsOperation::Mean, StatsOperation::TimeWeightedMean };
}
double toFloat(const dive *d) const override {
int res = get_gas_content(d, he, max_he);
// Attn: we have to turn invalid-int into invalid-float.
// Perhaps we should signal invalid with an std::optional kind of object?
if (is_invalid_value(res))
return invalid_value<double>();
return res / 10.0;
}
};
struct GasContentO2Variable : GasContentVariable {
GasContentO2Variable() : GasContentVariable(false, false)
{
}
QString name() const override {
return StatsTranslations::tr("O₂ (max)");
}
};
struct GasContentO2HeMaxVariable : GasContentVariable {
GasContentO2HeMaxVariable() : GasContentVariable(false, true)
{
}
QString name() const override {
return StatsTranslations::tr("O₂ (bottom gas)");
}
};
struct GasContentHeVariable : GasContentVariable {
GasContentHeVariable() : GasContentVariable(true, true)
{
}
QString name() const override {
return StatsTranslations::tr("He (max)");
}
};
// ============ Suit ============
struct SuitBinner : public StringBinner<SuitBinner, StringBin> {
std::vector<QString> to_bin_values(const dive *d) const {
return { QString(d->suit) };
}
};
static SuitBinner suit_binner;
struct SuitVariable : public StatsVariableTemplate<StatsVariable::Type::Discrete> {
QString name() const override {
return StatsTranslations::tr("Suit type");
}
QString diveCategories(const dive *d) const override {
return QString(d->suit);
}
std::vector<const StatsBinner *> binners() const override {
return { &suit_binner };
}
};
// ============ Weightsystem ============
static std::vector<QString> weightsystems(const dive *d)
{
std::vector<QString> res;
res.reserve(d->weightsystems.nr);
for (int i = 0; i < d->weightsystems.nr; ++i)
add_to_vector_unique(res, QString(d->weightsystems.weightsystems[i].description).trimmed());
return res;
}
struct WeightsystemBinner : public StringBinner<WeightsystemBinner, StringBin> {
std::vector<QString> to_bin_values(const dive *d) const {
return weightsystems(d);
}
};
static WeightsystemBinner weightsystem_binner;
struct WeightsystemVariable : public StatsVariableTemplate<StatsVariable::Type::Discrete> {
QString name() const override {
return StatsTranslations::tr("Weightsystem");
}
QString diveCategories(const dive *d) const override {
return join_strings(weightsystems(d));
}
std::vector<const StatsBinner *> binners() const override {
return { &weightsystem_binner };
}
};
// ============ Cylinder types ============
static std::vector<QString> cylinder_types(const dive *d)
{
std::vector<QString> res;
res.reserve(d->cylinders.nr);
for (int i = 0; i < d->cylinders.nr; ++i)
add_to_vector_unique(res, QString(d->cylinders.cylinders[i].type.description).trimmed());
return res;
}
struct CylinderTypeBinner : public StringBinner<CylinderTypeBinner, StringBin> {
std::vector<QString> to_bin_values(const dive *d) const {
return cylinder_types(d);
}
};
static CylinderTypeBinner cylinder_type_binner;
struct CylinderTypeVariable : public StatsVariableTemplate<StatsVariable::Type::Discrete> {
QString name() const override {
return StatsTranslations::tr("Cylinder type");
}
QString diveCategories(const dive *d) const override {
return join_strings(cylinder_types(d));
}
std::vector<const StatsBinner *> binners() const override {
return { &cylinder_type_binner };
}
};
// ============ Location (including trip location) ============
using LocationBin = SimpleBin<const dive_site *>;
struct LocationBinner : public SimpleBinner<LocationBinner, LocationBin> {
QString format(const StatsBin &bin) const override {
const dive_site *ds = derived_bin(bin).value;
return QString(ds ? ds->name : "-");
}
const dive_site *to_bin_value(const dive *d) const {
return d->dive_site;
}
};
static LocationBinner location_binner;
struct LocationVariable : public StatsVariableTemplate<StatsVariable::Type::Discrete> {
