subsurface/dive.c

1718 lines
39 KiB
C
Raw Normal View History

/* dive.c */
/* maintains the internal dive list structure */
#include <string.h>
#include <stdio.h>
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
#include <glib/gi18n.h>
#include "dive.h"
void add_event(struct divecomputer *dc, int time, int type, int flags, int value, const char *name)
{
struct event *ev, **p;
unsigned int size, len = strlen(name);
size = sizeof(*ev) + len + 1;
ev = malloc(size);
if (!ev)
return;
memset(ev, 0, size);
memcpy(ev->name, name, len);
ev->time.seconds = time;
ev->type = type;
ev->flags = flags;
ev->value = value;
ev->next = NULL;
p = &dc->events;
while (*p)
p = &(*p)->next;
*p = ev;
remember_event(name);
}
int get_pressure_units(unsigned int mb, const char **units)
{
int pressure;
const char* unit;
struct units *units_p = get_units();
switch (units_p->pressure) {
case PASCAL:
pressure = mb * 100;
unit = _("pascal");
break;
case BAR:
pressure = (mb + 500) / 1000;
unit = _("bar");
break;
case PSI:
pressure = mbar_to_PSI(mb);
unit = _("psi");
break;
}
if (units)
*units = unit;
return pressure;
}
double get_temp_units(unsigned int mk, const char **units)
{
double deg;
const char *unit;
struct units *units_p = get_units();
if (units_p->temperature == FAHRENHEIT) {
deg = mkelvin_to_F(mk);
unit = UTF8_DEGREE "F";
} else {
deg = mkelvin_to_C(mk);
unit = UTF8_DEGREE "C";
}
if (units)
*units = unit;
return deg;
}
double get_volume_units(unsigned int ml, int *frac, const char **units)
{
int decimals;
double vol;
const char *unit;
struct units *units_p = get_units();
switch (units_p->volume) {
case LITER:
vol = ml / 1000.0;
unit = _("l");
decimals = 1;
break;
case CUFT:
vol = ml_to_cuft(ml);
unit = _("cuft");
decimals = 2;
break;
}
if (frac)
*frac = decimals;
if (units)
*units = unit;
return vol;
}
double get_depth_units(unsigned int mm, int *frac, const char **units)
{
int decimals;
double d;
const char *unit;
struct units *units_p = get_units();
switch (units_p->length) {
case METERS:
d = mm / 1000.0;
unit = _("m");
decimals = d < 20;
break;
case FEET:
d = mm_to_feet(mm);
unit = _("ft");
decimals = 0;
break;
}
if (frac)
*frac = decimals;
if (units)
*units = unit;
return d;
}
double get_weight_units(unsigned int grams, int *frac, const char **units)
{
int decimals;
double value;
const char* unit;
struct units *units_p = get_units();
if (units_p->weight == LBS) {
value = grams_to_lbs(grams);
unit = _("lbs");
decimals = 0;
} else {
value = grams / 1000.0;
unit = _("kg");
decimals = 1;
}
if (frac)
*frac = decimals;
if (units)
*units = unit;
return value;
}
struct dive *alloc_dive(void)
{
struct dive *dive;
dive = malloc(sizeof(*dive));
if (!dive)
exit(1);
memset(dive, 0, sizeof(*dive));
return dive;
}
struct sample *prepare_sample(struct divecomputer *dc)
{
if (dc) {
int nr = dc->samples;
int alloc_samples = dc->alloc_samples;
struct sample *sample;
if (nr >= alloc_samples) {
struct sample *newsamples;
alloc_samples = (alloc_samples * 3)/2 + 10;
newsamples = realloc(dc->sample, alloc_samples * sizeof(struct sample));
if (!newsamples)
return NULL;
dc->alloc_samples = alloc_samples;
dc->sample = newsamples;
}
sample = dc->sample + nr;
memset(sample, 0, sizeof(*sample));
return sample;
}
return NULL;
}
void finish_sample(struct divecomputer *dc)
{
dc->samples++;
}
/*
* So when we re-calculate maxdepth and meandepth, we will
* not override the old numbers if they are close to the
* new ones.
*
* Why? Because a dive computer may well actually track the
* max depth and mean depth at finer granularity than the
* samples it stores. So it's possible that the max and mean
* have been reported more correctly originally.
*
2011-09-04 01:48:39 +00:00
* Only if the values calculated from the samples are clearly
* different do we override the normal depth values.
*
* This considers 1m to be "clearly different". That's
* a totally random number.
*/
static void update_depth(depth_t *depth, int new)
{
if (new) {
int old = depth->mm;
if (abs(old - new) > 1000)
depth->mm = new;
}
}
static void update_temperature(temperature_t *temperature, int new)
{
if (new) {
int old = temperature->mkelvin;
if (abs(old - new) > 1000)
temperature->mkelvin = new;
}
}
/*
* Calculate how long we were actually under water, and the average
* depth while under water.
*
* This ignores any surface time in the middle of the dive.
*/
static void fixup_dc_duration(struct divecomputer *dc)
{
int duration, i;
int lasttime, lastdepth, depthtime;
duration = 0;
lasttime = 0;
lastdepth = 0;
depthtime = 0;
for (i = 0; i < dc->samples; i++) {
struct sample *sample = dc->sample + i;
int time = sample->time.seconds;
int depth = sample->depth.mm;
/* We ignore segments at the surface */
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
duration += time - lasttime;
depthtime += (time - lasttime)*(depth+lastdepth)/2;
}
lastdepth = depth;
lasttime = time;
}
if (duration) {
dc->duration.seconds = duration;
dc->meandepth.mm = (depthtime + duration/2) / duration;
}
}
static void fixup_pressure(struct dive *dive, struct sample *sample)
{
unsigned int pressure, index;
cylinder_t *cyl;
pressure = sample->cylinderpressure.mbar;
if (!pressure)
return;
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
index = sample->sensor;
/* FIXME! sensor -> cylinder mapping? */
if (index >= MAX_CYLINDERS)
return;
cyl = dive->cylinder + index;
if (!cyl->sample_start.mbar)
cyl->sample_start.mbar = pressure;
cyl->sample_end.mbar = pressure;
}
static void update_min_max_temperatures(struct dive *dive, temperature_t temperature)
{
if (temperature.mkelvin) {
if (!dive->maxtemp.mkelvin || temperature.mkelvin > dive->maxtemp.mkelvin)
dive->maxtemp = temperature;
if (!dive->mintemp.mkelvin || temperature.mkelvin < dive->mintemp.mkelvin)
dive->mintemp = temperature;
}
}
/*
* At high pressures air becomes less compressible, and
* does not follow the ideal gas law any more.
