mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-28 13:10:19 +00:00
544 lines
14 KiB
C
544 lines
14 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
|
||
|
#include "divecomputer.h"
|
||
|
#include "event.h"
|
||
|
#include "extradata.h"
|
||
|
#include "pref.h"
|
||
|
#include "sample.h"
|
||
|
#include "structured_list.h"
|
||
|
#include "subsurface-string.h"
|
||
|
|
||
|
#include <string.h>
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
/*
|
||
|
* Good fake dive profiles are hard.
|
||
|
*
|
||
|
* "depthtime" is the integral of the dive depth over
|
||
|
* time ("area" of the dive profile). We want that
|
||
|
* area to match the average depth (avg_d*max_t).
|
||
|
*
|
||
|
* To do that, we generate a 6-point profile:
|
||
|
*
|
||
|
* (0, 0)
|
||
|
* (t1, max_d)
|
||
|
* (t2, max_d)
|
||
|
* (t3, d)
|
||
|
* (t4, d)
|
||
|
* (max_t, 0)
|
||
|
*
|
||
|
* with the same ascent/descent rates between the
|
||
|
* different depths.
|
||
|
*
|
||
|
* NOTE: avg_d, max_d and max_t are given constants.
|
||
|
* The rest we can/should play around with to get a
|
||
|
* good-looking profile.
|
||
|
*
|
||
|
* That six-point profile gives a total area of:
|
||
|
*
|
||
|
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3)
|
||
|
*
|
||
|
* And the "same ascent/descent rates" requirement
|
||
|
* gives us (time per depth must be same):
|
||
|
*
|
||
|
* t1 / max_d = (t3-t2) / (max_d-d)
|
||
|
* t1 / max_d = (max_t-t4) / d
|
||
|
*
|
||
|
* We also obviously require:
|
||
|
*
|
||
|
* 0 <= t1 <= t2 <= t3 <= t4 <= max_t
|
||
|
*
|
||
|
* Let us call 'd_frac = d / max_d', and we get:
|
||
|
*
|
||
|
* Total area must match average depth-time:
|
||
|
*
|
||
|
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) = avg_d*max_t
|
||
|
* max_d*(max_t-t1-(1-d_frac)*(t4-t3)) = avg_d*max_t
|
||
|
* max_t-t1-(1-d_frac)*(t4-t3) = avg_d*max_t/max_d
|
||
|
* t1+(1-d_frac)*(t4-t3) = max_t*(1-avg_d/max_d)
|
||
|
*
|
||
|
* and descent slope must match ascent slopes:
|
||
|
*
|
||
|
* t1 / max_d = (t3-t2) / (max_d*(1-d_frac))
|
||
|
* t1 = (t3-t2)/(1-d_frac)
|
||
|
*
|
||
|
* and
|
||
|
*
|
||
|
* t1 / max_d = (max_t-t4) / (max_d*d_frac)
|
||
|
* t1 = (max_t-t4)/d_frac
|
||
|
*
|
||
|
* In general, we have more free variables than we have constraints,
|
||
|
* but we can aim for certain basics, like a good ascent slope.
