Subsurface User Manual: Update section dealing with heat map. Move section about Information Box lower down in user manual.

Signed-off-by: Willem Ferguson <willemferguson@zoology.up.ac.za>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This commit is contained in:
Willem Ferguson 2016-10-10 10:06:20 +02:00 committed by Dirk Hohndel
parent 9b8a04089d
commit 1801a6888f
12 changed files with 250 additions and 174 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 619 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 672 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 619 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 668 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 671 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 655 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 676 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 665 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 668 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.3 KiB

After

Width:  |  Height:  |  Size: 1.1 KiB

View file

@ -2085,6 +2085,151 @@ increases the size of the dive profile to fill the area of the panel.
*Water temperature* is displayed with its own blue line with temperature values
placed adjacent to significant changes.
[[S_InfoBox]]
==== The *Information Box*
The Information box displays a large range of information about the dive
profile. Normally the Information Box is located to the top left of the *Dive
Profile* panel. If the mouse points outside of the *Dive Profile* panel, then
only the top line of the Information Box is visible (see left-hand part of
figure (*A*) below). The Information Box can be moved around in the *Dive Profile*
panel by click-dragging it with the mouse so that it is not obstructing
important detail. The position of the Information Box is saved and used again
during subsequent dive analyses.
image::images/InfoBox2.jpg["Figure: Information Box",align="center"]
When the mouse points inside the *Dive Profile* panel, the information box expands and
shows many data items. In this situation, the data reflect the time point along
the dive profile shown by the mouse cursor (see right-hand part of figure (*B*) above
where the Information Box reflects the situation at the position of the cursor
[arrow] in that image). Moving the cursor horizontally lets the Information Box show information for any point
along the dive profile.
In this mode, the Information Box gives extensive statistics about depth, gas
and ceiling characteristics of the particular dive. These include: Time period
into the dive (indicated by a @), depth, cylinder pressure (P), temperature,
ascent/descent rate, surface air consumption (SAC), oxygen partial pressure,
maximum operating depth, equivalent air depth (EAD), equivalent narcotic depth
(END), equivalent air density depth (EADD), decompression requirements at that
instant in time (Deco), time to surface (TTS), the calculated ceiling, as well
as the calculated ceiling for several Bühlmann tissue compartments.
The user has control over the display of some statistics in the Information Box, shown as four
buttons on the left of the profile panel. These are:
[icon="images/icons/MOD.jpg"]
[NOTE]
Clicking this button causes the Information Box to display the *Maximum Operating Depth
(MOD)* of the dive, given the
gas mixture used. MOD is dependent on the oxygen concentration in the breathing gas.
For air (21% oxygen) it is around 57 m if a maximum pO~2~ of 1.4 is specified in the *Preferences* section
(select _File_ -> Preferences -> Graph_ and edit the text box _Max pO~2~ when showing MOD_.
Below the MOD there is a markedly increased
risk of exposure to the dangers of oxygen toxicity.
[icon="images/icons/NDL.jpg"]
[NOTE]
Clicking this button causes the Information Box to display either the *No-deco Limit (NDL)* or the
*Total Time to Surface (TTS)*. NDL is the time duration that a diver can continue with a
dive, given the present depth, that does not require decompression (that is, before an
ascent ceiling appears). Once a diver has exceeded the NDL and decompression is required (that
is, there is an ascent ceiling above the diver) then TTS gives the number of minutes
required before the diver can surface. TTS includes ascent time as well as decompression
time. TTS is calculated assuming an ascent surface air consumption (SAC) for
the gas currently used. Even if the profile contains several gas
switches, TTS at a specific moment during the dive is calculated using the current gas.
TTS longer than 2 hours is not accurately calculated and Subsurface only indicates _TTS > 2h_.
[icon="images/icons/SAC.jpg"]
[NOTE]
Clicking this button causes the Information Box to display the *Surface Air Consumption (SAC)*.
SAC is an indication of the surface-normalized respiration rate of a diver. The value of SAC
is less than the real
respiration rate because a diver at 10m uses breathing gas at a rate roughly double that of
the equivalent rate at the surface. SAC gives an indication of breathing gas consumption rate
independent of the depth of the dive, so the respiratory rates of different dives
can be compared. The units for SAC is liters/min or cubic ft/min.