*
* This tries to correct for that, becoming the same
* as to_ATM() at lower pressures.
*
* THIS IS A ROUGH APPROXIMATION! The real numbers will
* depend on the exact gas mix and temperature.
*/
double surface_volume_multiplier(pressure_t pressure)
{
double bar = pressure.mbar / 1000.0;
if (bar > 200)
bar = 0.00038*bar*bar + 0.51629*bar + 81.542;
return bar_to_atm(bar);
}
int gas_volume(cylinder_t *cyl, pressure_t p)
{
return cyl->type.size.mliter * surface_volume_multiplier(p);
}
/*
* If the cylinder tank pressures are within half a bar
* (about 8 PSI) of the sample pressures, we consider it
* to be a rounding error, and throw them away as redundant.
*/
static int same_rounded_pressure(pressure_t a, pressure_t b)
{
return abs(a.mbar - b.mbar) <= 500;
}
static void sanitize_gasmix(struct gasmix *mix)
{
unsigned int o2, he;
o2 = mix->o2.permille;
he = mix->he.permille;
/* Regular air: leave empty */
if (!he) {
if (!o2)
return;
/* 20.8% to 21% O2 is just air */
if (is_air(o2, he)) {
mix->o2.permille = 0;
return;
}
}
/* Sane mix? */
if (o2 <= 1000 && he <= 1000 && o2+he <= 1000)
return;
fprintf(stderr, "Odd gasmix: %u O2 %u He\n", o2, he);
memset(mix, 0, sizeof(*mix));
}
/*
* See if the size/workingpressure looks like some standard cylinder
* size, eg "AL80".
*/
static void match_standard_cylinder(cylinder_type_t *type)
{
double cuft;
int psi, len;
const char *fmt;
char buffer[40], *p;
/* Do we already have a cylinder description? */
if (type->description)
return;
cuft = ml_to_cuft(type->size.mliter);
cuft *= surface_volume_multiplier(type->workingpressure);
psi = to_PSI(type->workingpressure);
switch (psi) {
case 2300 ... 2500: /* 2400 psi: LP tank */
fmt = "LP%d";
break;
case 2600 ... 2700: /* 2640 psi: LP+10% */
fmt = "LP%d";
break;
case 2900 ... 3100: /* 3000 psi: ALx tank */
fmt = "AL%d";
break;
case 3400 ... 3500: /* 3442 psi: HP tank */
fmt = "HP%d";
break;
case 3700 ... 3850: /* HP+10% */
fmt = "HP%d+";
break;
default:
return;
}
len = snprintf(buffer, sizeof(buffer), fmt, (int) (cuft+0.5));
p = malloc(len+1);
if (!p)
return;
memcpy(p, buffer, len+1);
type->description = p;
}
/*
* There are two ways to give cylinder size information:
* - total amount of gas in cuft (depends on working pressure and physical size)
* - physical size
*
* where "physical size" is the one that actually matters and is sane.
*
* We internally use physical size only. But we save the workingpressure
* so that we can do the conversion if required.
*/
static void sanitize_cylinder_type(cylinder_type_t *type)
{
double volume_of_air, volume;
/* If we have no working pressure, it had *better* be just a physical size! */
if (!type->workingpressure.mbar)
return;
/* No size either? Nothing to go on */
if (!type->size.mliter)
return;
if (xml_parsing_units.volume == CUFT) {
/* confusing - we don't really start from ml but millicuft !*/
volume_of_air = cuft_to_l(type->size.mliter);
/* milliliters at 1 atm: "true size" */
volume = volume_of_air / surface_volume_multiplier(type->workingpressure);
type->size.mliter = volume + 0.5;
}
/* Ok, we have both size and pressure: try to match a description */
match_standard_cylinder(type);
}
static void sanitize_cylinder_info(struct dive *dive)
{
int i;
for (i = 0; i < MAX_CYLINDERS; i++) {
sanitize_gasmix(&dive->cylinder[i].gasmix);
sanitize_cylinder_type(&dive->cylinder[i].type);
}
}
/* some events should never be thrown away */
static gboolean is_potentially_redundant(struct event *event)
{
if (!strcmp(event->name, "gaschange"))
return FALSE;
if (!strcmp(event->name, "bookmark"))
return FALSE;
if (!strcmp(event->name, "heading"))
return FALSE;
return TRUE;
}
/* match just by name - we compare the details in the code that uses this helper */
static struct event *find_previous_event(struct divecomputer *dc, struct event *event)
{
struct event *ev = dc->events;
struct event *previous = NULL;
if (!event->name)
return NULL;
while (ev && ev != event) {
if (ev->name && !strcmp(ev->name, event->name))
previous = ev;
ev = ev->next;
}
return previous;
}
static void fixup_surface_pressure(struct dive *dive)
{
struct divecomputer *dc;
int sum = 0, nr = 0;
for_each_dc(dive, dc) {
if (dc->surface_pressure.mbar) {
sum += dc->surface_pressure.mbar;
nr++;
}
}
if (nr)
dive->surface_pressure.mbar = (sum + nr/2)/nr;
}
static void fixup_water_salinity(struct dive *dive)
{
struct divecomputer *dc;
int sum = 0, nr = 0;
for_each_dc(dive, dc) {
if (dc->salinity) {
sum += dc->salinity;
nr++;
}
}
if (nr)
dive->salinity = (sum + nr/2)/nr;
}
static void fixup_meandepth(struct dive *dive)
{
struct divecomputer *dc;
int sum = 0, nr = 0;
for_each_dc(dive, dc) {
if (dc->meandepth.mm) {
sum += dc->meandepth.mm;
nr++;
}
}
if (nr)
dive->meandepth.mm = (sum + nr / 2) / nr;
}
static void fixup_duration(struct dive *dive)
{
struct divecomputer *dc;
int duration = 0;
for_each_dc(dive, dc)
duration = MAX(duration, dc->duration.seconds);
dive->duration.seconds = duration;
}
static void fixup_watertemp(struct dive *dive)
{
struct divecomputer *dc;
int sum = 0, nr = 0;
for_each_dc(dive, dc) {
if (dc->watertemp.mkelvin) {
sum += dc->watertemp.mkelvin;
nr++;
}
}
if (nr)
dive->watertemp.mkelvin = (sum + nr / 2) / nr;
}
/*
* What do the dive computers say the air temperature is?