|
||
|
*/
|
||
|
static int fill_samples(struct sample *s, int max_d, int avg_d, int max_t, double slope, double d_frac)
|
||
|
{
|
||
|
double t_frac = max_t * (1 - avg_d / (double)max_d);
|
||
|
int t1 = lrint(max_d / slope);
|
||
|
int t4 = lrint(max_t - t1 * d_frac);
|
||
|
int t3 = lrint(t4 - (t_frac - t1) / (1 - d_frac));
|
||
|
int t2 = lrint(t3 - t1 * (1 - d_frac));
|
||
|
|
||
|
if (t1 < 0 || t1 > t2 || t2 > t3 || t3 > t4 || t4 > max_t)
|
||
|
return 0;
|
||
|
|
||
|
s[1].time.seconds = t1;
|
||
|
s[1].depth.mm = max_d;
|
||
|
s[2].time.seconds = t2;
|
||
|
s[2].depth.mm = max_d;
|
||
|
s[3].time.seconds = t3;
|
||
|
s[3].depth.mm = lrint(max_d * d_frac);
|
||
|
s[4].time.seconds = t4;
|
||
|
s[4].depth.mm = lrint(max_d * d_frac);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* we have no average depth; instead of making up a random average depth
|
||
|
* we should assume either a PADI rectangular profile (for short and/or
|
||
|
* shallow dives) or more reasonably a six point profile with a 3 minute
|
||
|
* safety stop at 5m */
|
||
|
static void fill_samples_no_avg(struct sample *s, int max_d, int max_t, double slope)
|
||
|
{
|
||
|
// shallow or short dives are just trapecoids based on the given slope
|
||
|
if (max_d < 10000 || max_t < 600) {
|
||
|
s[1].time.seconds = lrint(max_d / slope);
|
||
|
s[1].depth.mm = max_d;
|
||
|
s[2].time.seconds = max_t - lrint(max_d / slope);
|
||
|
s[2].depth.mm = max_d;
|
||
|
} else {
|
||
|
s[1].time.seconds = lrint(max_d / slope);
|
||
|
s[1].depth.mm = max_d;
|
||
|
s[2].time.seconds = max_t - lrint(max_d / slope) - 180;
|
||
|
s[2].depth.mm = max_d;
|
||
|
s[3].time.seconds = max_t - lrint(5000 / slope) - 180;
|
||
|
s[3].depth.mm = 5000;
|
||
|
s[4].time.seconds = max_t - lrint(5000 / slope);
|
||
|
s[4].depth.mm = 5000;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void fake_dc(struct divecomputer *dc)
|
||
|
{
|
||
|
alloc_samples(dc, 6);
|
||
|
struct sample *fake = dc->sample;
|
||
|
int i;
|
||
|
|
||
|
dc->samples = 6;
|
||
|
|
||
|
/* The dive has no samples, so create a few fake ones */
|
||
|
int max_t = dc->duration.seconds;
|
||
|
int max_d = dc->maxdepth.mm;
|
||
|
int avg_d = dc->meandepth.mm;
|
||
|
|
||
|
memset(fake, 0, 6 * sizeof(struct sample));
|
||
|
fake[5].time.seconds = max_t;
|
||
|
for (i = 0; i < 6; i++) {
|
||
|
fake[i].bearing.degrees = -1;
|
||
|
fake[i].ndl.seconds = -1;
|
||
|
}
|
||
|
if (!max_t || !max_d) {
|
||
|
dc->samples = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Set last manually entered time to the total dive length */
|
||
|
dc->last_manual_time = dc->duration;
|
||
|
|
||
|
/*
|
||
|
* We want to fake the profile so that the average
|
||
|
* depth ends up correct. However, in the absence of
|
||
|
* a reasonable average, let's just make something
|
||
|
* up. Note that 'avg_d == max_d' is _not_ a reasonable
|
||
|
* average.
|
||
|
* We explicitly treat avg_d == 0 differently */
|
||
|
if (avg_d == 0) {
|
||
|
/* we try for a sane slope, but bow to the insanity of
|
||
|
* the user supplied data */
|
||
|
fill_samples_no_avg(fake, max_d, max_t, MAX(2.0 * max_d / max_t, (double)prefs.ascratelast6m));
|
||
|
if (fake[3].time.seconds == 0) { // just a 4 point profile
|
||
|
dc->samples = 4;
|
||
|
fake[3].time.seconds = max_t;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
if (avg_d < max_d / 10 || avg_d >= max_d) {
|
||
|
avg_d = (max_d + 10000) / 3;
|
||
|
if (avg_d > max_d)
|
||
|
avg_d = max_d * 2 / 3;
|
||
|
}
|
||
|
if (!avg_d)
|
||
|
avg_d = 1;
|
||
|
|
||
|
/*
|
||
|
* Ok, first we try a basic profile with a specific ascent
|
||
|
* rate (5 meters per minute) and d_frac (1/3).
|
||
|
*/
|
||
|
if (fill_samples(fake, max_d, avg_d, max_t, (double)prefs.ascratelast6m, 0.33))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Ok, assume that didn't work because we cannot make the
|
||
|
* average come out right because it was a quick deep dive
|
||
|
* followed by a much shallower region
|
||
|
*/
|
||
|
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0 / 60, 0.10))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Uhhuh. That didn't work. We'd need to find a good combination that
|
||
|
* satisfies our constraints. Currently, we don't, we just give insane
|
||
|
* slopes.