[icon="images/icons/EAD.jpg"]
[NOTE]
Clicking this button displays the *Equivalent Air Depth (EAD)* for
nitrox dives as well as the *Equivalent
Narcotic Depth (END)* for trimix dives. These are
important to divers breathe gases other than air. Their
values are dependent on the composition of the breathing gas. The EAD
is the depth of a hypothetical air dive that has the same partial
pressure of nitrogen as the current depth of the nitrox dive at
hand. A nitrox dive leads to the same decompression obligation as an
air dive to the depth equalling the EAD. The END is the depth of a
hypothetical air dive that has the same sum of partial pressures of
the narcotic gases nitrogen and oxygen as the current trimix dive. A
trimix diver can expect the same narcotic effect as a diver breathing
air diving at a depth equalling the END.
Figure (*B*) above shows an information box with a nearly complete set of data.
[[S_gas_pressure_graph]]
===== The Gas Pressure Bar Graph
On the left of the *Information Box* is a vertical bar graph showing the
pressures of the nitrogen (and other inert gases, e.g. helium, if applicable) that the diver
was inhaling _at a particular instant during the dive_. It is shown by the position
of the cursor on the *Dive Profile*. The drawing on the left below indicates the
meaning of the different parts of the Gas Pressure Bar Graph.
image::images/GasPressureBarGraph.jpg["FIGURE:Gas Pressure bar Graph",align="center"]
- The light green area indicates the total gas, with the top margin of the light green
area showing the total gas pressure inhaled by the diver and measured from the bottom
of the graph to the top of the light green area. This pressure has a _relative_ value in the graph
and does not indicate absolute pressure.
- The horizontal black line underneath the light green margin indicates the equilibrium pressure
of the inert gases inhaled by the diver, usually nitrogen. In
the case of trimix, it is the pressures of nitrogen and helium combined. In this example,
the user is diving with EAN32, so the inert gas pressure is 68% of the distance from the
bottom of the graph to the total gas pressure value.
- The dark green area at the bottom of the graph represents the pressures of inert gas in each
of the 16 tissue compartments, following the Bühlmann algorithm, with fast tissues on the
left hand side.
- The top black horizontal line indicates the gradient factor that applies to the depth of
the diver at the particular point on the *Dive Profile*. The gradient factor shown is an
interpolation between the GFLow and GFHigh values specified in the Graph tab of the *Preferences
Panel* of *Subsurface*.
- The bottom margin of the red area in the graph indicates the Bühlman-derived M-value. That is the
pressure value of inert gases at which bubble formation is expected to be severe, resulting
in a significant risk of decompression sickness.
These five values are shown on the left in the graph above. The way the Gas Pressure Bar Graph changes
during a dive can be seen on the right hand side of the above figure for a diver using EAN32.
- Graph *A* indicates the start of a dive with the diver at the surface. The pressures in all
the tissue compartments are still at the surface equilibrium pressure because no diving has taken place.
- Graph *B* indicates the situation after a descent to 30 meters. Few of the tissue compartments have had
time to respond to the descent, so their gas pressures are far below the equilibrium gas pressure.
- Graph *C* represents the pressures after 30 minutes at 30 m. The fast compartments have attained
equilibrium (i.e. they have reached the height of the black line indicating the equilibrium pressure). The
slower compartments (towards the right) have not reached equilibrium and are in the process of slowly
increasing in pressure.
- Graph *D* shows the pressures after ascent to a depth of 4.5 meters. Since during ascent the total
inhaled gas pressure has decreased strongly from 4 bar to 1.45 bar, the pressures in the different tissue
compartments now exceed that of the total gas pressure and approach the gradient factor value (i.e.
the top black horizontal line). Further ascent will result in exceeding the gradient
factor value (GFHigh), endangering the diver.
- Graph *E* indicates the situation after remaining at 4.5 meters for 10 minutes. The fast compartments
have decreased in pressure. As expected, the pressures in the slow compartments have not changed much.
The pressures in the fast compartments do not approach the GFHigh value any more and the diver is safer
than in the situation indicated in graph *D*.
==== The Profile Toolbar
The dive profile can include graphs of the *partial pressures*
of O~2~, N~2~, and He during the dive (see figure above) as well as a calculated and dive computer
reported deco ceilings (only visible for deep, long, or repetitive dives).
@ -2196,11 +2341,21 @@ compartments following the Bühlmann model (*B* in figure below).
