subsurface/configuredivecomputerthreads.cpp

1663 lines
48 KiB
C++
Raw Normal View History

#include "configuredivecomputerthreads.h"
#include "libdivecomputer/hw.h"
#include <QDateTime>
#include <QStringList>
#define OSTC3_GAS1 0x10
#define OSTC3_GAS2 0x11
#define OSTC3_GAS3 0x12
#define OSTC3_GAS4 0x13
#define OSTC3_GAS5 0x14
#define OSTC3_DIL1 0x15
#define OSTC3_DIL2 0x16
#define OSTC3_DIL3 0x17
#define OSTC3_DIL4 0x18
#define OSTC3_DIL5 0x19
#define OSTC3_SP1 0x1A
#define OSTC3_SP2 0x1B
#define OSTC3_SP3 0x1C
#define OSTC3_SP4 0x1D
#define OSTC3_SP5 0x1E
#define OSTC3_CCR_MODE 0x1F
#define OSTC3_DIVE_MODE 0x20
#define OSTC3_DECO_TYPE 0x21
#define OSTC3_PPO2_MAX 0x22
#define OSTC3_PPO2_MIN 0x23
#define OSTC3_FUTURE_TTS 0x24
#define OSTC3_GF_LOW 0x25
#define OSTC3_GF_HIGH 0x26
#define OSTC3_AGF_LOW 0x27
#define OSTC3_AGF_HIGH 0x28
#define OSTC3_AGF_SELECTABLE 0x29
#define OSTC3_SATURATION 0x2A
#define OSTC3_DESATURATION 0x2B
#define OSTC3_LAST_DECO 0x2C
#define OSTC3_BRIGHTNESS 0x2D
#define OSTC3_UNITS 0x2E
#define OSTC3_SAMPLING_RATE 0x2F
#define OSTC3_SALINITY 0x30
#define OSTC3_DIVEMODE_COLOR 0x31
#define OSTC3_LANGUAGE 0x32
#define OSTC3_DATE_FORMAT 0x33
#define OSTC3_COMPASS_GAIN 0x34
#define OSTC3_PRESSURE_SENSOR_OFFSET 0x35
#define OSTC3_SAFETY_STOP 0x36
#define OSTC3_CALIBRATION_GAS_O2 0x37
#define OSTC3_SETPOINT_FALLBACK 0x38
#define OSTC3_FLIP_SCREEN 0x39
#define SUUNTO_VYPER_MAXDEPTH 0x1e
#define SUUNTO_VYPER_TOTAL_TIME 0x20
#define SUUNTO_VYPER_NUMBEROFDIVES 0x22
#define SUUNTO_VYPER_COMPUTER_TYPE 0x24
#define SUUNTO_VYPER_FIRMWARE 0x25
#define SUUNTO_VYPER_SERIALNUMBER 0x26
#define SUUNTO_VYPER_CUSTOM_TEXT 0x2c
#define SUUNTO_VYPER_SAMPLING_RATE 0x53
#define SUUNTO_VYPER_ALTITUDE_SAFETY 0x54
#define SUUNTO_VYPER_TIMEFORMAT 0x60
#define SUUNTO_VYPER_UNITS 0x62
#define SUUNTO_VYPER_MODEL 0x63
#define SUUNTO_VYPER_LIGHT 0x64
#define SUUNTO_VYPER_ALARM_DEPTH_TIME 0x65
#define SUUNTO_VYPER_ALARM_TIME 0x66
#define SUUNTO_VYPER_ALARM_DEPTH 0x68
#define SUUNTO_VYPER_CUSTOM_TEXT_LENGHT 30
#ifdef DEBUG_OSTC
// Fake io to ostc memory banks
#define hw_ostc_device_eeprom_read local_hw_ostc_device_eeprom_read
#define hw_ostc_device_eeprom_write local_hw_ostc_device_eeprom_write
#define hw_ostc_device_clock local_hw_ostc_device_clock
#define OSTC_FILE "../OSTC-data-dump.bin"
// Fake the open function.
static dc_status_t local_dc_device_open(dc_device_t **out, dc_context_t *context, dc_descriptor_t *descriptor, const char *name)
{
if (strcmp(dc_descriptor_get_vendor(descriptor), "Heinrichs Weikamp") == 0 &&strcmp(dc_descriptor_get_product(descriptor), "OSTC 2N") == 0)
return DC_STATUS_SUCCESS;
else
return dc_device_open(out, context, descriptor, name);
}
#define dc_device_open local_dc_device_open
static dc_status_t local_hw_ostc_device_eeprom_read(void *ignored, unsigned char bank, unsigned char data[], unsigned int data_size)
{
FILE *f;
if ((f = fopen(OSTC_FILE, "r")) == NULL)
return DC_STATUS_NODEVICE;
fseek(f, bank * 256, SEEK_SET);
if (fread(data, sizeof(unsigned char), data_size, f) != data_size) {
fclose(f);
return DC_STATUS_IO;
}
fclose(f);
return DC_STATUS_SUCCESS;
}
static dc_status_t local_hw_ostc_device_eeprom_write(void *ignored, unsigned char bank, unsigned char data[], unsigned int data_size)
{
FILE *f;
if ((f = fopen(OSTC_FILE, "r+")) == NULL)
f = fopen(OSTC_FILE, "w");
fseek(f, bank * 256, SEEK_SET);
fwrite(data, sizeof(unsigned char), data_size, f);
fclose(f);
return DC_STATUS_SUCCESS;
}
static dc_status_t local_hw_ostc_device_clock(void *ignored, dc_datetime_t *time)
{
return DC_STATUS_SUCCESS;
}
#endif
static int read_ostc_cf(unsigned char data[], unsigned char cf)
{
return data[128 + (cf % 32) * 4 + 3] << 8 ^ data[128 + (cf % 32) * 4 + 2];
}
static void write_ostc_cf(unsigned char data[], unsigned char cf, unsigned char max_CF, unsigned int value)
{
// Only write settings supported by this firmware.
if (cf > max_CF)
return;
data[128 + (cf % 32) * 4 + 3] = (value & 0xff00) >> 8;
data[128 + (cf % 32) * 4 + 2] = (value & 0x00ff);
}
#define EMIT_PROGRESS() do { \
progress.current++; \
progress_cb(device, DC_EVENT_PROGRESS, &progress, userdata); \
} while (0)
static dc_status_t read_suunto_vyper_settings(dc_device_t *device, DeviceDetails *m_deviceDetails, dc_event_callback_t progress_cb, void *userdata)
{
unsigned char data[SUUNTO_VYPER_CUSTOM_TEXT_LENGHT + 1];
dc_status_t rc;
dc_event_progress_t progress;
progress.current = 0;
progress.maximum = 16;
rc = dc_device_read(device, SUUNTO_VYPER_COMPUTER_TYPE, data, 1);
if (rc == DC_STATUS_SUCCESS) {
const char *model;
// FIXME: grab this info from libdivecomputer descriptor
// instead of hard coded here
switch (data[0]) {
case 0x03:
model = "Stinger";
break;
case 0x04:
model = "Mosquito";
break;
case 0x05:
model = "D3";
break;
case 0x0A:
model = "Vyper";
break;
case 0x0B:
model = "Vytec";
break;
case 0x0C:
model = "Cobra";
break;
case 0x0D:
model = "Gekko";
break;
case 0x16:
model = "Zoop";
break;
case 20:
case 30:
case 60:
// Suunto Spyder have there sample interval at this position
// Fallthrough
default:
return DC_STATUS_UNSUPPORTED;
}
// We found a supported device
// we can safely proceed with reading/writing to this device.