*/
unsigned int dc_airtemp(struct divecomputer *dc)
{
int sum = 0, nr = 0;
do {
if (dc->airtemp.mkelvin) {
sum += dc->airtemp.mkelvin;
nr++;
}
} while ((dc = dc->next) != NULL);
if (!nr)
return 0;
return (sum + nr / 2) / nr;
}
static void fixup_airtemp(struct dive *dive)
{
if (!dive->airtemp.mkelvin)
dive->airtemp.mkelvin = dc_airtemp(&dive->dc);
}
/* zero out the airtemp in the dive structure if it was just created by
* running fixup on the dive. keep it if it had been edited by hand */
static void un_fixup_airtemp(struct dive *a)
{
if (a->airtemp.mkelvin && a->airtemp.mkelvin == dc_airtemp(&a->dc))
a->airtemp.mkelvin = 0;
}
/*
* events are stored as a linked list, so the concept of
* "consecutive, identical events" is somewhat hard to
* implement correctly (especially given that on some dive
* computers events are asynchronous, so they can come in
* between what would be the non-constant sample rate).
*
* So what we do is that we throw away clearly redundant
* events that are fewer than 61 seconds apart (assuming there
* is no dive computer with a sample rate of more than 60
* seconds... that would be pretty pointless to plot the
* profile with)
*
* We first only mark the events for deletion so that we
* still know when the previous event happened.
*/
static void fixup_dc_events(struct divecomputer *dc)
{
struct event *event;
event = dc->events;
while (event) {
struct event *prev;
if (is_potentially_redundant(event)) {
prev = find_previous_event(dc, event);
if (prev && prev->value == event->value &&
prev->flags == event->flags &&
event->time.seconds - prev->time.seconds < 61)
event->deleted = TRUE;
}
event = event->next;
}
event = dc->events;
while (event) {
if (event->next && event->next->deleted) {
struct event *nextnext = event->next->next;
free(event->next);
event->next = nextnext;
} else {
event = event->next;
}
}
}
static void fixup_dive_dc(struct dive *dive, struct divecomputer *dc)
{
int i, j;
double depthtime = 0;
int lasttime = 0;
int lastindex = -1;
int maxdepth = dc->maxdepth.mm;
int mintemp = 0;
int lastdepth = 0;
int lasttemp = 0, lastpressure = 0;
int pressure_delta[MAX_CYLINDERS] = {INT_MAX, };
/* Fixup duration and mean depth */
fixup_dc_duration(dc);
update_min_max_temperatures(dive, dc->watertemp);
for (i = 0; i < dc->samples; i++) {
struct sample *sample = dc->sample + i;
int time = sample->time.seconds;
int depth = sample->depth.mm;
int temp = sample->temperature.mkelvin;
int pressure = sample->cylinderpressure.mbar;
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
int index = sample->sensor;
if (index == lastindex) {
/* Remove duplicate redundant pressure information */
if (pressure == lastpressure)
sample->cylinderpressure.mbar = 0;
/* check for simply linear data in the samples
+INT_MAX means uninitialized, -INT_MAX means not linear */
if (pressure_delta[index] != -INT_MAX && lastpressure) {
if (pressure_delta[index] == INT_MAX) {
pressure_delta[index] = abs(pressure - lastpressure);
} else {
int cur_delta = abs(pressure - lastpressure);
if (cur_delta && abs(cur_delta - pressure_delta[index]) > 150) {
/* ok the samples aren't just a linearisation
* between start and end */
pressure_delta[index] = -INT_MAX;
}
}
}
}
lastindex = index;
lastpressure = pressure;
if (depth > SURFACE_THRESHOLD) {
if (depth > maxdepth)
maxdepth = depth;
}
fixup_pressure(dive, sample);
if (temp) {
/*
* If we have consecutive identical
* temperature readings, throw away
* the redundant ones.