|
||
|
*/
|
||
|
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0, 0.01))
|
||
|
return;
|
||
|
|
||
|
/* Even that didn't work? Give up, there's something wrong */
|
||
|
}
|
||
|
|
||
|
/* Find the divemode at time 'time' (in seconds) into the dive. Sequentially step through the divemode-change events,
|
||
|
* saving the dive mode for each event. When the events occur AFTER 'time' seconds, the last stored divemode
|
||
|
* is returned. This function is self-tracking, relying on setting the event pointer 'evp' so that, in each iteration
|
||
|
* that calls this function, the search does not have to begin at the first event of the dive */
|
||
|
enum divemode_t get_current_divemode(const struct divecomputer *dc, int time, const struct event **evp, enum divemode_t *divemode)
|
||
|
{
|
||
|
const struct event *ev = *evp;
|
||
|
if (dc) {
|
||
|
if (*divemode == UNDEF_COMP_TYPE) {
|
||
|
*divemode = dc->divemode;
|
||
|
ev = get_next_event(dc->events, "modechange");
|
||
|
}
|
||
|
} else {
|
||
|
ev = NULL;
|
||
|
}
|
||
|
while (ev && ev->time.seconds < time) {
|
||
|
*divemode = (enum divemode_t) ev->value;
|
||
|
ev = get_next_event(ev->next, "modechange");
|
||
|
}
|
||
|
*evp = ev;
|
||
|
return *divemode;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* helper function to make it easier to work with our structures
|
||
|
* we don't interpolate here, just use the value from the last sample up to that time */
|
||
|
int get_depth_at_time(const struct divecomputer *dc, unsigned int time)
|
||
|
{
|
||
|
int depth = 0;
|
||
|
if (dc && dc->sample)
|
||
|
for (int i = 0; i < dc->samples; i++) {
|
||
|
if (dc->sample[i].time.seconds > time)
|
||
|
break;
|
||
|
depth = dc->sample[i].depth.mm;
|
||
|
}
|
||
|
return depth;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* The first divecomputer is embedded in the dive structure. Free its data but not
|
||
|
* the structure itself. For all remainding dcs in the list, free data *and* structures. */
|
||
|
void free_dive_dcs(struct divecomputer *dc)
|
||
|
{
|
||
|
free_dc_contents(dc);
|
||
|
STRUCTURED_LIST_FREE(struct divecomputer, dc->next, free_dc);
|
||
|
}
|
||
|
|
||
|
/* make room for num samples; if not enough space is available, the sample
|
||
|
* array is reallocated and the existing samples are copied. */
|
||
|
void alloc_samples(struct divecomputer *dc, int num)
|
||
|
{
|
||
|
if (num > dc->alloc_samples) {
|
||
|
dc->alloc_samples = (num * 3) / 2 + 10;
|
||
|
dc->sample = realloc(dc->sample, dc->alloc_samples * sizeof(struct sample));
|
||
|
if (!dc->sample)
|
||
|
dc->samples = dc->alloc_samples = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void free_samples(struct divecomputer *dc)
|
||
|
{
|
||
|
if (dc) {
|
||
|
free(dc->sample);
|
||
|
dc->sample = 0;
|
||
|
dc->samples = 0;
|
||
|
dc->alloc_samples = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
struct sample *prepare_sample(struct divecomputer *dc)
|
||
|
{
|
||
|
if (dc) {
|
||
|
int nr = dc->samples;
|
||
|
struct sample *sample;
|
||
|
alloc_samples(dc, nr + 1);
|
||
|
if (!dc->sample)
|
||
|
return NULL;
|
||
|
sample = dc->sample + nr;
|
||
|
memset(sample, 0, sizeof(*sample));
|
||
|
|
||
|
// Copy the sensor numbers - but not the pressure values
|
||
|
// from the previous sample if any.
|
||
|
if (nr) {
|
||
|
for (int idx = 0; idx < MAX_SENSORS; idx++)
|
||
|
sample->sensor[idx] = sample[-1].sensor[idx];
|
||
|
}
|
||
|
// Init some values with -1
|
||
|
sample->bearing.degrees = -1;
|
||
|
sample->ndl.seconds = -1;
|
||
|
|
||
|
return sample;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
void finish_sample(struct divecomputer *dc)
|
||
|
{
|
||
|
dc->samples++;
|
||
|
}
|
||
|
|
||
|
struct sample *add_sample(const struct sample *sample, int time, struct divecomputer *dc)
|
||
|
{
|
||
|
struct sample *p = prepare_sample(dc);
|
||
|
|
||
|
if (p) {
|
||
|
*p = *sample;
|
||
|
p->time.seconds = time;
|
||
|
finish_sample(dc);
|
||
|
}
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Calculate how long we were actually under water, and the average
|
||
|
* depth while under water.