m_deviceDetails->setModel(model);
}
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_MAXDEPTH, data, 2);
if (rc != DC_STATUS_SUCCESS)
return rc;
// in ft * 128.0
int depth = feet_to_mm(data[0] << 8 ^ data[1]) / 128;
m_deviceDetails->setMaxDepth(depth);
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_TOTAL_TIME, data, 2);
if (rc != DC_STATUS_SUCCESS)
return rc;
int total_time = data[0] << 8 ^ data[1];
m_deviceDetails->setTotalTime(total_time);
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_NUMBEROFDIVES, data, 2);
if (rc != DC_STATUS_SUCCESS)
return rc;
int number_of_dives = data[0] << 8 ^ data[1];
m_deviceDetails->setNumberOfDives(number_of_dives);
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_FIRMWARE, data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
m_deviceDetails->setFirmwareVersion(QString::number(data[0]) + ".0.0");
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_SERIALNUMBER, data, 4);
if (rc != DC_STATUS_SUCCESS)
return rc;
int serial_number = data[0] * 1000000 + data[1] * 10000 + data[2] * 100 + data[3];
m_deviceDetails->setSerialNo(QString::number(serial_number));
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_CUSTOM_TEXT, data, SUUNTO_VYPER_CUSTOM_TEXT_LENGHT);
if (rc != DC_STATUS_SUCCESS)
return rc;
data[SUUNTO_VYPER_CUSTOM_TEXT_LENGHT] = 0;
m_deviceDetails->setCustomText((const char *)data);
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_SAMPLING_RATE, data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
m_deviceDetails->setSamplingRate((int)data[0]);
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_ALTITUDE_SAFETY, data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
m_deviceDetails->setAltitude(data[0] & 0x03);
m_deviceDetails->setPersonalSafety(data[0] >> 2 & 0x03);
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_TIMEFORMAT, data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
m_deviceDetails->setTimeFormat(data[0] & 0x01);
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_UNITS, data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
m_deviceDetails->setUnits(data[0] & 0x01);
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_MODEL, data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
m_deviceDetails->setDiveMode(data[0] & 0x03);
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_LIGHT, data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
m_deviceDetails->setLightEnabled(data[0] >> 7);
m_deviceDetails->setLight(data[0] & 0x7F);
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_ALARM_DEPTH_TIME, data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
m_deviceDetails->setAlarmTimeEnabled(data[0] & 0x01);
m_deviceDetails->setAlarmDepthEnabled(data[0] >> 1 & 0x01);
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_ALARM_TIME, data, 2);
if (rc != DC_STATUS_SUCCESS)
return rc;
int time = data[0] << 8 ^ data[1];
// The stinger stores alarm time in seconds instead of minutes.
if (m_deviceDetails->model() == "Stinger")
time /= 60;
m_deviceDetails->setAlarmTime(time);
EMIT_PROGRESS();
rc = dc_device_read(device, SUUNTO_VYPER_ALARM_DEPTH, data, 2);
if (rc != DC_STATUS_SUCCESS)
return rc;
depth = feet_to_mm(data[0] << 8 ^ data[1]) / 128;
m_deviceDetails->setAlarmDepth(depth);
EMIT_PROGRESS();
return DC_STATUS_SUCCESS;
}
static dc_status_t write_suunto_vyper_settings(dc_device_t *device, DeviceDetails *m_deviceDetails, dc_event_callback_t progress_cb, void *userdata)
{
dc_status_t rc;
dc_event_progress_t progress;
progress.current = 0;
progress.maximum = 10;
unsigned char data;
unsigned char data2[2];
int time;
// Maybee we should read the model from the device to sanity check it here too..
// For now we just check that we actually read a device before writing to one.
if (m_deviceDetails->model() == "")
return DC_STATUS_UNSUPPORTED;
rc = dc_device_write(device, SUUNTO_VYPER_CUSTOM_TEXT,
// Convert the customText to a 30 char wide padded with " "
(const unsigned char *)QString("%1").arg(m_deviceDetails->customText(), -30, QChar(' ')).toUtf8().data(),
SUUNTO_VYPER_CUSTOM_TEXT_LENGHT);
if (rc != DC_STATUS_SUCCESS)
return rc;
EMIT_PROGRESS();
data = m_deviceDetails->samplingRate();
rc = dc_device_write(device, SUUNTO_VYPER_SAMPLING_RATE, &data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
EMIT_PROGRESS();
data = m_deviceDetails->personalSafety() << 2 ^ m_deviceDetails->altitude();
rc = dc_device_write(device, SUUNTO_VYPER_ALTITUDE_SAFETY, &data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
EMIT_PROGRESS();
data = m_deviceDetails->timeFormat();
rc = dc_device_write(device, SUUNTO_VYPER_TIMEFORMAT, &data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
EMIT_PROGRESS();
data = m_deviceDetails->units();
rc = dc_device_write(device, SUUNTO_VYPER_UNITS, &data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
EMIT_PROGRESS();
data = m_deviceDetails->diveMode();
rc = dc_device_write(device, SUUNTO_VYPER_MODEL, &data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
EMIT_PROGRESS();
data = m_deviceDetails->lightEnabled() << 7 ^ (m_deviceDetails->light() & 0x7F);
rc = dc_device_write(device, SUUNTO_VYPER_LIGHT, &data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
EMIT_PROGRESS();
data = m_deviceDetails->alarmDepthEnabled() << 1 ^ m_deviceDetails->alarmTimeEnabled();
rc = dc_device_write(device, SUUNTO_VYPER_ALARM_DEPTH_TIME, &data, 1);
if (rc != DC_STATUS_SUCCESS)
return rc;
EMIT_PROGRESS();
// The stinger stores alarm time in seconds instead of minutes.