*/
if (lasttemp == temp)
sample->temperature.mkelvin = 0;
else
lasttemp = temp;
if (!mintemp || temp < mintemp)
mintemp = temp;
}
update_min_max_temperatures(dive, sample->temperature);
depthtime += (time - lasttime) * (lastdepth + depth) / 2;
lastdepth = depth;
lasttime = time;
if (sample->cns > dive->maxcns)
dive->maxcns = sample->cns;
}
/* if all the samples for a cylinder have pressure data that
* is basically equidistant throw out the sample cylinder pressure
* information but make sure we still have a valid start and end
* pressure
* this happens when DivingLog decides to linearalize the
* pressure between beginning and end and for strange reasons
* decides to put that in the sample data as if it came from
* the dive computer; we don't want that (we'll visualize with
* constant SAC rate instead)
* WARNING WARNING - I have only seen this in single tank dives
* --- maybe I should try to create a multi tank dive and see what
* --- divinglog does there - but the code right now is only tested
* --- for the single tank case */
for (j = 0; j < MAX_CYLINDERS; j++) {
if (abs(pressure_delta[j]) != INT_MAX) {
cylinder_t *cyl = dive->cylinder + j;
for (i = 0; i < dc->samples; i++)
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
if (dc->sample[i].sensor == j)
dc->sample[i].cylinderpressure.mbar = 0;
if (! cyl->start.mbar)
cyl->start.mbar = cyl->sample_start.mbar;
if (! cyl->end.mbar)
cyl->end.mbar = cyl->sample_end.mbar;
cyl->sample_start.mbar = 0;
cyl->sample_end.mbar = 0;
}
}
update_temperature(&dc->watertemp, mintemp);
update_depth(&dc->maxdepth, maxdepth);
if (maxdepth > dive->maxdepth.mm)
dive->maxdepth.mm = maxdepth;
fixup_dc_events(dc);
}
struct dive *fixup_dive(struct dive *dive)
{
int i;
struct divecomputer *dc;
add_people(dive->buddy);
add_people(dive->divemaster);
add_location(dive->location);
add_suit(dive->suit);
sanitize_cylinder_info(dive);
dive->maxcns = dive->cns;
for_each_dc(dive, dc)
fixup_dive_dc(dive, dc);
fixup_water_salinity(dive);
fixup_surface_pressure(dive);
fixup_meandepth(dive);
fixup_duration(dive);
fixup_watertemp(dive);
fixup_airtemp(dive);
for (i = 0; i < MAX_CYLINDERS; i++) {
cylinder_t *cyl = dive->cylinder + i;
add_cylinder_description(&cyl->type);
if (same_rounded_pressure(cyl->sample_start, cyl->start))
cyl->start.mbar = 0;
if (same_rounded_pressure(cyl->sample_end, cyl->end))
cyl->end.mbar = 0;
}
for (i = 0; i < MAX_WEIGHTSYSTEMS; i++) {
weightsystem_t *ws = dive->weightsystem + i;
add_weightsystem_description(ws);
}
return dive;
}
/* Don't pick a zero for MERGE_MIN() */
#define MERGE_MAX(res, a, b, n) res->n = MAX(a->n, b->n)
#define MERGE_MIN(res, a, b, n) res->n = (a->n)?(b->n)?MIN(a->n, b->n):(a->n):(b->n)
#define MERGE_TXT(res, a, b, n) res->n = merge_text(a->n, b->n)
#define MERGE_NONZERO(res, a, b, n) res->n = a->n ? a->n : b->n
static struct sample *add_sample(struct sample *sample, int time, struct divecomputer *dc)
{
struct sample *p = prepare_sample(dc);
if (p) {
*p = *sample;
p->time.seconds = time;
finish_sample(dc);
}
return p;
}
/*
* This is like add_sample(), but if the distance from the last sample
* is excessive, we add two surface samples in between.
*
* This is so that if you merge two non-overlapping dives, we make sure
* that the time in between the dives is at the surface, not some "last
* sample that happened to be at a depth of 1.2m".
*/
static void merge_one_sample(struct sample *sample, int time, struct divecomputer *dc)
{
int last = dc->samples-1;
if (last >= 0) {
static struct sample surface;
struct sample *prev = dc->sample + last;
int last_time = prev->time.seconds;
int last_depth = prev->depth.mm;
/*
* Only do surface events if the samples are more than
* a minute apart, and shallower than 5m
*/
if (time > last_time + 60 && last_depth < 5000) {
add_sample(&surface, last_time+20, dc);
add_sample(&surface, time - 20, dc);
}
}
add_sample(sample, time, dc);
}
/*
* Merge samples. Dive 'a' is "offset" seconds before Dive 'b'
*/
static void merge_samples(struct divecomputer *res, struct divecomputer *a, struct divecomputer *b, int offset)
{
int asamples = a->samples;
int bsamples = b->samples;
struct sample *as = a->sample;
struct sample *bs = b->sample;
/*
* We want a positive sample offset, so that sample
* times are always positive. So if the samples for
* 'b' are before the samples for 'a' (so the offset
* is negative), we switch a and b around, and use
* the reverse offset.
*/
if (offset < 0) {
offset = -offset;
asamples = bsamples;
bsamples = a->samples;
as = bs;
bs = a->sample;
}
for (;;) {
int at, bt;
struct sample sample;
if (!res)
return;
at = asamples ? as->time.seconds : -1;
bt = bsamples ? bs->time.seconds + offset : -1;
/* No samples? All done! */
if (at < 0 && bt < 0)
return;
/* Only samples from a? */
if (bt < 0) {
add_sample_a:
merge_one_sample(as, at, res);
as++;
asamples--;
continue;
}
/* Only samples from b? */
if (at < 0) {
add_sample_b:
merge_one_sample(bs, bt, res);
bs++;
bsamples--;
continue;
}
if (at < bt)
goto add_sample_a;
if (at > bt)
goto add_sample_b;
/* same-time sample: add a merged sample. Take the non-zero ones */
sample = *bs;
if (as->depth.mm)
sample.depth = as->depth;
if (as->temperature.mkelvin)
sample.temperature = as->temperature;
if (as->cylinderpressure.mbar)
sample.cylinderpressure = as->cylinderpressure;
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
if (as->sensor)
sample.sensor = as->sensor;
if (as->cns)
sample.cns = as->cns;
if (as->po2)
sample.po2 = as->po2;
if (as->ndl.seconds)
sample.ndl = as->ndl;
if (as->stoptime.seconds)
sample.stoptime = as->stoptime;
if (as->stopdepth.mm)
sample.stopdepth = as->stopdepth;
if (as->in_deco)
sample.in_deco = TRUE;
merge_one_sample(&sample, at, res);
as++;
bs++;
asamples--;
bsamples--;
}
}
static char *merge_text(const char *a, const char *b)
{
char *res;
if (!a && !b)
return NULL;
if (!a || !*a)
return strdup(b);
if (!b || !*b)
return strdup(a);
if (!strcmp(a,b))
return strdup(a);
res = malloc(strlen(a) + strlen(b) + 32);
if (!res)
return (char *)a;
