mirror of
https://github.com/subsurface/subsurface.git
synced 2025-02-19 22:16:15 +00:00
cleanup: split out divecomputer functions from dive.c
Since dive.c is so huge, split out divecomputer-related functions into divecomputer.[c|h], sample.[c|h] and extradata.[c|h]. This does not give huge compile time improvements, since struct dive contains a struct divecomputer and therefore dive.h has to include divecomputer.h. However, it make things distinctly more clear. Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
This commit is contained in:
parent
4aa571d5a0
commit
0e196310f9
38 changed files with 777 additions and 680 deletions
184
core/device.cpp
184
core/device.cpp
|
@ -8,190 +8,6 @@
|
|||
#include "core/settings/qPrefDiveComputer.h"
|
||||
#include <QString> // for QString::number
|
||||
|
||||
/*
|
||||
* Good fake dive profiles are hard.
|
||||
*
|
||||
* "depthtime" is the integral of the dive depth over
|
||||
* time ("area" of the dive profile). We want that
|
||||
* area to match the average depth (avg_d*max_t).
|
||||
*
|
||||
* To do that, we generate a 6-point profile:
|
||||
*
|
||||
* (0, 0)
|
||||
* (t1, max_d)
|
||||
* (t2, max_d)
|
||||
* (t3, d)
|
||||
* (t4, d)
|
||||
* (max_t, 0)
|
||||
*
|
||||
* with the same ascent/descent rates between the
|
||||
* different depths.
|
||||
*
|
||||
* NOTE: avg_d, max_d and max_t are given constants.
|
||||
* The rest we can/should play around with to get a
|
||||
* good-looking profile.
|
||||
*
|
||||
* That six-point profile gives a total area of:
|
||||
*
|
||||
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3)
|
||||
*
|
||||
* And the "same ascent/descent rates" requirement
|
||||
* gives us (time per depth must be same):
|
||||
*
|
||||
* t1 / max_d = (t3-t2) / (max_d-d)
|
||||
* t1 / max_d = (max_t-t4) / d
|
||||
*
|
||||
* We also obviously require:
|
||||
*
|
||||
* 0 <= t1 <= t2 <= t3 <= t4 <= max_t
|
||||
*
|
||||
* Let us call 'd_frac = d / max_d', and we get:
|
||||
*
|
||||
* Total area must match average depth-time:
|
||||
*
|
||||
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) = avg_d*max_t
|
||||
* max_d*(max_t-t1-(1-d_frac)*(t4-t3)) = avg_d*max_t
|
||||
* max_t-t1-(1-d_frac)*(t4-t3) = avg_d*max_t/max_d
|
||||
* t1+(1-d_frac)*(t4-t3) = max_t*(1-avg_d/max_d)
|
||||
*
|
||||
* and descent slope must match ascent slopes:
|
||||
*
|
||||
* t1 / max_d = (t3-t2) / (max_d*(1-d_frac))
|
||||
* t1 = (t3-t2)/(1-d_frac)
|
||||
*
|
||||
* and
|
||||
*
|
||||
* t1 / max_d = (max_t-t4) / (max_d*d_frac)
|
||||
* t1 = (max_t-t4)/d_frac
|
||||
*
|
||||
* In general, we have more free variables than we have constraints,
|
||||
* but we can aim for certain basics, like a good ascent slope.