time = m_deviceDetails->alarmTime();
if (m_deviceDetails->model() == "Stinger")
time *= 60;
data2[0] = time >> 8;
data2[1] = time & 0xFF;
rc = dc_device_write(device, SUUNTO_VYPER_ALARM_TIME, data2, 2);
if (rc != DC_STATUS_SUCCESS)
return rc;
EMIT_PROGRESS();
data2[0] = (int)(mm_to_feet(m_deviceDetails->alarmDepth()) * 128) >> 8;
data2[1] = (int)(mm_to_feet(m_deviceDetails->alarmDepth()) * 128) & 0x0FF;
rc = dc_device_write(device, SUUNTO_VYPER_ALARM_DEPTH, data2, 2);
EMIT_PROGRESS();
return rc;
}
#undef EMIT_PROGRESS
#if DC_VERSION_CHECK(0, 5, 0)
static dc_status_t read_ostc3_settings(dc_device_t *device, DeviceDetails *m_deviceDetails)
{
dc_status_t rc;
//Read gas mixes
gas gas1;
gas gas2;
gas gas3;
gas gas4;
gas gas5;
unsigned char gasData[4] = { 0, 0, 0, 0 };
rc = hw_ostc3_device_config_read(device, OSTC3_GAS1, gasData, sizeof(gasData));
if (rc != DC_STATUS_SUCCESS)
return rc;
gas1.oxygen = gasData[0];
gas1.helium = gasData[1];
gas1.type = gasData[2];
gas1.depth = gasData[3];
rc = hw_ostc3_device_config_read(device, OSTC3_GAS2, gasData, sizeof(gasData));
if (rc != DC_STATUS_SUCCESS)
return rc;
gas2.oxygen = gasData[0];
gas2.helium = gasData[1];
gas2.type = gasData[2];
gas2.depth = gasData[3];
rc = hw_ostc3_device_config_read(device, OSTC3_GAS3, gasData, sizeof(gasData));
if (rc != DC_STATUS_SUCCESS)
return rc;
gas3.oxygen = gasData[0];
gas3.helium = gasData[1];
gas3.type = gasData[2];
gas3.depth = gasData[3];
rc = hw_ostc3_device_config_read(device, OSTC3_GAS4, gasData, sizeof(gasData));
if (rc != DC_STATUS_SUCCESS)
return rc;
gas4.oxygen = gasData[0];
gas4.helium = gasData[1];
gas4.type = gasData[2];
gas4.depth = gasData[3];
rc = hw_ostc3_device_config_read(device, OSTC3_GAS5, gasData, sizeof(gasData));
if (rc != DC_STATUS_SUCCESS)
return rc;
gas5.oxygen = gasData[0];
gas5.helium = gasData[1];
gas5.type = gasData[2];
gas5.depth = gasData[3];
m_deviceDetails->setGas1(gas1);
m_deviceDetails->setGas2(gas2);
m_deviceDetails->setGas3(gas3);
m_deviceDetails->setGas4(gas4);
m_deviceDetails->setGas5(gas5);
//Read Dil Values
gas dil1;
gas dil2;
gas dil3;
gas dil4;
gas dil5;
unsigned char dilData[4] = { 0, 0, 0, 0 };
rc = hw_ostc3_device_config_read(device, OSTC3_DIL1, dilData, sizeof(dilData));
if (rc != DC_STATUS_SUCCESS)
return rc;
dil1.oxygen = dilData[0];
dil1.helium = dilData[1];
dil1.type = dilData[2];
dil1.depth = dilData[3];
rc = hw_ostc3_device_config_read(device, OSTC3_DIL2, dilData, sizeof(dilData));
if (rc != DC_STATUS_SUCCESS)
return rc;
dil2.oxygen = dilData[0];
dil2.helium = dilData[1];
dil2.type = dilData[2];
dil2.depth = dilData[3];
rc = hw_ostc3_device_config_read(device, OSTC3_DIL3, dilData, sizeof(dilData));
if (rc != DC_STATUS_SUCCESS)
return rc;
dil3.oxygen = dilData[0];
dil3.helium = dilData[1];
dil3.type = dilData[2];
dil3.depth = dilData[3];
rc = hw_ostc3_device_config_read(device, OSTC3_DIL4, dilData, sizeof(dilData));
if (rc != DC_STATUS_SUCCESS)
return rc;
dil4.oxygen = dilData[0];
dil4.helium = dilData[1];
dil4.type = dilData[2];
dil4.depth = dilData[3];
rc = hw_ostc3_device_config_read(device, OSTC3_DIL5, dilData, sizeof(dilData));
if (rc != DC_STATUS_SUCCESS)
return rc;
dil5.oxygen = dilData[0];
dil5.helium = dilData[1];
dil5.type = dilData[2];
dil5.depth = dilData[3];
m_deviceDetails->setDil1(dil1);
m_deviceDetails->setDil2(dil2);
m_deviceDetails->setDil3(dil3);
m_deviceDetails->setDil4(dil4);
m_deviceDetails->setDil5(dil5);
//Read set point Values
setpoint sp1;
setpoint sp2;
setpoint sp3;
setpoint sp4;
setpoint sp5;
unsigned char spData[2] = { 0, 0 };
rc = hw_ostc3_device_config_read(device, OSTC3_SP1, spData, sizeof(spData));
if (rc != DC_STATUS_SUCCESS)
return rc;
sp1.sp = spData[0];
sp1.depth = spData[1];
rc = hw_ostc3_device_config_read(device, OSTC3_SP2, spData, sizeof(spData));
if (rc != DC_STATUS_SUCCESS)
return rc;
sp2.sp = spData[0];
sp2.depth = spData[1];
rc = hw_ostc3_device_config_read(device, OSTC3_SP3, spData, sizeof(spData));
if (rc != DC_STATUS_SUCCESS)
return rc;
sp3.sp = spData[0];
sp3.depth = spData[1];
rc = hw_ostc3_device_config_read(device, OSTC3_SP4, spData, sizeof(spData));
if (rc != DC_STATUS_SUCCESS)
return rc;
sp4.sp = spData[0];
sp4.depth = spData[1];
rc = hw_ostc3_device_config_read(device, OSTC3_SP5, spData, sizeof(spData));
if (rc != DC_STATUS_SUCCESS)
return rc;
sp5.sp = spData[0];
sp5.depth = spData[1];
m_deviceDetails->setSp1(sp1);
m_deviceDetails->setSp2(sp2);
m_deviceDetails->setSp3(sp3);
m_deviceDetails->setSp4(sp4);
m_deviceDetails->setSp5(sp5);
//Read other settings
unsigned char uData[1] = { 0 };
#define READ_SETTING(_OSTC3_SETTING, _DEVICE_DETAIL) \
do { \
rc = hw_ostc3_device_config_read(device, _OSTC3_SETTING, uData, sizeof(uData)); \
if (rc != DC_STATUS_SUCCESS) \
return rc; \
m_deviceDetails->_DEVICE_DETAIL(uData[0]); \
} while (0)
READ_SETTING(OSTC3_DIVE_MODE, setDiveMode);
READ_SETTING(OSTC3_SATURATION, setSaturation);
READ_SETTING(OSTC3_DESATURATION, setDesaturation);
READ_SETTING(OSTC3_LAST_DECO, setLastDeco);
READ_SETTING(OSTC3_BRIGHTNESS, setBrightness);
READ_SETTING(OSTC3_UNITS, setUnits);
READ_SETTING(OSTC3_SAMPLING_RATE, setSamplingRate);
READ_SETTING(OSTC3_SALINITY, setSalinity);
READ_SETTING(OSTC3_DIVEMODE_COLOR, setDiveModeColor);
READ_SETTING(OSTC3_LANGUAGE, setLanguage);
READ_SETTING(OSTC3_DATE_FORMAT, setDateFormat);
READ_SETTING(OSTC3_COMPASS_GAIN, setCompassGain);
READ_SETTING(OSTC3_SAFETY_STOP, setSafetyStop);
READ_SETTING(OSTC3_GF_HIGH, setGfHigh);
READ_SETTING(OSTC3_GF_LOW, setGfLow);
READ_SETTING(OSTC3_PPO2_MIN, setPpO2Min);
READ_SETTING(OSTC3_PPO2_MAX, setPpO2Max);
READ_SETTING(OSTC3_FUTURE_TTS, setFutureTTS);
READ_SETTING(OSTC3_CCR_MODE, setCcrMode);
READ_SETTING(OSTC3_DECO_TYPE, setDecoType);
READ_SETTING(OSTC3_AGF_SELECTABLE, setAGFSelectable);
READ_SETTING(OSTC3_AGF_HIGH, setAGFHigh);
READ_SETTING(OSTC3_AGF_LOW, setAGFLow);
READ_SETTING(OSTC3_CALIBRATION_GAS_O2, setCalibrationGas);
READ_SETTING(OSTC3_FLIP_SCREEN, setFlipScreen);
READ_SETTING(OSTC3_SETPOINT_FALLBACK, setSetPointFallback);
#undef READ_SETTING
rc = hw_ostc3_device_config_read(device, OSTC3_PRESSURE_SENSOR_OFFSET, uData, sizeof(uData));
if (rc != DC_STATUS_SUCCESS)
return rc;
// OSTC3 stores the pressureSensorOffset in two-complement
m_deviceDetails->setPressureSensorOffset((signed char)uData[0]);
//read firmware settings
unsigned char fData[64] = { 0 };
rc = hw_ostc3_device_version(device, fData, sizeof(fData));
if (rc != DC_STATUS_SUCCESS)
return rc;
int serial = fData[0] + (fData[1] << 8);
m_deviceDetails->setSerialNo(QString::number(serial));
m_deviceDetails->setFirmwareVersion(QString::number(fData[2]) + "." + QString::number(fData[3]));
QByteArray ar((char *)fData + 4, 60);
m_deviceDetails->setCustomText(ar.trimmed());
return rc;
}
static dc_status_t write_ostc3_settings(dc_device_t *device, DeviceDetails *m_deviceDetails)
{
dc_status_t rc;
//write gas values
unsigned char gas1Data[4] = {
m_deviceDetails->gas1().oxygen,
m_deviceDetails->gas1().helium,
m_deviceDetails->gas1().type,
m_deviceDetails->gas1().depth
};
unsigned char gas2Data[4] = {
m_deviceDetails->gas2().oxygen,
m_deviceDetails->gas2().helium,
m_deviceDetails->gas2().type,
m_deviceDetails->gas2().depth
};
unsigned char gas3Data[4] = {
m_deviceDetails->gas3().oxygen,
m_deviceDetails->gas3().helium,
m_deviceDetails->gas3().type,
m_deviceDetails->gas3().depth
};
unsigned char gas4Data[4] = {
m_deviceDetails->gas4().oxygen,
m_deviceDetails->gas4().helium,
m_deviceDetails->gas4().type,
m_deviceDetails->gas4().depth
};
unsigned char gas5Data[4] = {
m_deviceDetails->gas5().oxygen,
m_deviceDetails->gas5().helium,
m_deviceDetails->gas5().type,
m_deviceDetails->gas5().depth
};
//gas 1
rc = hw_ostc3_device_config_write(device, OSTC3_GAS1, gas1Data, sizeof(gas1Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//gas 2
rc = hw_ostc3_device_config_write(device, OSTC3_GAS2, gas2Data, sizeof(gas2Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//gas 3
rc = hw_ostc3_device_config_write(device, OSTC3_GAS3, gas3Data, sizeof(gas3Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//gas 4
rc = hw_ostc3_device_config_write(device, OSTC3_GAS4, gas4Data, sizeof(gas4Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//gas 5
rc = hw_ostc3_device_config_write(device, OSTC3_GAS5, gas5Data, sizeof(gas5Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//write set point values
unsigned char sp1Data[2] = {
m_deviceDetails->sp1().sp,
m_deviceDetails->sp1().depth
};
unsigned char sp2Data[2] = {
m_deviceDetails->sp2().sp,
m_deviceDetails->sp2().depth
};
unsigned char sp3Data[2] = {
m_deviceDetails->sp3().sp,
m_deviceDetails->sp3().depth
};
unsigned char sp4Data[2] = {
m_deviceDetails->sp4().sp,
m_deviceDetails->sp4().depth
};
unsigned char sp5Data[2] = {
m_deviceDetails->sp5().sp,
m_deviceDetails->sp5().depth
};
//sp 1
rc = hw_ostc3_device_config_write(device, OSTC3_SP1, sp1Data, sizeof(sp1Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//sp 2
rc = hw_ostc3_device_config_write(device, OSTC3_SP2, sp2Data, sizeof(sp2Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//sp 3
rc = hw_ostc3_device_config_write(device, OSTC3_SP3, sp3Data, sizeof(sp3Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//sp 4
rc = hw_ostc3_device_config_write(device, OSTC3_SP4, sp4Data, sizeof(sp4Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//sp 5
rc = hw_ostc3_device_config_write(device, OSTC3_SP5, sp5Data, sizeof(sp5Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//write dil values
unsigned char dil1Data[4] = {
m_deviceDetails->dil1().oxygen,
m_deviceDetails->dil1().helium,
m_deviceDetails->dil1().type,
m_deviceDetails->dil1().depth
};
unsigned char dil2Data[4] = {
m_deviceDetails->dil2().oxygen,
m_deviceDetails->dil2().helium,
m_deviceDetails->dil2().type,
m_deviceDetails->dil2().depth
};
unsigned char dil3Data[4] = {
m_deviceDetails->dil3().oxygen,
m_deviceDetails->dil3().helium,
m_deviceDetails->dil3().type,
m_deviceDetails->dil3().depth
};
unsigned char dil4Data[4] = {
m_deviceDetails->dil4().oxygen,
m_deviceDetails->dil4().helium,
m_deviceDetails->dil4().type,
m_deviceDetails->dil4().depth
};
unsigned char dil5Data[4] = {
m_deviceDetails->dil5().oxygen,
m_deviceDetails->dil5().helium,
m_deviceDetails->dil5().type,
m_deviceDetails->dil5().depth
};
//dil 1
rc = hw_ostc3_device_config_write(device, OSTC3_DIL1, dil1Data, sizeof(gas1Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//dil 2
rc = hw_ostc3_device_config_write(device, OSTC3_DIL2, dil2Data, sizeof(dil2Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//dil 3
rc = hw_ostc3_device_config_write(device, OSTC3_DIL3, dil3Data, sizeof(dil3Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//dil 4
rc = hw_ostc3_device_config_write(device, OSTC3_DIL4, dil4Data, sizeof(dil4Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//dil 5
rc = hw_ostc3_device_config_write(device, OSTC3_DIL5, dil5Data, sizeof(dil5Data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//write general settings
//custom text
rc = hw_ostc3_device_customtext(device, m_deviceDetails->customText().toUtf8().data());
if (rc != DC_STATUS_SUCCESS)
return rc;
unsigned char data[1] = { 0 };
#define WRITE_SETTING(_OSTC3_SETTING, _DEVICE_DETAIL) \
do { \
data[0] = m_deviceDetails->_DEVICE_DETAIL(); \
rc = hw_ostc3_device_config_write(device, _OSTC3_SETTING, data, sizeof(data)); \
if (rc != DC_STATUS_SUCCESS) \
return rc; \
} while (0)
WRITE_SETTING(OSTC3_DIVE_MODE, diveMode);
WRITE_SETTING(OSTC3_SATURATION, saturation);
WRITE_SETTING(OSTC3_DESATURATION, desaturation);
WRITE_SETTING(OSTC3_LAST_DECO, lastDeco);
WRITE_SETTING(OSTC3_BRIGHTNESS, brightness);
WRITE_SETTING(OSTC3_UNITS, units);
WRITE_SETTING(OSTC3_SAMPLING_RATE, samplingRate);
WRITE_SETTING(OSTC3_SALINITY, salinity);
WRITE_SETTING(OSTC3_DIVEMODE_COLOR, diveModeColor);
WRITE_SETTING(OSTC3_LANGUAGE, language);
WRITE_SETTING(OSTC3_DATE_FORMAT, dateFormat);
WRITE_SETTING(OSTC3_COMPASS_GAIN, compassGain);
WRITE_SETTING(OSTC3_SAFETY_STOP, safetyStop);
WRITE_SETTING(OSTC3_GF_HIGH, gfHigh);
WRITE_SETTING(OSTC3_GF_LOW, gfLow);
WRITE_SETTING(OSTC3_PPO2_MIN, ppO2Min);
WRITE_SETTING(OSTC3_PPO2_MAX, ppO2Max);
WRITE_SETTING(OSTC3_FUTURE_TTS, futureTTS);
WRITE_SETTING(OSTC3_CCR_MODE, ccrMode);
WRITE_SETTING(OSTC3_DECO_TYPE, decoType);
WRITE_SETTING(OSTC3_AGF_SELECTABLE, aGFSelectable);
WRITE_SETTING(OSTC3_AGF_HIGH, aGFHigh);
WRITE_SETTING(OSTC3_AGF_LOW, aGFLow);
WRITE_SETTING(OSTC3_CALIBRATION_GAS_O2, calibrationGas);
WRITE_SETTING(OSTC3_FLIP_SCREEN, flipScreen);
WRITE_SETTING(OSTC3_SETPOINT_FALLBACK, setPointFallback);
#undef WRITE_SETTING
// OSTC3 stores the pressureSensorOffset in two-complement
data[0] = (unsigned char)m_deviceDetails->pressureSensorOffset();
rc = hw_ostc3_device_config_write(device, OSTC3_PRESSURE_SENSOR_OFFSET, data, sizeof(data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//sync date and time
if (m_deviceDetails->syncTime()) {
QDateTime timeToSet = QDateTime::currentDateTime();
dc_datetime_t time;
time.year = timeToSet.date().year();
time.month = timeToSet.date().month();
time.day = timeToSet.date().day();
time.hour = timeToSet.time().hour();
time.minute = timeToSet.time().minute();
time.second = timeToSet.time().second();
rc = hw_ostc3_device_clock(device, &time);
}
return rc;
}
#endif /* DC_VERSION_CHECK(0, 5, 0) */
static dc_status_t read_ostc_settings(dc_device_t *device, DeviceDetails *m_deviceDetails)
{
dc_status_t rc;
unsigned char data[256] = {};
#ifdef DEBUG_OSTC_CF
// FIXME: how should we report settings not supported back?
unsigned char max_CF = 0;
#endif
rc = hw_ostc_device_eeprom_read(device, 0, data, sizeof(data));
if (rc != DC_STATUS_SUCCESS)
return rc;
m_deviceDetails->setSerialNo(QString::number(data[1] << 8 ^ data[0]));
m_deviceDetails->setNumberOfDives(data[3] << 8 ^ data[2]);
//Byte5-6:
//Gas 1 default (%O2=21, %He=0)
gas gas1;
gas1.oxygen = data[6];
gas1.helium = data[7];
//Byte9-10:
//Gas 2 default (%O2=21, %He=0)
gas gas2;
gas2.oxygen = data[10];
gas2.helium = data[11];
//Byte13-14:
//Gas 3 default (%O2=21, %He=0)
gas gas3;
gas3.oxygen = data[14];
gas3.helium = data[15];
//Byte17-18:
//Gas 4 default (%O2=21, %He=0)
gas gas4;
gas4.oxygen = data[18];
gas4.helium = data[19];
//Byte21-22:
//Gas 5 default (%O2=21, %He=0)
gas gas5;
gas5.oxygen = data[22];
gas5.helium = data[23];
//Byte25-26:
//Gas 6 current (%O2, %He)
m_deviceDetails->setSalinity(data[26]);
// Active Gas Flag Register
gas1.type = data[27] & 0x01;
gas2.type = (data[27] & 0x02) >> 1;
gas3.type = (data[27] & 0x04) >> 2;
gas4.type = (data[27] & 0x08) >> 3;
gas5.type = (data[27] & 0x10) >> 4;
// Gas switch depths
gas1.depth = data[28];
gas2.depth = data[29];
gas3.depth = data[30];
gas4.depth = data[31];
gas5.depth = data[32];
// 33 which gas is Fist gas
switch (data[33]) {
case 1:
gas1.type = 2;
break;
case 2:
gas2.type = 2;
break;
case 3:
gas3.type = 2;
break;
case 4:
gas4.type = 2;
break;
case 5:
gas5.type = 2;
break;
default:
//Error?
break;
}
// Data filled up, set the gases.
m_deviceDetails->setGas1(gas1);
m_deviceDetails->setGas2(gas2);
m_deviceDetails->setGas3(gas3);
m_deviceDetails->setGas4(gas4);
m_deviceDetails->setGas5(gas5);
m_deviceDetails->setDecoType(data[34]);
//Byte36:
//Use O2 Sensor Module in CC Modes (0= OFF, 1= ON) (Only available in old OSTC1 - unused for OSTC Mk.2/2N)
//m_deviceDetails->setCcrMode(data[35]);
setpoint sp1;
sp1.sp = data[36];
sp1.depth = 0;
setpoint sp2;
sp2.sp = data[37];
sp2.depth = 0;
setpoint sp3;
sp3.sp = data[38];
sp3.depth = 0;
m_deviceDetails->setSp1(sp1);
m_deviceDetails->setSp2(sp2);
m_deviceDetails->setSp3(sp3);
// Byte41-42:
// Lowest Battery voltage seen (in mV)
// Byte43:
// Lowest Battery voltage seen at (Month)
// Byte44:
// Lowest Battery voltage seen at (Day)
// Byte45:
// Lowest Battery voltage seen at (Year)
// Byte46-47:
// Lowest Battery voltage seen at (Temperature in 0.1 °C)
// Byte48:
// Last complete charge at (Month)
// Byte49:
// Last complete charge at (Day)
// Byte50:
// Last complete charge at (Year)
// Byte51-52:
// Total charge cycles
// Byte53-54:
// Total complete charge cycles
// Byte55-56:
// Temperature Extrema minimum (Temperature in 0.1 °C)
// Byte57:
// Temperature Extrema minimum at (Month)
// Byte58:
// Temperature Extrema minimum at (Day)
// Byte59:
// Temperature Extrema minimum at (Year)
// Byte60-61:
// Temperature Extrema maximum (Temperature in 0.1 °C)
// Byte62:
// Temperature Extrema maximum at (Month)
// Byte63:
// Temperature Extrema maximum at (Day)
// Byte64:
// Temperature Extrema maximum at (Year)
// Byte65:
// Custom Text active (=1), Custom Text Disabled (<>1)
// Byte66-90:
// TO FIX EDITOR SYNTAX/INDENT {
// (25Bytes): Custom Text for Surfacemode (Real text must end with "}")
// Example: OSTC Dive Computer} (19 Characters incl. "}") Bytes 85-90 will be ignored.
if (data[64] == 1) {
// Make shure the data is null-terminated
data[89] = 0;
// Find the internal termination and replace it with 0
char *term = strchr((char *)data + 65, (int)'}');
if (term)
*term = 0;
m_deviceDetails->setCustomText((const char *)data + 65);
}
// Byte91:
// Dim OLED in Divemode (>0), Normal mode (=0)
// Byte92:
// Date format for all outputs:
// =0: MM/DD/YY
// =1: DD/MM/YY
// =2: YY/MM/DD
m_deviceDetails->setDateFormat(data[91]);
// Byte93:
// Total number of CF used in installed firmware
#ifdef DEBUG_OSTC_CF
max_CF = data[92];
#endif
// Byte94:
// Last selected view for customview area in surface mode
// Byte95:
// Last selected view for customview area in dive mode
// Byte96-97:
// Diluent 1 Default (%O2,%He)
// Byte98-99:
// Diluent 1 Current (%O2,%He)
gas dil1 = {};
dil1.oxygen = data[97];
dil1.helium = data[98];
// Byte100-101:
// Gasuent 2 Default (%O2,%He)
// Byte102-103:
// Gasuent 2 Current (%O2,%He)
gas dil2 = {};
dil2.oxygen = data[101];
dil2.helium = data[102];
// Byte104-105:
// Gasuent 3 Default (%O2,%He)
// Byte106-107:
// Gasuent 3 Current (%O2,%He)
gas dil3 = {};
dil3.oxygen = data[105];
dil3.helium = data[106];
// Byte108-109:
// Gasuent 4 Default (%O2,%He)
// Byte110-111:
// Gasuent 4 Current (%O2,%He)
gas dil4 = {};
dil4.oxygen = data[109];
dil4.helium = data[110];
// Byte112-113:
// Gasuent 5 Default (%O2,%He)
// Byte114-115:
// Gasuent 5 Current (%O2,%He)
gas dil5 = {};
dil5.oxygen = data[113];
dil5.helium = data[114];
// Byte116:
// First Diluent (1-5)
switch (data[115]) {
case 1:
dil1.type = 2;
break;
case 2:
dil2.type = 2;
break;
case 3:
dil3.type = 2;
break;
case 4:
dil4.type = 2;
break;
case 5:
dil5.type = 2;
break;
default:
//Error?