Conversion to gettext to allow localization This is just the first step - convert the string literals, try to catch all the places where this isn't possible and the program needs to convert string constants at runtime (those are the N_ macros). Add a very rough first German localization so I can at least test what I have done. Seriously, I have never used a localized OS, so I am certain that I have many of the 'standard' translations wrong. Someone please take over :-) Major issues with this: - right now it hardcodes the search path for the message catalog to be ./locale - that's of course bogus, but it works well while doing initial testing. Once the tooling support is there we just should use the OS default. - even though de_DE defaults to ISO-8859-15 (or ISO-8859-1 - the internets can't seem to agree) I went with UTF-8 as that is what Gtk appears to want to use internally. ISO-8859-15 encoded .mo files create funny looking artefacts instead of Umlaute. - no support at all in the Makefile - I was hoping someone with more experience in how to best set this up would contribute a good set of Makefile rules - likely this will help fix the first issue in that it will also install the .mo file(s) in the correct place(s) For now simply run msgfmt -c -o subsurface.mo deutsch.po to create the subsurface.mo file and then move it to ./locale/de_DE.UTF-8/LC_MESSAGES/subsurface.mo If you make changes to the sources and need to add new strings to be translated, this is what seems to work (again, should be tooled through the Makefile): xgettext -o subsurface-new.pot -s -k_ -kN_ --add-comments="++GETTEXT" *.c msgmerge -s -U po/deutsch.po subsurface-new.pot If you do this PLEASE do one commit that just has the new msgid as changes in line numbers create a TON of diff-noise. Do changes to translations in a SEPARATE commit. - no testing at all on Windows or Mac It builds on Windows :-) Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-10-11 00:42:59 +00:00
sprintf(res, _("(%s) or (%s)"), a, b);
return res;
}
#define SORT(a,b,field) \
if (a->field != b->field) return a->field < b->field ? -1 : 1
static int sort_event(struct event *a, struct event *b)
{
SORT(a,b,time.seconds);
SORT(a,b,type);
SORT(a,b,flags);
SORT(a,b,value);
return strcmp(a->name, b->name);
}
static void merge_events(struct divecomputer *res, struct divecomputer *src1, struct divecomputer *src2, int offset)
{
struct event *a, *b;
struct event **p = &res->events;
/* Always use positive offsets */
if (offset < 0) {
struct divecomputer *tmp;
offset = -offset;
tmp = src1;
src1 = src2;
src2 = tmp;
}
a = src1->events;
b = src2->events;
while (b) {
b->time.seconds += offset;
b = b->next;
}
b = src2->events;
while (a || b) {
int s;
if (!b) {
*p = a;
break;
}
if (!a) {
*p = b;
break;
}
s = sort_event(a, b);
/* Pick b */
if (s > 0) {
*p = b;
p = &b->next;
b = b->next;
continue;
}
/* Pick 'a' or neither */
if (s < 0) {
*p = a;
p = &a->next;
}
a = a->next;
continue;
}
}
/* Pick whichever has any info (if either). Prefer 'a' */
static void merge_cylinder_type(cylinder_type_t *res, cylinder_type_t *a, cylinder_type_t *b)
{
cylinder_type_t *clean = a;
if (a->size.mliter) {
clean = b;
b = a;
}
if (clean->description)
free((void *)clean->description);
*res = *b;
}
static void merge_cylinder_mix(struct gasmix *res, struct gasmix *a, struct gasmix *b)
{
if (a->o2.permille)
b = a;
*res = *b;
}
static void merge_cylinder_info(cylinder_t *res, cylinder_t *a, cylinder_t *b)
{
merge_cylinder_type(&res->type, &a->type, &b->type);
merge_cylinder_mix(&res->gasmix, &a->gasmix, &b->gasmix);
MERGE_MAX(res, a, b, start.mbar);
MERGE_MIN(res, a, b, end.mbar);
}
static void merge_weightsystem_info(weightsystem_t *res, weightsystem_t *a, weightsystem_t *b)
{
if (!a->weight.grams)
a = b;
*res = *a;
}
static void merge_equipment(struct dive *res, struct dive *a, struct dive *b)
{
int i;
for (i = 0; i < MAX_CYLINDERS; i++)
merge_cylinder_info(res->cylinder+i, a->cylinder + i, b->cylinder + i);
for (i = 0; i < MAX_WEIGHTSYSTEMS; i++)
merge_weightsystem_info(res->weightsystem+i, a->weightsystem + i, b->weightsystem + i);
}
static void merge_airtemps(struct dive *res, struct dive *a, struct dive *b)
{
un_fixup_airtemp(a);
un_fixup_airtemp(b);
MERGE_NONZERO(res, a, b, airtemp.mkelvin);
}
/*
* When merging two dives, this picks the trip from one, and removes it
* from the other.
*
* The 'next' dive is not involved in the dive merging, but is the dive
* that will be the next dive after the merged dive.
*/
static void pick_trip(struct dive *res, struct dive *pick)
{
tripflag_t tripflag = pick->tripflag;
dive_trip_t *trip = pick->divetrip;
res->tripflag = tripflag;
2012-11-10 18:51:03 +00:00
add_dive_to_trip(res, trip);
}
/*
* Pick a trip for a dive
*/
static void merge_trip(struct dive *res, struct dive *a, struct dive *b)
{
dive_trip_t *atrip, *btrip;
/*
* The larger tripflag is more relevant: we prefer
* take manually assigned trips over auto-generated
* ones.
*/
if (a->tripflag > b->tripflag)
goto pick_a;
if (a->tripflag < b->tripflag)
goto pick_b;
/* Otherwise, look at the trip data and pick the "better" one */
atrip = a->divetrip;
btrip = b->divetrip;
if (!atrip)
goto pick_b;
if (!btrip)
goto pick_a;
if (!atrip->location)
goto pick_b;
if (!btrip->location)
goto pick_a;
if (!atrip->notes)
goto pick_b;
if (!btrip->notes)
goto pick_a;
/*
* Ok, so both have location and notes.
* Pick the earlier one.
*/
if (a->when < b->when)
goto pick_a;
goto pick_b;
pick_a:
b = a;
pick_b:
pick_trip(res, b);
}
#if CURRENTLY_NOT_USED
/*
* Sample 's' is between samples 'a' and 'b'. It is 'offset' seconds before 'b'.
*
* If 's' and 'a' are at the same time, offset is 0, and b is NULL.
*/
static int compare_sample(struct sample *s, struct sample *a, struct sample *b, int offset)
{
unsigned int depth = a->depth.mm;
int diff;
if (offset) {
unsigned int interval = b->time.seconds - a->time.seconds;
unsigned int depth_a = a->depth.mm;
unsigned int depth_b = b->depth.mm;
if (offset > interval)
return -1;
/* pick the average depth, scaled by the offset from 'b' */
depth = (depth_a * offset) + (depth_b * (interval - offset));
depth /= interval;
}
diff = s->depth.mm - depth;
if (diff < 0)
diff = -diff;
/* cut off at one meter difference */
if (diff > 1000)
diff = 1000;
return diff*diff;
}
/*
* Calculate a "difference" in samples between the two dives, given
* the offset in seconds between them. Use this to find the best
* match of samples between two different dive computers.
