mirror of
https://github.com/subsurface/subsurface.git
synced 2025-01-19 22:35:27 +00:00
VPM-B: use an analytic solution for nucleon inner pressure instead of binary root search
According to mathematica In[4]:= f[x_] := x^3 - b x^2 - c In[18]:= Solve[f[x] == 0, x] Out[18]= {{x -> 1/3 (b + ( 2^(1/3) b^2)/(2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^( 1/3) + (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(1/3)/ 2^(1/3))}, {x -> b/3 - ((1 + I Sqrt[3]) b^2)/( 3 2^(2/3) (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^( 1/3)) - ((1 - I Sqrt[3]) (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(1/3))/(6 2^(1/3))}, {x -> b/3 - ((1 - I Sqrt[3]) b^2)/( 3 2^(2/3) (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^( 1/3)) - ((1 + I Sqrt[3]) (2 b^3 + 27 c + 3 Sqrt[3] Sqrt[4 b^3 c + 27 c^2])^(1/3))/(6 2^(1/3))}} For the values of b and c encounterd in the algorithm, the first solution is in fact the only real one that we are after. So we can use this solution instead of doing a binary search for the root of the cubic. Signed-off-by: Robert C. Helling <helling@atdotde.de> Signed-off-by: Jan Darowski <jan.darowski@gmail.com>
This commit is contained in:
parent
ecd0e3e170
commit
0180d2eb1e
1 changed files with 18 additions and 26 deletions
44
deco.c
44
deco.c
|
@ -209,38 +209,30 @@ double he_factor(int period_in_seconds, int ci)
|
|||
// Calculates the nucleons inner pressure during the impermeable period
|
||||
double calc_inner_pressure(double crit_radius, double onset_tension, double current_ambient_pressure)
|
||||
{
|
||||
double onset_radius;
|
||||
double current_radius;
|
||||
double A, B, C, low_bound, high_bound, root;
|
||||
double valH, valL;
|
||||
int ci;
|
||||
const int max_iters = 10;
|
||||
double onset_radius = 1.0 / (vpmb_config.gradient_of_imperm / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / crit_radius);
|
||||
|
||||
// const, depends only on config.
|
||||
onset_radius = 1.0 / (vpmb_config.gradient_of_imperm / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / crit_radius);
|
||||
// A*r^3 + B*r^2 + C == 0
|
||||
// Solved with the help of mathematica
|
||||
|
||||
// A*r^3 + B*r^2 + C = 0
|
||||
A = current_ambient_pressure - vpmb_config.gradient_of_imperm + (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) / onset_radius;
|
||||
B = 2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma);
|
||||
C = onset_tension * pow(onset_radius, 3);
|
||||
double A = current_ambient_pressure - vpmb_config.gradient_of_imperm + (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) / onset_radius;
|
||||
double B = 2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma);
|
||||
double C = onset_tension * pow(onset_radius, 3);
|
||||
|
||||
// According to the algorithm's authors...
|
||||
low_bound = B / A;
|
||||
high_bound = onset_radius;
|
||||
double BA = B/A;
|
||||
double CA = C/A;
|
||||
|
||||
valH = high_bound * high_bound * (A * high_bound - B) - C;
|
||||
valL = low_bound * low_bound * (A * low_bound - B) - C;
|
||||
double discriminant = CA * (4 * BA * BA * BA + 27 * CA);
|
||||
|
||||
// Binary search for equations root.
|
||||
for (ci = 0; ci < max_iters; ++ci) {
|
||||
current_radius = (high_bound + low_bound) *0.5;
|
||||
root = (current_radius * current_radius * (A * current_radius - B)) - C;
|
||||
if (root >= 0.0)
|
||||
high_bound = current_radius;
|
||||
else
|
||||
low_bound = current_radius;
|
||||
// Let's make sure we have a real solution:
|
||||
if (discriminant < 0.0) {
|
||||
// This should better not happen
|
||||
report_error("Complex solution for inner pressure encountered!\n A=%f\tB=%f\tC=%f\n", A, B, C);
|
||||
return 0.0;
|
||||
}
|
||||
return onset_tension * (pow(onset_radius, 3) / pow(current_radius, 3));
|
||||
double denominator = pow(BA * BA * BA + 1.5 * (9 * CA + sqrt(3.0) * sqrt(discriminant)), 1/3.0);
|
||||
double current_radius = (BA + BA * BA / denominator + denominator) / 3.0;
|
||||
|
||||
return onset_tension * onset_radius * onset_radius * onset_radius / (current_radius * current_radius * current_radius);
|
||||
}
|
||||
|
||||
// Calculates the crushing pressure in the given moment. Updates crushing_onset_tension and critical radius if needed
|
||||
|
|
Loading…
Add table
Reference in a new issue