[icon="images/icons/ceiling3.jpg"]
[NOTE]
===============================================================================================================
If, in addition, the *3m increments* button on the Profile Panel is clicked, then the ceiling is indicated in 3 m increments
(*C* in figure below).
image::images/Ceilings2.jpg["Figure: Ceiling with 3m resolution",align="center"]
Gradient Factor settings strongly affect the calculated ceilings and their depths. For more information about Gradient factors, see the section on xref:GradientFactors_Ref[Gradient Factor Preference settings]. The currently used gradient factors (e.g. GF 35/75) are shown above the depth profile if the appropriate toolbar buttons are activated. N.B.: The indicated gradient factors are NOT the gradient factors in use by the dive computer, but those used by Subsurface to calculate deco obligations during the dive. For more information external to this manual see:
*** http://www.tek-dive.com/portal/upload/M-Values.pdf[Understanding M-values by Erik Baker, _Immersed_ Vol. 3, No. 3.]
*** link:http://www.rebreatherworld.com/general-and-new-to-rebreather-articles/5037-gradient-factors-for-dummies.html[Gradient factors for dummies, by Kevin Watts]
===============================================================================================================
[icon="images/icons/ShowCylindersButton.jpg"]
[NOTE]
By selecting this icon, the different cylinders used during a dive can be represented as a colored bar at the bottom
@ -2211,39 +2366,104 @@ red bar. The image below shows a dive which first uses a trimix cylinder (red an
image::images/ShowCylinders_f20.jpg["Figure: Cylinder use graph",align="center"]
[icon="images/icons/heatmap.png"]
[icon="images/icons/heatmap.png"]
[NOTE]
Display that tissue heat-map. This is a representation of the inert
gas pressures in the different tissues of a decompression
model. Faster tissues are displayed on top while the slower tissues
are shown on the bottom. The color is a representation of the inert
gas loading of the tissue. Blue colors indicate the tissue's inert gas
pressure is below the ambient pressure and the tissue is currently
on-gasing. The more red the color is, the higher the pressure is above
the ambient pressure and the tissue is off-gassing potentially
releasing inert gases to the environment which can be the cause for
the formation of inert gas bubbles.
This display is a representation
of the tissue pressures during the whole dive. In contrast, the xref:S_gas_pressure_graph[Gas Pressure Graph] in the *Information Box*
on the *Dive Profile* is an instantaneous reflection of tissue pressures at the moment in
time, at the position of the cursor on the dive profile.
====================================================================================
Display the tissue heat-map. The heat map summarises the inert gas tissue pressures
during the duration of the dive. The figure below explains how the heat map can be
interpreted.
image::images/Heatmap.jpg["Figure: Inert gas tissue pressure heat-map",align="center"]
Image *A* on the left shows the xref:S_gas_pressure_graph[Gas Pressure Graph] in the
*Information box*, representing a snapshot of inert gas pressures at a particular point in time
during the dive. The inert gas pressures of 16 tissue compartments are shown as dark green vertical
bars with the quick tissue compartments on the left and the slow tissue compartments
on the right. Refer to the section on the xref:S_gas_pressure_graph[Gas Pressure Graph]
for more details on the different elements of the Gas pressure Graph.
Image *B* shows a gradient of unique colours, spanning the whole range of inert gas pressures.
It is possible to map the height of each of the dark green vertical bars of image *A* to a
colour in image *B*. For instance, the highest dark green vertical bar in image *A* is as high
as the yellow part of image *B* and the height of this bar can therefore be summarised
using a yellow colour. In a similar way the 16 vertical bars in image *A* can be
translated to a colour in image *B*. The meanings of the different colours are:
[icon="images/icons/LightBlue.jpg"]
[NOTE]
Light blue: Tissue has inert gas pressure near that on the surface just before the dive started.
[icon="images/icons/DarkBlue.jpg"]
[NOTE]
Dark blue: Tissue has low but increasing inert gas pressure, less than or equal to 53% of the
sturation inert gas pressure (lower horizontal black line in image *A* above).
[icon="images/icons/Purple.jpg"]
[NOTE]
Purple: Tissue has inert gas pressure approaching 80% of the saturation inert gas pressure
(lower horizontal black line in image A).
[icon="images/icons/Black.jpg"]
[NOTE]
Black: Inert gas pressure in tissue approximates the saturation inert gas pressure (lower
horizontal black line in image A).
[icon="images/icons/DarkGreen.jpg"]
[NOTE]
Dark green: Inert gas pressure approximates the total ambient pressure at the depth of
the diver (top of light green area in image A).