*/
static unsigned long sample_difference(struct divecomputer *a, struct divecomputer *b, int offset)
{
int asamples = a->samples;
int bsamples = b->samples;
struct sample *as = a->sample;
struct sample *bs = b->sample;
unsigned long error = 0;
int start = -1;
if (!asamples || !bsamples)
return 0;
/*
* skip the first sample - this way we know can always look at
* as/bs[-1] to look at the samples around it in the loop.
*/
as++; bs++;
asamples--;
bsamples--;
for (;;) {
int at, bt, diff;
/* If we run out of samples, punt */
if (!asamples)
return INT_MAX;
if (!bsamples)
return INT_MAX;
at = as->time.seconds;
bt = bs->time.seconds + offset;
/* b hasn't started yet? Ignore it */
if (bt < 0) {
bs++;
bsamples--;
continue;
}
if (at < bt) {
diff = compare_sample(as, bs-1, bs, bt - at);
as++;
asamples--;
} else if (at > bt) {
diff = compare_sample(bs, as-1, as, at - bt);
bs++;
bsamples--;
} else {
diff = compare_sample(as, bs, NULL, 0);
as++; bs++;
asamples--; bsamples--;
}
/* Invalid comparison point? */
if (diff < 0)
continue;
if (start < 0)
start = at;
error += diff;
if (at - start > 120)
break;
}
return error;
}
/*
* Dive 'a' is 'offset' seconds before dive 'b'
*
* This is *not* because the dive computers clocks aren't in sync,
* it is because the dive computers may "start" the dive at different
* points in the dive, so the sample at time X in dive 'a' is the
* same as the sample at time X+offset in dive 'b'.
*
* For example, some dive computers take longer to "wake up" when
* they sense that you are under water (ie Uemis Zurich if it was off
* when the dive started). And other dive computers have different
* depths that they activate at, etc etc.
*
* If we cannot find a shared offset, don't try to merge.
*/
static int find_sample_offset(struct divecomputer *a, struct divecomputer *b)
{
int offset, best;
unsigned long max;
/* No samples? Merge at any time (0 offset) */
if (!a->samples)
return 0;
if (!b->samples)
return 0;
/*
* Common special-case: merging a dive that came from
* the same dive computer, so the samples are identical.
* Check this first, without wasting time trying to find
* some minimal offset case.
*/
best = 0;
max = sample_difference(a, b, 0);
if (!max)
return 0;
/*
* Otherwise, look if we can find anything better within
* a thirty second window..
*/
for (offset = -30; offset <= 30; offset++) {
unsigned long diff;
diff = sample_difference(a, b, offset);
if (diff > max)
continue;
best = offset;
max = diff;
}
return best;
}
#endif
/*
* Are a and b "similar" values, when given a reasonable lower end expected
* difference?
*
* So for example, we'd expect different dive computers to give different
* max depth readings. You might have them on different arms, and they
* have different pressure sensors and possibly different ideas about
* water salinity etc.
*
* So have an expected minimum difference, but also allow a larger relative
* error value.
*/
static int similar(unsigned long a, unsigned long b, unsigned long expected)
{
if (a && b) {
unsigned long min, max, diff;
min = a; max = b;
if (a > b) {
min = b;
max = a;
}
diff = max - min;
/* Smaller than expected difference? */
if (diff < expected)
return 1;
/* Error less than 10% or the maximum */
if (diff*10 < max)
return 1;
}
return 0;
}
/*
* Match two dive computer entries against each other, and
* tell if it's the same dive. Return 0 if "don't know",
* positive for "same dive" and negative for "definitely
* not the same dive"
*/
int match_one_dc(struct divecomputer *a, struct divecomputer *b)
{
/* Not same model? Don't know if matching.. */
if (!a->model || !b->model)
return 0;
if (strcasecmp(a->model, b->model))
return 0;
/* Different device ID's? Don't know */
if (a->deviceid != b->deviceid)
return 0;
/* Do we have dive IDs? */
if (!a->diveid || !b->diveid)
return 0;
/*
* If they have different dive ID's on the same
* dive computer, that's a definite "same or not"
*/
return a->diveid == b->diveid ? 1 : -1;
}
/*
* Match every dive computer against each other to see if
* we have a matching dive.
*
* Return values:
* -1 for "is definitely *NOT* the same dive"
* 0 for "don't know"
* 1 for "is definitely the same dive"
*/
static int match_dc_dive(struct divecomputer *a, struct divecomputer *b)
{
do {
struct divecomputer *tmp = b;
do {
int match = match_one_dc(a, tmp);
if (match)
return match;
tmp = tmp->next;
} while (tmp);
a = a->next;
} while (a);
return 0;
}
/*
* Do we want to automatically try to merge two dives that
* look like they are the same dive?
*
* This happens quite commonly because you download a dive
* that you already had, or perhaps because you maintained
* multiple dive logs and want to load them all together
* (possibly one of them was imported from another dive log
* application entirely).
*
* NOTE! We mainly look at the dive time, but it can differ
* between two dives due to a few issues:
*
* - rounding the dive date to the nearest minute in other dive
* applications
*
* - dive computers with "relative datestamps" (ie the dive
* computer doesn't actually record an absolute date at all,
* but instead at download-time syncronizes its internal
* time with real-time on the downloading computer)
*
* - using multiple dive computers with different real time on
* the same dive
*
* We do not merge dives that look radically different, and if
* the dates are *too* far off the user will have to join two
* dives together manually. But this tries to handle the sane
* cases.