|
||
|
*
|
||
|
* This ignores any surface time in the middle of the dive.
|
||
|
*/
|
||
|
void fixup_dc_duration(struct divecomputer *dc)
|
||
|
{
|
||
|
int duration, i;
|
||
|
int lasttime, lastdepth, depthtime;
|
||
|
|
||
|
duration = 0;
|
||
|
lasttime = 0;
|
||
|
lastdepth = 0;
|
||
|
depthtime = 0;
|
||
|
for (i = 0; i < dc->samples; i++) {
|
||
|
struct sample *sample = dc->sample + i;
|
||
|
int time = sample->time.seconds;
|
||
|
int depth = sample->depth.mm;
|
||
|
|
||
|
/* We ignore segments at the surface */
|
||
|
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
|
||
|
duration += time - lasttime;
|
||
|
depthtime += (time - lasttime) * (depth + lastdepth) / 2;
|
||
|
}
|
||
|
lastdepth = depth;
|
||
|
lasttime = time;
|
||
|
}
|
||
|
if (duration) {
|
||
|
dc->duration.seconds = duration;
|
||
|
dc->meandepth.mm = (depthtime + duration / 2) / duration;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* What do the dive computers say the water temperature is?
|
||
|
* (not in the samples, but as dc property for dcs that support that)
|
||
|
*/
|
||
|
unsigned int dc_watertemp(const struct divecomputer *dc)
|
||
|
{
|
||
|
int sum = 0, nr = 0;
|
||
|
|
||
|
do {
|
||
|
if (dc->watertemp.mkelvin) {
|
||
|
sum += dc->watertemp.mkelvin;
|
||
|
nr++;
|
||
|
}
|
||
|
} while ((dc = dc->next) != NULL);
|
||
|
if (!nr)
|
||
|
return 0;
|
||
|
return (sum + nr / 2) / nr;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* What do the dive computers say the air temperature is?
|
||
|
*/
|
||
|
unsigned int dc_airtemp(const struct divecomputer *dc)
|
||
|
{
|
||
|
int sum = 0, nr = 0;
|
||
|
|
||
|
do {
|
||
|
if (dc->airtemp.mkelvin) {
|
||
|
sum += dc->airtemp.mkelvin;
|
||
|
nr++;
|
||
|
}
|
||
|
} while ((dc = dc->next) != NULL);
|
||
|
if (!nr)
|
||
|
return 0;
|
||
|
return (sum + nr / 2) / nr;
|
||
|
}
|
||
|
|
||
|
/* copies all events in this dive computer */
|
||
|
void copy_events(const struct divecomputer *s, struct divecomputer *d)
|
||
|
{
|
||
|
const struct event *ev;
|
||
|
struct event **pev;
|
||
|
if (!s || !d)
|
||
|
return;
|
||
|
ev = s->events;
|
||
|
pev = &d->events;
|
||
|
while (ev != NULL) {
|
||
|
struct event *new_ev = clone_event(ev);
|
||
|
*pev = new_ev;
|
||
|
pev = &new_ev->next;
|
||
|
ev = ev->next;
|
||
|
}
|
||
|
*pev = NULL;
|
||
|
}
|
||
|
|
||
|
void copy_samples(const struct divecomputer *s, struct divecomputer *d)
|
||
|
{
|
||
|
/* instead of carefully copying them one by one and calling add_sample
|
||
|
* over and over again, let's just copy the whole blob */
|
||
|
if (!s || !d)
|
||
|
return;
|
||
|
int nr = s->samples;
|
||
|
d->samples = nr;
|
||
|
d->alloc_samples = nr;
|
||
|
// We expect to be able to read the memory in the other end of the pointer
|
||
|
// if its a valid pointer, so don't expect malloc() to return NULL for
|
||
|
// zero-sized malloc, do it ourselves.