|
||||
*/
|
||||
static int fill_samples(struct sample *s, int max_d, int avg_d, int max_t, double slope, double d_frac)
|
||||
{
|
||||
double t_frac = max_t * (1 - avg_d / (double)max_d);
|
||||
int t1 = lrint(max_d / slope);
|
||||
int t4 = lrint(max_t - t1 * d_frac);
|
||||
int t3 = lrint(t4 - (t_frac - t1) / (1 - d_frac));
|
||||
int t2 = lrint(t3 - t1 * (1 - d_frac));
|
||||
|
||||
if (t1 < 0 || t1 > t2 || t2 > t3 || t3 > t4 || t4 > max_t)
|
||||
return 0;
|
||||
|
||||
s[1].time.seconds = t1;
|
||||
s[1].depth.mm = max_d;
|
||||
s[2].time.seconds = t2;
|
||||
s[2].depth.mm = max_d;
|
||||
s[3].time.seconds = t3;
|
||||
s[3].depth.mm = lrint(max_d * d_frac);
|
||||
s[4].time.seconds = t4;
|
||||
s[4].depth.mm = lrint(max_d * d_frac);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* we have no average depth; instead of making up a random average depth
|
||||
* we should assume either a PADI rectangular profile (for short and/or
|
||||
* shallow dives) or more reasonably a six point profile with a 3 minute
|
||||
* safety stop at 5m */
|
||||
static void fill_samples_no_avg(struct sample *s, int max_d, int max_t, double slope)
|
||||
{
|
||||
// shallow or short dives are just trapecoids based on the given slope
|
||||
if (max_d < 10000 || max_t < 600) {
|
||||
s[1].time.seconds = lrint(max_d / slope);
|
||||
s[1].depth.mm = max_d;
|
||||
s[2].time.seconds = max_t - lrint(max_d / slope);
|
||||
s[2].depth.mm = max_d;
|
||||
} else {
|
||||
s[1].time.seconds = lrint(max_d / slope);
|
||||
s[1].depth.mm = max_d;
|
||||
s[2].time.seconds = max_t - lrint(max_d / slope) - 180;
|
||||
s[2].depth.mm = max_d;
|
||||
s[3].time.seconds = max_t - lrint(5000 / slope) - 180;
|
||||
s[3].depth.mm = 5000;
|
||||
s[4].time.seconds = max_t - lrint(5000 / slope);
|
||||
s[4].depth.mm = 5000;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" void fake_dc(struct divecomputer *dc)
|
||||
{
|
||||
alloc_samples(dc, 6);
|
||||
struct sample *fake = dc->sample;
|
||||
int i;
|
||||
|
||||
dc->samples = 6;
|
||||
|
||||
/* The dive has no samples, so create a few fake ones */
|
||||
int max_t = dc->duration.seconds;
|
||||
int max_d = dc->maxdepth.mm;
|
||||
int avg_d = dc->meandepth.mm;
|
||||
|
||||
memset(fake, 0, 6 * sizeof(struct sample));
|
||||
fake[5].time.seconds = max_t;
|
||||
for (i = 0; i < 6; i++) {
|
||||
fake[i].bearing.degrees = -1;
|
||||
fake[i].ndl.seconds = -1;
|
||||
}
|
||||
if (!max_t || !max_d) {
|
||||
dc->samples = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
/* Set last manually entered time to the total dive length */
|
||||
dc->last_manual_time = dc->duration;
|
||||
|
||||
/*
|
||||
* We want to fake the profile so that the average
|
||||
* depth ends up correct. However, in the absence of
|
||||
* a reasonable average, let's just make something
|
||||
* up. Note that 'avg_d == max_d' is _not_ a reasonable
|
||||
* average.
|
||||
* We explicitly treat avg_d == 0 differently */
|
||||
if (avg_d == 0) {
|
||||
/* we try for a sane slope, but bow to the insanity of
|
||||
* the user supplied data */
|
||||
fill_samples_no_avg(fake, max_d, max_t, MAX(2.0 * max_d / max_t, (double)prefs.ascratelast6m));
|
||||
if (fake[3].time.seconds == 0) { // just a 4 point profile
|
||||
dc->samples = 4;
|
||||
fake[3].time.seconds = max_t;
|
||||
}
|
||||
return;
|
||||
}
|
||||
if (avg_d < max_d / 10 || avg_d >= max_d) {
|
||||
avg_d = (max_d + 10000) / 3;
|
||||
if (avg_d > max_d)
|
||||
avg_d = max_d * 2 / 3;
|
||||
}
|
||||
if (!avg_d)
|
||||
avg_d = 1;
|
||||
|
||||
/*
|
||||
* Ok, first we try a basic profile with a specific ascent
|
||||
* rate (5 meters per minute) and d_frac (1/3).
|
||||
*/
|
||||
if (fill_samples(fake, max_d, avg_d, max_t, (double)prefs.ascratelast6m, 0.33))
|
||||
return;
|
||||
|
||||
/*
|
||||
* Ok, assume that didn't work because we cannot make the
|
||||
* average come out right because it was a quick deep dive
|
||||
* followed by a much shallower region
|
||||
*/
|
||||
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0 / 60, 0.10))
|
||||
return;
|
||||
|
||||
/*
|
||||
* Uhhuh. That didn't work. We'd need to find a good combination that
|
||||
* satisfies our constraints. Currently, we don't, we just give insane
|
||||
* slopes.
|
||||
*/
|
||||
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0, 0.01))
|
||||
return;
|
||||
|
||||
/* Even that didn't work? Give up, there's something wrong */
|
||||
}
|
||||
|
||||
struct device_table device_table;
|
||||
|
||||
bool device::operator==(const device &a) const
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue