VPM-B: use an analytic solution for nucleon inner pressure instead of binary root search

According to mathematica

In[4]:= f[x_] := x^3 - b x^2 - c

In[18]:= Solve[f[x] == 0, x]

Out[18]= {{x ->
   1/3 (b + (
      2^(1/3) b^2)/(2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(
      1/3) + (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(1/3)/
      2^(1/3))}, {x ->
   b/3 - ((1 + I Sqrt[3]) b^2)/(
    3 2^(2/3) (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(
     1/3)) - ((1 - I Sqrt[3]) (2 b^3 + 27 c +
       3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(1/3))/(6 2^(1/3))}, {x ->
   b/3 - ((1 - I Sqrt[3]) b^2)/(
    3 2^(2/3) (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(
     1/3)) - ((1 + I Sqrt[3]) (2 b^3 + 27 c +
       3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(1/3))/(6 2^(1/3))}}

For the values of b and c encounterd in the algorithm, the first solution is in fact the
only real one that we are after. So we can use this solution instead of doing a binary
search for the root of the cubic.

Signed-off-by: Robert C. Helling <helling@atdotde.de>
Signed-off-by: Jan Darowski <jan.darowski@gmail.com>
This commit is contained in:
Robert C. Helling 2015-07-01 12:27:42 +02:00 committed by Jan Darowski
parent ecd0e3e170
commit 0180d2eb1e

44
deco.c
View file

@ -209,38 +209,30 @@ double he_factor(int period_in_seconds, int ci)
// Calculates the nucleons inner pressure during the impermeable period
double calc_inner_pressure(double crit_radius, double onset_tension, double current_ambient_pressure)
{
double onset_radius;
double current_radius;
double A, B, C, low_bound, high_bound, root;
double valH, valL;
int ci;
const int max_iters = 10;
double onset_radius = 1.0 / (vpmb_config.gradient_of_imperm / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / crit_radius);
// const, depends only on config.
onset_radius = 1.0 / (vpmb_config.gradient_of_imperm / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / crit_radius);
// A*r^3 + B*r^2 + C == 0
// Solved with the help of mathematica
// A*r^3 + B*r^2 + C = 0
A = current_ambient_pressure - vpmb_config.gradient_of_imperm + (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) / onset_radius;
B = 2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma);
C = onset_tension * pow(onset_radius, 3);
double A = current_ambient_pressure - vpmb_config.gradient_of_imperm + (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) / onset_radius;
double B = 2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma);
double C = onset_tension * pow(onset_radius, 3);
// According to the algorithm's authors...
low_bound = B / A;
high_bound = onset_radius;
double BA = B/A;
double CA = C/A;
valH = high_bound * high_bound * (A * high_bound - B) - C;
valL = low_bound * low_bound * (A * low_bound - B) - C;
double discriminant = CA * (4 * BA * BA * BA + 27 * CA);
// Binary search for equations root.
for (ci = 0; ci < max_iters; ++ci) {
current_radius = (high_bound + low_bound) *0.5;
root = (current_radius * current_radius * (A * current_radius - B)) - C;
if (root >= 0.0)
high_bound = current_radius;
else
low_bound = current_radius;
// Let's make sure we have a real solution:
if (discriminant < 0.0) {
// This should better not happen
report_error("Complex solution for inner pressure encountered!\n A=%f\tB=%f\tC=%f\n", A, B, C);
return 0.0;
}
return onset_tension * (pow(onset_radius, 3) / pow(current_radius, 3));
double denominator = pow(BA * BA * BA + 1.5 * (9 * CA + sqrt(3.0) * sqrt(discriminant)), 1/3.0);
double current_radius = (BA + BA * BA / denominator + denominator) / 3.0;
return onset_tension * onset_radius * onset_radius * onset_radius / (current_radius * current_radius * current_radius);
}
// Calculates the crushing pressure in the given moment. Updates crushing_onset_tension and critical radius if needed