QString name() const override {
return StatsTranslations::tr("Dive site");
}
QString diveCategories(const dive *d) const override {
return d->dive_site ? d->dive_site->name : "-";
}
std::vector<const StatsBinner *> binners() const override {
return { &location_binner };
}
};
// ============ Day of the week ============
struct DayOfWeekBinner : public SimpleBinner<DayOfWeekBinner, IntBin> {
QString format(const StatsBin &bin) const override {
return formatDayOfWeek(derived_bin(bin).value);
}
int to_bin_value(const dive *d) const {
return utc_weekday(d->when);
}
};
static DayOfWeekBinner day_of_week_binner;
struct DayOfWeekVariable : public StatsVariableTemplate<StatsVariable::Type::Discrete> {
QString name() const override {
return StatsTranslations::tr("Day of week");
}
QString diveCategories(const dive *d) const override {
return formatDayOfWeek(utc_weekday(d->when));
}
std::vector<const StatsBinner *> binners() const override {
return { &day_of_week_binner };
}
};
// ============ Rating ============
struct RatingBinner : public SimpleBinner<RatingBinner, IntBin> {
QString format(const StatsBin &bin) const override {
return QString("🌟").repeated(derived_bin(bin).value);
}
int to_bin_value(const dive *d) const {
int res = (int)d->rating;
return res;
}
};
static RatingBinner rating_binner;
struct RatingVariable : public StatsVariableTemplate<StatsVariable::Type::Discrete> {
QString name() const override {
return StatsTranslations::tr("Rating");
}
QString diveCategories(const dive *d) const override {
int rating = (int)d->rating;
return QString("🌟").repeated(rating);
}
std::vector<const StatsBinner *> binners() const override {
return { &rating_binner };
}
};
// ============ Visibility ============
struct VisibilityBinner : public SimpleBinner<VisibilityBinner, IntBin> {
QString format(const StatsBin &bin) const override {
return QString("🌟").repeated(derived_bin(bin).value);
}
int to_bin_value(const dive *d) const {
int res = (int)d->visibility;
return res;
}
};
static VisibilityBinner visibility_binner;
struct VisibilityVariable : public StatsVariableTemplate<StatsVariable::Type::Discrete> {
QString name() const override {
return StatsTranslations::tr("Visibility");
}
QString diveCategories(const dive *d) const override {
int viz = (int)d->visibility;
return QString("🌟").repeated(viz);
}
std::vector<const StatsBinner *> binners() const override {
return { &visibility_binner };
}
};
static DateVariable date_variable;
static DepthVariable depth_variable;
static DurationVariable duration_variable;
static SACVariable sac_variable;
static WaterTemperatureVariable water_temperature_variable;
static AirTemperatureVariable air_temperature_variable;
static WeightVariable weight_variable;
static DiveModeVariable dive_mode_variable;
static BuddyVariable buddy_variable;
static GasTypeVariable gas_type_variable;
static GasContentO2Variable gas_content_o2_variable;
static GasContentO2HeMaxVariable gas_content_o2_he_max_variable;
static GasContentHeVariable gas_content_he_variable;
static SuitVariable suit_variable;
static WeightsystemVariable weightsystem_variable;
static CylinderTypeVariable cylinder_type_variable;
static LocationVariable location_variable;
static DayOfWeekVariable day_of_week_variable;
static RatingVariable rating_variable;
static VisibilityVariable visibility_variable;
const std::vector<const StatsVariable *> stats_variables = {
&date_variable, &depth_variable, &duration_variable, &sac_variable,
&water_temperature_variable, &air_temperature_variable, &weight_variable,
&gas_content_o2_variable, &gas_content_o2_he_max_variable, &gas_content_he_variable,
&dive_mode_variable, &buddy_variable, &gas_type_variable, &suit_variable,
&weightsystem_variable, &cylinder_type_variable, &location_variable, &day_of_week_variable,
&rating_variable, &visibility_variable
};