break;
}
m_deviceDetails->setDil1(dil1);
m_deviceDetails->setDil2(dil2);
m_deviceDetails->setDil3(dil3);
m_deviceDetails->setDil4(dil4);
m_deviceDetails->setDil5(dil5);
// Byte117-128:
// not used/reserved
// Byte129-256:
// 32 custom Functions (CF0-CF31)
// Decode the relevant ones
// CF11: Factor for saturation processes
m_deviceDetails->setSaturation(read_ostc_cf(data, 11));
// CF12: Factor for desaturation processes
m_deviceDetails->setDesaturation(read_ostc_cf(data, 12));
// CF17: Lower threshold for ppO2 warning
m_deviceDetails->setPpO2Min(read_ostc_cf(data, 17));
// CF18: Upper threshold for ppO2 warning
m_deviceDetails->setPpO2Max(read_ostc_cf(data, 18));
// CF20: Depth sampling rate for Profile storage
m_deviceDetails->setSamplingRate(read_ostc_cf(data, 20));
// CF29: Depth of last decompression stop
m_deviceDetails->setLastDeco(read_ostc_cf(data, 29));
#ifdef DEBUG_OSTC_CF
for (int cf = 0; cf <= 31 && cf <= max_CF; cf++)
printf("CF %d: %d\n", cf, read_ostc_cf(data, cf));
#endif
rc = hw_ostc_device_eeprom_read(device, 1, data, sizeof(data));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Byte1:
// Logbook version indicator (Not writable!)
// Byte2-3:
// Last Firmware installed, 1st Byte.2nd Byte (e.g. „1.90“) (Not writable!)
m_deviceDetails->setFirmwareVersion(QString::number(data[1]) + "." + QString::number(data[2]));
// Byte4:
// OLED brightness (=0: Eco, =1 High) (Not writable!)
// Byte5-11:
// Time/Date vault during firmware updates
// Byte12-128
// not used/reserved
// Byte129-256:
// 32 custom Functions (CF 32-63)
// Decode the relevant ones
// CF32: Gradient Factor low
m_deviceDetails->setGfLow(read_ostc_cf(data, 32));
// CF33: Gradient Factor high
m_deviceDetails->setGfHigh(read_ostc_cf(data, 33));
// CF58: Future time to surface setFutureTTS
m_deviceDetails->setFutureTTS(read_ostc_cf(data, 58));
#ifdef DEBUG_OSTC_CF
for (int cf = 32; cf <= 63 && cf <= max_CF; cf++)
printf("CF %d: %d\n", cf, read_ostc_cf(data, cf));
#endif
rc = hw_ostc_device_eeprom_read(device, 2, data, sizeof(data));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Byte1-4:
// not used/reserved (Not writable!)
// Byte5-128:
// not used/reserved
// Byte129-256:
// 32 custom Functions (CF 64-95)
// Decode the relevant ones
// CF65: Show safety stop
m_deviceDetails->setSafetyStop(read_ostc_cf(data, 65));
// CF67: Alternaitve Gradient Factor low
m_deviceDetails->setAGFLow(read_ostc_cf(data, 67));
// CF68: Alternative Gradient Factor high
m_deviceDetails->setAGFHigh(read_ostc_cf(data, 68));
// CF69: Allow Gradient Factor change
m_deviceDetails->setAGFSelectable(read_ostc_cf(data, 69));
#ifdef DEBUG_OSTC_CF
for (int cf = 64; cf <= 95 && cf <= max_CF; cf++)
printf("CF %d: %d\n", cf, read_ostc_cf(data, cf));
#endif
return rc;
}
static dc_status_t write_ostc_settings(dc_device_t *device, DeviceDetails *m_deviceDetails)
{
dc_status_t rc;
unsigned char data[256] = {};
unsigned char max_CF = 0;
// Because we write whole memory blocks, we read all the current
// values out and then change then ones we should change.
rc = hw_ostc_device_eeprom_read(device, 0, data, sizeof(data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//Byte5-6:
//Gas 1 default (%O2=21, %He=0)
gas gas1 = m_deviceDetails->gas1();
data[6] = gas1.oxygen;
data[7] = gas1.helium;
//Byte9-10:
//Gas 2 default (%O2=21, %He=0)
gas gas2 = m_deviceDetails->gas2();
data[10] = gas2.oxygen;
data[11] = gas2.helium;
//Byte13-14:
//Gas 3 default (%O2=21, %He=0)
gas gas3 = m_deviceDetails->gas3();
data[14] = gas3.oxygen;
data[15] = gas3.helium;
//Byte17-18:
//Gas 4 default (%O2=21, %He=0)
gas gas4 = m_deviceDetails->gas4();
data[18] = gas4.oxygen;
data[19] = gas4.helium;
//Byte21-22:
//Gas 5 default (%O2=21, %He=0)
gas gas5 = m_deviceDetails->gas5();
data[22] = gas5.oxygen;
data[23] = gas5.helium;
//Byte25-26:
//Gas 6 current (%O2, %He)
data[26] = m_deviceDetails->salinity();
// Gas types, 0=Disabled, 1=Active, 2=Fist
// Active Gas Flag Register
data[27] = 0;
if (gas1.type)
data[27] ^= 0x01;
if (gas2.type)
data[27] ^= 0x02;
if (gas3.type)
data[27] ^= 0x04;
if (gas4.type)
data[27] ^= 0x08;
if (gas5.type)
data[27] ^= 0x10;
// Gas switch depths
data[28] = gas1.depth;
data[29] = gas2.depth;
data[30] = gas3.depth;
data[31] = gas4.depth;
data[32] = gas5.depth;
// 33 which gas is Fist gas
if (gas1.type == 2)
data[33] = 1;
else if (gas2.type == 2)
data[33] = 2;
else if (gas3.type == 2)
data[33] = 3;
else if (gas4.type == 2)
data[33] = 4;
else if (gas5.type == 2)
data[33] = 5;
else
// FIXME: No gas was First?
// Set gas 1 to first
data[33] = 1;
data[34] = m_deviceDetails->decoType();
//Byte36:
//Use O2 Sensor Module in CC Modes (0= OFF, 1= ON) (Only available in old OSTC1 - unused for OSTC Mk.2/2N)
//m_deviceDetails->setCcrMode(data[35]);
data[36] = m_deviceDetails->sp1().sp;
data[37] = m_deviceDetails->sp2().sp;
data[38] = m_deviceDetails->sp3().sp;
// Byte41-42:
// Lowest Battery voltage seen (in mV)
// Byte43:
// Lowest Battery voltage seen at (Month)
// Byte44:
// Lowest Battery voltage seen at (Day)
// Byte45:
// Lowest Battery voltage seen at (Year)
// Byte46-47:
// Lowest Battery voltage seen at (Temperature in 0.1 °C)
// Byte48:
// Last complete charge at (Month)
// Byte49:
// Last complete charge at (Day)
// Byte50:
// Last complete charge at (Year)
// Byte51-52:
// Total charge cycles
// Byte53-54:
// Total complete charge cycles
// Byte55-56:
// Temperature Extrema minimum (Temperature in 0.1 °C)
// Byte57:
// Temperature Extrema minimum at (Month)
// Byte58:
// Temperature Extrema minimum at (Day)
// Byte59:
// Temperature Extrema minimum at (Year)
// Byte60-61:
// Temperature Extrema maximum (Temperature in 0.1 °C)
// Byte62:
// Temperature Extrema maximum at (Month)
// Byte63:
// Temperature Extrema maximum at (Day)
// Byte64:
// Temperature Extrema maximum at (Year)
// Byte65:
// Custom Text active (=1), Custom Text Disabled (<>1)
// Byte66-90:
// (25Bytes): Custom Text for Surfacemode (Real text must end with "}")
// Example: "OSTC Dive Computer}" (19 Characters incl. "}") Bytes 85-90 will be ignored.
if (m_deviceDetails->customText() == "") {
data[64] = 0;
} else {
data[64] = 1;
// Copy the string to the right place in the memory, padded with 0x20 (" ")
strncpy((char *)data + 65, QString("%1").arg(m_deviceDetails->customText(), -23, QChar(' ')).toUtf8().data(), 23);
// And terminate the string.
if (m_deviceDetails->customText().length() <= 23)
data[65 + m_deviceDetails->customText().length()] = '}';
else
data[90] = '}';
}
// Byte91:
// Dim OLED in Divemode (>0), Normal mode (=0)
// Byte92:
// Date format for all outputs:
// =0: MM/DD/YY
// =1: DD/MM/YY
// =2: YY/MM/DD
data[91] = m_deviceDetails->dateFormat();
// Byte93:
// Total number of CF used in installed firmware
max_CF = data[92];
// Byte94:
// Last selected view for customview area in surface mode
// Byte95:
// Last selected view for customview area in dive mode
// Byte96-97:
// Diluent 1 Default (%O2,%He)
// Byte98-99:
// Diluent 1 Current (%O2,%He)
gas dil1 = m_deviceDetails->dil1();
data[97] = dil1.oxygen;
data[98] = dil1.helium;
// Byte100-101:
// Gasuent 2 Default (%O2,%He)
// Byte102-103:
// Gasuent 2 Current (%O2,%He)
gas dil2 = m_deviceDetails->dil2();
data[101] = dil2.oxygen;
data[102] = dil2.helium;
// Byte104-105:
// Gasuent 3 Default (%O2,%He)
// Byte106-107:
// Gasuent 3 Current (%O2,%He)
gas dil3 = m_deviceDetails->dil3();
data[105] = dil3.oxygen;
data[106] = dil3.helium;
// Byte108-109:
// Gasuent 4 Default (%O2,%He)
// Byte110-111:
// Gasuent 4 Current (%O2,%He)
gas dil4 = m_deviceDetails->dil4();
data[109] = dil4.oxygen;
data[110] = dil4.helium;
// Byte112-113:
// Gasuent 5 Default (%O2,%He)
// Byte114-115:
// Gasuent 5 Current (%O2,%He)
gas dil5 = m_deviceDetails->dil5();
data[113] = dil5.oxygen;
data[114] = dil5.helium;
// Byte116:
// First Diluent (1-5)
if (dil1.type == 2)
data[115] = 1;
else if (dil2.type == 2)
data[115] = 2;
else if (dil3.type == 2)
data[115] = 3;
else if (dil4.type == 2)
data[115] = 4;
else if (dil5.type == 2)
data[115] = 5;
else
// FIXME: No first diluent?
// Set gas 1 to fist
data[115] = 1;
// Byte117-128:
// not used/reserved
// Byte129-256:
// 32 custom Functions (CF0-CF31)
// Write the relevant ones
// CF11: Factor for saturation processes
write_ostc_cf(data, 11, max_CF, m_deviceDetails->saturation());
// CF12: Factor for desaturation processes
write_ostc_cf(data, 12, max_CF, m_deviceDetails->desaturation());
// CF17: Lower threshold for ppO2 warning
write_ostc_cf(data, 17, max_CF, m_deviceDetails->ppO2Min());
// CF18: Upper threshold for ppO2 warning
write_ostc_cf(data, 18, max_CF, m_deviceDetails->ppO2Max());
// CF20: Depth sampling rate for Profile storage
write_ostc_cf(data, 20, max_CF, m_deviceDetails->samplingRate());
// CF29: Depth of last decompression stop
write_ostc_cf(data, 29, max_CF, m_deviceDetails->lastDeco());
#ifdef DEBUG_OSTC_CF
for (int cf = 0; cf <= 31 && cf <= max_CF; cf++)
printf("CF %d: %d\n", cf, read_ostc_cf(data, cf));
#endif
rc = hw_ostc_device_eeprom_write(device, 0, data, sizeof(data));
if (rc != DC_STATUS_SUCCESS)
return rc;
rc = hw_ostc_device_eeprom_read(device, 1, data, sizeof(data));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Byte1:
// Logbook version indicator (Not writable!)
// Byte2-3:
// Last Firmware installed, 1st Byte.2nd Byte (e.g. „1.90“) (Not writable!)
// Byte4:
// OLED brightness (=0: Eco, =1 High) (Not writable!)
// Byte5-11:
// Time/Date vault during firmware updates
// Byte12-128
// not used/reserved
// Byte129-256:
// 32 custom Functions (CF 32-63)
// Decode the relevant ones
// CF32: Gradient Factor low
write_ostc_cf(data, 32, max_CF, m_deviceDetails->gfLow());
// CF33: Gradient Factor high
write_ostc_cf(data, 33, max_CF, m_deviceDetails->gfHigh());
// CF58: Future time to surface setFutureTTS
write_ostc_cf(data, 58, max_CF, m_deviceDetails->futureTTS());
#ifdef DEBUG_OSTC_CF
for (int cf = 32; cf <= 63 && cf <= max_CF; cf++)
printf("CF %d: %d\n", cf, read_ostc_cf(data, cf));
#endif
rc = hw_ostc_device_eeprom_write(device, 1, data, sizeof(data));
if (rc != DC_STATUS_SUCCESS)
return rc;
rc = hw_ostc_device_eeprom_read(device, 2, data, sizeof(data));
if (rc != DC_STATUS_SUCCESS)
return rc;
// Byte1-4:
// not used/reserved (Not writable!)
// Byte5-128:
// not used/reserved
// Byte129-256:
// 32 custom Functions (CF 64-95)
// Decode the relevant ones
// CF65: Show safety stop
write_ostc_cf(data, 65, max_CF, m_deviceDetails->safetyStop());
// CF67: Alternaitve Gradient Factor low
write_ostc_cf(data, 67, max_CF, m_deviceDetails->aGFLow());
// CF68: Alternative Gradient Factor high
write_ostc_cf(data, 68, max_CF, m_deviceDetails->aGFHigh());
// CF69: Allow Gradient Factor change
write_ostc_cf(data, 69, max_CF, m_deviceDetails->aGFSelectable());
#ifdef DEBUG_OSTC_CF
for (int cf = 64; cf <= 95 && cf <= max_CF; cf++)
printf("CF %d: %d\n", cf, read_ostc_cf(data, cf));
#endif
rc = hw_ostc_device_eeprom_write(device, 2, data, sizeof(data));
if (rc != DC_STATUS_SUCCESS)
return rc;
//sync date and time
if (m_deviceDetails->syncTime()) {
QDateTime timeToSet = QDateTime::currentDateTime();
dc_datetime_t time;
time.year = timeToSet.date().year();
time.month = timeToSet.date().month();
time.day = timeToSet.date().day();
time.hour = timeToSet.time().hour();
time.minute = timeToSet.time().minute();
time.second = timeToSet.time().second();
rc = hw_ostc_device_clock(device, &time);
}
return rc;
}
DeviceThread::DeviceThread(QObject *parent, device_data_t *data) : QThread(parent), m_data(data)
{
}
void DeviceThread::progressCB(int percent)
{
emit progress(percent);
}
void DeviceThread::event_cb(dc_device_t *device, dc_event_type_t event, const void *data, void *userdata)
{
const dc_event_progress_t *progress = (dc_event_progress_t *) data;
DeviceThread *dt = static_cast<DeviceThread*>(userdata);
switch (event) {
case DC_EVENT_PROGRESS:
dt->progressCB(100.0 * (double)progress->current / (double)progress->maximum);
break;
default:
emit dt->error("Unexpected event recived");
break;
}
}
ReadSettingsThread::ReadSettingsThread(QObject *parent, device_data_t *data) : DeviceThread(parent, data)
{
}
void ReadSettingsThread::run()
{
bool supported = false;
dc_status_t rc;
rc = dc_device_open(&m_data->device, m_data->context, m_data->descriptor, m_data->devname);
if (rc == DC_STATUS_SUCCESS) {
DeviceDetails *m_deviceDetails = new DeviceDetails(0);
switch (dc_device_get_type(m_data->device)) {
case DC_FAMILY_SUUNTO_VYPER:
rc = read_suunto_vyper_settings(m_data->device, m_deviceDetails, DeviceThread::event_cb, this);
if (rc == DC_STATUS_SUCCESS) {
supported = true;
emit devicedetails(m_deviceDetails);
} else if (rc == DC_STATUS_UNSUPPORTED) {
supported = false;
} else {
emit error("Failed!");
}
break;
#if DC_VERSION_CHECK(0, 5, 0)
case DC_FAMILY_HW_OSTC3:
supported = true;
rc = read_ostc3_settings(m_data->device, m_deviceDetails);
if (rc == DC_STATUS_SUCCESS)
emit devicedetails(m_deviceDetails);
else
emit error("Failed!");
emit progress(100);
break;
#endif // divecomputer 0.5.0
#ifdef DEBUG_OSTC
case DC_FAMILY_NULL:
#endif
case DC_FAMILY_HW_OSTC:
supported = true;
rc = read_ostc_settings(m_data->device, m_deviceDetails);
if (rc == DC_STATUS_SUCCESS)
emit devicedetails(m_deviceDetails);
else
emit error("Failed!");
emit progress(100);
break;
default:
supported = false;
break;
}
} else {
lastError = tr("Could not a establish connection to the dive computer.");
emit error(lastError);
// So we don't trigger the "unsupported" clause later..
supported = true;
}
dc_device_close(m_data->device);
if (!supported) {
lastError = tr("This feature is not yet available for the selected dive computer.");
emit error(lastError);
}
}
WriteSettingsThread::WriteSettingsThread(QObject *parent, device_data_t *data) : DeviceThread(parent, data)
{
}
void WriteSettingsThread::setDeviceDetails(DeviceDetails *details)
{
m_deviceDetails = details;
}
void WriteSettingsThread::run()
{
bool supported = false;
dc_status_t rc;
rc = dc_device_open(&m_data->device, m_data->context, m_data->descriptor, m_data->devname);
if (rc == DC_STATUS_SUCCESS) {
switch (dc_device_get_type(m_data->device)) {
case DC_FAMILY_SUUNTO_VYPER:
rc = write_suunto_vyper_settings(m_data->device, m_deviceDetails, DeviceThread::event_cb, this);
if (rc == DC_STATUS_SUCCESS) {
supported = true;
} else if (rc == DC_STATUS_UNSUPPORTED) {
supported = false;
} else {
emit error(tr("Failed!"));
}
break;
#if DC_VERSION_CHECK(0, 5, 0)
case DC_FAMILY_HW_OSTC3:
supported = true;
rc = write_ostc3_settings(m_data->device, m_deviceDetails);
if (rc != DC_STATUS_SUCCESS)
emit error(tr("Failed!"));
emit progress(100);
break;
#endif // divecomputer 0.5.0
#ifdef DEBUG_OSTC
case DC_FAMILY_NULL:
#endif
case DC_FAMILY_HW_OSTC:
supported = true;
rc = write_ostc_settings(m_data->device, m_deviceDetails);
if (rc != DC_STATUS_SUCCESS)
emit error(tr("Failed!"));
emit progress(100);
break;
default:
supported = false;
break;
}
dc_device_close(m_data->device);
if (!supported) {
lastError = tr("This feature is not yet available for the selected dive computer.");
emit error(lastError);
}
} else {
lastError = tr("Could not a establish connection to the dive computer.");
emit error(lastError);
}
}
FirmwareUpdateThread::FirmwareUpdateThread(QObject *parent, device_data_t *data, QString fileName) : DeviceThread(parent, data), m_fileName(fileName)
{
}
void FirmwareUpdateThread::run()
{
bool supported = false;
dc_status_t rc;
rc = dc_device_open(&m_data->device, m_data->context, m_data->descriptor, m_data->devname);
if (rc == DC_STATUS_SUCCESS) {
rc = dc_device_set_events(m_data->device, DC_EVENT_PROGRESS, DeviceThread::event_cb, this);
if (rc != DC_STATUS_SUCCESS) {
emit error("Error registering the event handler.");
dc_device_close(m_data->device);
return;
}
switch (dc_device_get_type(m_data->device)) {
#if DC_VERSION_CHECK(0, 5, 0)
case DC_FAMILY_HW_OSTC3:
supported = true;
rc = hw_ostc3_device_fwupdate(m_data->device, m_fileName.toUtf8().data());
break;
case DC_FAMILY_HW_OSTC:
supported = true;
rc = hw_ostc_device_fwupdate(m_data->device, m_fileName.toUtf8().data());
break;
#endif // divecomputer 0.5.0
default:
supported = false;
break;
}
dc_device_close(m_data->device);
if (!supported) {
lastError = tr("This feature is not yet available for the selected dive computer.");
emit error(lastError);
} else if (rc != DC_STATUS_SUCCESS) {
lastError = tr("Firmware update failed!");
}
} else {
lastError = tr("Could not a establish connection to the dive computer.");
emit error(lastError);
}
}
ResetSettingsThread::ResetSettingsThread(QObject *parent, device_data_t *data) : DeviceThread(parent, data)
{
}
void ResetSettingsThread::run()
{
bool supported = false;
dc_status_t rc;
rc = dc_device_open(&m_data->device, m_data->context, m_data->descriptor, m_data->devname);
if (rc == DC_STATUS_SUCCESS) {
#if DC_VERSION_CHECK(0, 5, 0)
if (dc_device_get_type(m_data->device) == DC_FAMILY_HW_OSTC3) {
supported = true;
hw_ostc3_device_config_reset(m_data->device);
emit progress(100);
}
#endif // divecomputer 0.5.0
dc_device_close(m_data->device);
if (!supported) {
lastError = tr("This feature is not yet available for the selected dive computer.");
emit error(lastError);
}
} else {
lastError = tr("Could not a establish connection to the dive computer.");
emit error(lastError);
}
}