*/
static int likely_same_dive(struct dive *a, struct dive *b)
{
int match, fuzz = 20 * 60;
Allow overlapping (and disjoint) dive trips We used to have the rule that a dive trip has to have all dives in it in sequential order, even though our XML file really is much more flexible, and allows arbitrary nesting of dives within a dive trip. Put another way, the old model had fairly inflexible rules: - the dive array is sorted by time - a dive trip is always a contiguous slice of this sorted array which makes perfect sense when you think of the dive and trip list as a physical activity by one person, but leads to various very subtle issues in the general case when there are no guarantees that the user then uses subsurface that way. In particular, if you load the XML files of two divers that have overlapping dive trips, the end result is incredibly messy, and does not conform to the above model at all. There's two ways to enforce such conformance: - disallow that kind of behavior entirely. This is actually hard. Our XML files aren't date-based, they are based on XML nesting rules, and even a single XML file can have nesting that violates the date ordering. With multiple XML files, it's trivial to do in practice, and while we could just fail at loading, the failure would have to be a hard failure that leaves the user no way to use the data at all. - try to "fix it up" by sorting, splitting, and combining dive trips automatically. Dirk had a patch to do this, but it really does destroy the actual dive data: if you load both mine and Dirk's dive trips, you ended up with a result that followed the above two technical rules, but that didn't actually make any *sense*. So this patch doesn't try to enforce the rules, and instead just changes them to be more generic: - the dive array is still sorted by dive time - a dive trip is just an arbitrary collection of dives. The relaxed rules means that mixing dives and dive trips for two people is trivial, and we can easily handle any XML file. The dive trip is defined by the XML nesting level, and is totally independent of any date-based sorting. It does require a few things: - when we save our dive data, we have to do it hierarchically by dive trip, not just by walking the dive array linearly. - similarly, when we create the dive tree model, we can't just blindly walk the array of dives one by one, we have to look up the correct trip (parent) - when we try to merge two dives that are adjacent (by date sorting), we can't do it if they are in different trips. but apart from that, nothing else really changes. NOTE! Despite the new relaxed model, creating totally disjoing dive trips is not all that easy (nor is there any *reason* for it to be easty). Our GUI interfaces still are "add dive to trip above" etc, and the automatic adding of dives to dive trips is obviously still based on date. So this does not really change the expected normal usage, the relaxed data structure rules just mean that we don't need to worry about the odd cases as much, because we can just let them be. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-30 19:00:37 +00:00
/* Don't try to merge dives in different trips */
if (a->divetrip && b->divetrip && a->divetrip != b->divetrip)
return 0;
/*
* Do some basic sanity testing of the values we
* have filled in during 'fixup_dive()'
*/
if (!similar(a->maxdepth.mm, b->maxdepth.mm, 1000) ||
(a->meandepth.mm && b->meandepth.mm && !similar(a->meandepth.mm, b->meandepth.mm, 1000)) ||
!similar(a->duration.seconds, b->duration.seconds, 5*60))
return 0;
/* See if we can get an exact match on the dive computer */
match = match_dc_dive(&a->dc, &b->dc);
if (match)
return match > 0;
/*
* Allow a time difference due to dive computer time
* setting etc. Check if they overlap.
*/
fuzz = MAX(a->duration.seconds, b->duration.seconds) / 2;
if (fuzz < 60)
fuzz = 60;
return ((a->when <= b->when + fuzz) && (a->when >= b->when - fuzz));
}
/*
* This could do a lot more merging. Right now it really only
* merges almost exact duplicates - something that happens easily
* with overlapping dive downloads.
*/
struct dive *try_to_merge(struct dive *a, struct dive *b, gboolean prefer_downloaded)
{
if (likely_same_dive(a, b))
return merge_dives(a, b, 0, prefer_downloaded);
return NULL;
}
static void free_events(struct event *ev)
{
while (ev) {
struct event *next = ev->next;
free(ev);
ev = next;
}
}
static void free_dc(struct divecomputer *dc)
{
free(dc->sample);
if (dc->model)
free((void *)dc->model);
free_events(dc->events);
free(dc);
}
static int same_event(struct event *a, struct event *b)
{
if (a->time.seconds != b->time.seconds)
return 0;
if (a->type != b->type)
return 0;
if (a->flags != b->flags)
return 0;
if (a->value != b->value)
return 0;
return !strcmp(a->name, b->name);
}
static int same_sample(struct sample *a, struct sample *b)
{
if (a->time.seconds != b->time.seconds)
return 0;
if (a->depth.mm != b->depth.mm)
return 0;
if (a->temperature.mkelvin != b->temperature.mkelvin)
return 0;
if (a->cylinderpressure.mbar != b->cylinderpressure.mbar)
return 0;
First step in cleaning up cylinder pressure sensor logic This clarifies/changes the meaning of our "cylinderindex" entry in our samples. It has been rather confused, because different dive computers have done things differently, and the naming really hasn't helped. There are two totally different - and independent - cylinder "indexes": - the pressure sensor index, which indicates which cylinder the sensor data is from. - the "active cylinder" index, which indicates which cylinder we actually breathe from. These two values really are totally independent, and have nothing what-so-ever to do with each other. The sensor index may well be fixed: many dive computers only support a single pressure sensor (whether wireless or wired), and the sensor index is thus always zero. Other dive computers may support multiple pressure sensors, and the gas switch event may - or may not - indicate that the sensor changed too. A dive computer might give the sensor data for *all* cylinders it can read, regardless of which one is the one we're actively breathing. In fact, some dive computers might give sensor data for not just *your* cylinder, but your buddies. This patch renames "cylinderindex" in the samples as "sensor", making it quite clear that it's about which sensor index the pressure data in the sample is about. The way we figure out which is the currently active gas is with an explicit has change event. If a computer (like the Uemis Zurich) joins the two concepts together, then a sensor change should also create a gas switch event. This patch also changes the Uemis importer to do that. Finally, it should be noted that the plot info works totally separately from the sample data, and is about what we actually *display*, not about the sample pressures etc. In the plot info, the "cylinderindex" does in fact mean the currently active cylinder, and while it is initially set to match the sensor information from the samples, we then walk the gas change events and fix it up - and if the active cylinder differs from the sensor cylinder, we clear the sensor data. [Dirk Hohndel: this conflicted with some of my recent changes - I think I merged things correctly...] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-12-31 04:00:51 +00:00