|
||
|
d->sample = NULL;
|
||
|
|
||
|
if(!nr)
|
||
|
return;
|
||
|
|
||
|
d->sample = malloc(nr * sizeof(struct sample));
|
||
|
if (d->sample)
|
||
|
memcpy(d->sample, s->sample, nr * sizeof(struct sample));
|
||
|
}
|
||
|
|
||
|
void add_event_to_dc(struct divecomputer *dc, struct event *ev)
|
||
|
{
|
||
|
struct event **p;
|
||
|
|
||
|
p = &dc->events;
|
||
|
|
||
|
/* insert in the sorted list of events */
|
||
|
while (*p && (*p)->time.seconds <= ev->time.seconds)
|
||
|
p = &(*p)->next;
|
||
|
ev->next = *p;
|
||
|
*p = ev;
|
||
|
}
|
||
|
|
||
|
struct event *add_event(struct divecomputer *dc, unsigned int time, int type, int flags, int value, const char *name)
|
||
|
{
|
||
|
struct event *ev = create_event(time, type, flags, value, name);
|
||
|
|
||
|
if (!ev)
|
||
|
return NULL;
|
||
|
|
||
|
add_event_to_dc(dc, ev);
|
||
|
|
||
|
remember_event(name);
|
||
|
return ev;
|
||
|
}
|
||
|
|
||
|
/* Substitutes an event in a divecomputer for another. No reordering is performed! */
|
||
|
void swap_event(struct divecomputer *dc, struct event *from, struct event *to)
|
||
|
{
|
||
|
for (struct event **ep = &dc->events; *ep; ep = &(*ep)->next) {
|
||
|
if (*ep == from) {
|
||
|
to->next = from->next;
|
||
|
*ep = to;
|
||
|
from->next = NULL; // For good measure.
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Remove given event from dive computer. Does *not* free the event. */
|
||
|
void remove_event_from_dc(struct divecomputer *dc, struct event *event)
|
||
|
{
|
||
|
for (struct event **ep = &dc->events; *ep; ep = &(*ep)->next) {
|
||
|
if (*ep == event) {
|
||
|
*ep = event->next;
|
||
|
event->next = NULL; // For good measure.
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void add_extra_data(struct divecomputer *dc, const char *key, const char *value)
|
||
|
{
|
||
|
struct extra_data **ed = &dc->extra_data;
|
||
|
|
||
|
while (*ed)
|
||
|
ed = &(*ed)->next;
|
||
|
*ed = malloc(sizeof(struct extra_data));
|
||
|
if (*ed) {
|
||
|
(*ed)->key = strdup(key);
|
||
|
(*ed)->value = strdup(value);
|
||
|
(*ed)->next = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool is_dc_planner(const struct divecomputer *dc)
|
||
|
{
|
||
|
return same_string(dc->model, "planned dive");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Match two dive computer entries against each other, and
|
||
|
* tell if it's the same dive. Return 0 if "don't know",
|
||
|
* positive for "same dive" and negative for "definitely
|
||
|
* not the same dive"
|
||
|
*/
|
||
|
int match_one_dc(const struct divecomputer *a, const struct divecomputer *b)
|
||
|
{
|
||
|
/* Not same model? Don't know if matching.. */
|
||
|
if (!a->model || !b->model)
|
||
|
return 0;
|
||
|
if (strcasecmp(a->model, b->model))
|
||
|
return 0;
|
||
|
|
||
|
/* Different device ID's? Don't know */
|
||
|
if (a->deviceid != b->deviceid)
|
||
|
return 0;
|
||
|
|
||
|
/* Do we have dive IDs? */
|
||
|
if (!a->diveid || !b->diveid)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* If they have different dive ID's on the same
|
||
|
* dive computer, that's a definite "same or not"
|
||
|
*/
|
||
|
return a->diveid == b->diveid && a->when == b->when ? 1 : -1;
|
||
|
}
|
||
|
|
||
|
static void free_extra_data(struct extra_data *ed)
|
||
|
{
|
||
|
free((void *)ed->key);
|
||
|
free((void *)ed->value);
|
||
|
}
|
||
|
|
||
|
void free_dc_contents(struct divecomputer *dc)
|
||
|
{
|
||
|
free(dc->sample);
|
||
|
free((void *)dc->model);
|
||
|
free((void *)dc->serial);
|
||
|
free((void *)dc->fw_version);
|
||
|
free_events(dc->events);
|
||
|
STRUCTURED_LIST_FREE(struct extra_data, dc->extra_data, free_extra_data);
|
||
|
}
|
||
|
|
||
|
void free_dc(struct divecomputer *dc)
|
||
|
{
|
||
|
free_dc_contents(dc);
|
||
|
free(dc);
|
||
|
}
|
||
|
|