return a->sensor == b->sensor;
}
static int same_dc(struct divecomputer *a, struct divecomputer *b)
{
int i;
struct event *eva, *evb;
i = match_one_dc(a, b);
if (i)
return i > 0;
if (a->when && b->when && a->when != b->when)
return 0;
if (a->samples != b->samples)
return 0;
for (i = 0; i < a->samples; i++)
if (!same_sample(a->sample+i, b->sample+i))
return 0;
eva = a->events;
evb = b->events;
while (eva && evb) {
if (!same_event(eva, evb))
return 0;
eva = eva->next;
evb = evb->next;
}
return eva == evb;
}
static int might_be_same_device(struct divecomputer *a, struct divecomputer *b)
{
/* No dive computer model? That matches anything */
if (!a->model || !b->model)
return 1;
/* Otherwise at least the model names have to match */
if (strcasecmp(a->model, b->model))
return 0;
/* No device ID? Match */
if (!a->deviceid || !b->deviceid)
return 1;
return a->deviceid == b->deviceid;
}
static void remove_redundant_dc(struct divecomputer *dc, int prefer_downloaded)
{
do {
struct divecomputer **p = &dc->next;
/* Check this dc against all the following ones.. */
while (*p) {
struct divecomputer *check = *p;
if (same_dc(dc, check) || (prefer_downloaded && might_be_same_device(dc, check))) {
*p = check->next;
check->next = NULL;
free_dc(check);
continue;
}
p = &check->next;
}
/* .. and then continue down the chain, but we */
prefer_downloaded = 0;
dc = dc->next;
} while (dc);
}
static void clear_dc(struct divecomputer *dc)
{
memset(dc, 0, sizeof(*dc));
}
static struct divecomputer *find_matching_computer(struct divecomputer *match, struct divecomputer *list)
{
struct divecomputer *p;
while ((p = list) != NULL) {
list = list->next;
if (might_be_same_device(match, p))
break;
}
return p;
}
static void copy_dive_computer(struct divecomputer *res, struct divecomputer *a)
{
*res = *a;
res->model = a->model ? strdup(a->model) : NULL;
res->samples = res->alloc_samples = 0;
res->sample = NULL;
res->events = NULL;
res->next = NULL;
}
/*
* Join dive computers with a specific time offset between
* them.
*
* Use the dive computer ID's (or names, if ID's are missing)
* to match them up. If we find a matching dive computer, we
* merge them. If not, we just take the data from 'a'.
*/
static void interleave_dive_computers(struct divecomputer *res,
struct divecomputer *a, struct divecomputer *b, int offset)
{
do {
struct divecomputer *match;
copy_dive_computer(res, a);
match = find_matching_computer(a, b);
if (match) {
merge_events(res, a, match, offset);
merge_samples(res, a, match, offset);
} else {
res->sample = a->sample;
res->samples = a->samples;
res->events = a->events;
a->sample = NULL;
a->samples = 0;
a->events = NULL;
}
a = a->next;
if (!a)
break;
res->next = calloc(1, sizeof(struct divecomputer));
res = res->next;
} while (res);
}
/*
* Join dive computer information.
*
* If we have old-style dive computer information (no model
* name etc), we will prefer a new-style one and just throw
* away the old. We're assuming it's a re-download.
*
* Otherwise, we'll just try to keep all the information,
* unless the user has specified that they prefer the
* downloaded computer, in which case we'll aggressively
* try to throw out old information that *might* be from
* that one.
*/
static void join_dive_computers(struct divecomputer *res, struct divecomputer *a, struct divecomputer *b, int prefer_downloaded)
{
struct divecomputer *tmp;
if (a->model && !b->model) {
*res = *a;
clear_dc(a);
return;
}
if (b->model && !a->model) {
*res = *b;
clear_dc(b);
return;
}
*res = *a;
clear_dc(a);
tmp = res;
while (tmp->next)
tmp = tmp->next;
tmp->next = calloc(1, sizeof(*tmp));
*tmp->next = *b;
clear_dc(b);
remove_redundant_dc(res, prefer_downloaded);
}
struct dive *merge_dives(struct dive *a, struct dive *b, int offset, gboolean prefer_downloaded)
{
struct dive *res = alloc_dive();
struct dive *dl = NULL;
/* Aim for newly downloaded dives to be 'b' (keep old dive data first) */
if (a->downloaded && !b->downloaded) {
struct dive *tmp = a;
a = b;
b = tmp;
}
if (prefer_downloaded && b->downloaded)
dl = b;
res->when = dl ? dl->when : a->when;
res->selected = a->selected || b->selected;
merge_trip(res, a, b);
MERGE_NONZERO(res, a, b, latitude.udeg);
MERGE_NONZERO(res, a, b, longitude.udeg);
MERGE_TXT(res, a, b, location);
MERGE_TXT(res, a, b, notes);
MERGE_TXT(res, a, b, buddy);
MERGE_TXT(res, a, b, divemaster);
MERGE_MAX(res, a, b, rating);
MERGE_TXT(res, a, b, suit);
MERGE_MAX(res, a, b, number);
MERGE_NONZERO(res, a, b, cns);
MERGE_NONZERO(res, a, b, visibility);
merge_equipment(res, a, b);
merge_airtemps(res, a, b);
if (dl) {
/* If we prefer downloaded, do those first, and get rid of "might be same" computers */
join_dive_computers(&res->dc, &dl->dc, &a->dc, 1);
} else if (offset)
interleave_dive_computers(&res->dc, &a->dc, &b->dc, offset);
else
join_dive_computers(&res->dc, &a->dc, &b->dc, 0);
fixup_dive(res);
return res;
}
struct dive *find_dive_including(timestamp_t when)
{
int i;
struct dive *dive;
/* binary search, anyone? Too lazy for now;
* also we always use the duration from the first divecomputer
* could this ever be a problem? */
for_each_dive(i, dive) {
if (dive->when <= when && when <= dive->when + dive->duration.seconds)
return dive;
}
return NULL;
}
gboolean dive_within_time_range(struct dive *dive, timestamp_t when, timestamp_t offset)
{
return when - offset <= dive->when && dive->when + dive->duration.seconds <= when + offset;
}
/* find the n-th dive that is part of a group of dives within the offset around 'when'.
* How is that for a vague definition of what this function should do... */
struct dive *find_dive_n_near(timestamp_t when, int n, timestamp_t offset)
{
int i, j = 0;
struct dive *dive;
for_each_dive(i, dive) {
if (dive_within_time_range(dive, when, offset))
if (++j == n)
return dive;
}
return NULL;
}