[icon="images/icons/LightGreen.jpg"]
[NOTE]
Light green: Tissue inert gas pressure roughly 10% between total ambient pressure and
the maximum safe pressure (i.e. M-value indicated by bottom of red area in image *A* above)
determined by the Bühlmann algorithm.
[icon="images/icons/Yellow.jpg"]
[NOTE]
Yellow: Tissue inert gas pressure roughly 55% between total ambient pressure and
the maximum safe pressure (i.e. M-value) determined by the Bühlmann algorithm.
[icon="images/icons/Red.jpg"]
[NOTE]
Red: Tissue inert gas pressure approaches that of the M-value. Inert gas
tissue pressures larger than the M-value indicate a high risk of decompression sickness.
[icon="images/icons/White.jpg"]
[NOTE]
White: Tissue inert gas pressure about 1.4 times the M-value or larger.
Image *C* shows the colour mapping of each of the vertical bars in image *A*, the fast
tissues (bars on the left) of image *A* being depicted at the top of image *C*.
Conversely the vertical bars representing slow tissue compartments in image *A*
are represented at the bottom of image *C*. The highest vertical bar in image *A*
(vertical bar 4th from the left) is presented as the yellow box 4th from the top
in image *C*. The 16 vertical bars in image *A* are now presented as a vertical
row of 16 coloured rectangles in image *C*.
Image *D* is a compilation of similar colour mappings of 16 tissue compartments for
all the moments in time during a whole dive, the color being a representation of the
inert gas loading of a tissue at a point in time during the dive. Faster tissues
are displayed on top while the slower tissues are shown on the bottom, with time
forming the horizontal axis of the graph.
The colours of the heat map are not affected by the gradient factor settings even
though the calculated ceiling of a dive is affected by the gradient factor settings.
This is because the heat map indicates tissue pressures relative to the M-value, and
not relative to a gradient factor. For more information external to this manual see:
http://www.tek-dive.com/portal/upload/M-Values.pdf[Understanding M-values by Erik Baker, _Immersed_ Vol. 3, No. 3.]
The image below shows the profiles and heat maps for two dives to about 45m.
The inert gas pressures in the fast tissues
rise much more rapidly, going through the sequence from light blue to black and green.
In contrast the slow tissues accumulate inert gas at a much slower rate.
image::images/tissueHeatmap.jpg["Figure: Inert gas tissue pressure heat-map",align="center"]
===================================================================================
Gradient Factor settings strongly affect the calculated ceilings and their depths.
For more information about Gradient factors, see the section on xref:S_GradientFactors[Gradient Factor Preference settings]. The
currently used gradient factors (e.g. GF 35/75) are shown above the depth profile if the appropriate toolbar buttons are activated.
*N.B.:* The indicated gradient factors are NOT the gradient factors in use by the dive computer,
but those used by _Subsurface_ to calculate deco obligations
during the dive. For more information external to this manual see:
** http://www.tek-dive.com/portal/upload/M-Values.pdf[Understanding M-values by Erik Baker, _Immersed_ Vol. 3, No. 3.]
** link:http://www.rebreatherworld.com/general-and-new-to-rebreather-articles/5037-gradient-factors-for-dummies.html[Gradient factors for dummies, by Kevin Watts]
=== The Dive Profile context menu
==== The Dive Profile context menu
The context menu for the Dive Profile is accessed by right-clicking while the
mouse cursor is over the Dive Profile panel. The menu lets you create
@ -2263,151 +2483,6 @@ an existing marker a menu appears, adding options to allow deletion of the
marker, or to allow all markers of that type to be hidden. Hidden events can be
restored to view by selecting Unhide all events from the context menu.
[[S_InfoBox]]
=== The *Information Box*
The Information box displays a large range of information about the dive
profile. Normally the Information Box is located to the top left of the *Dive
Profile* panel. If the mouse points outside of the *Dive Profile* panel, then
only the top line of the Information Box is visible (see left-hand part of
figure (*A*) below). The Information Box can be moved around in the *Dive Profile*
panel by click-dragging it with the mouse so that it is not obstructing
important detail. The position of the Information Box is saved and used again
during subsequent dive analyses.
image::images/InfoBox2.jpg["Figure: Information Box",align="center"]
When the mouse points inside the *Dive Profile* panel, the information box expands and
shows many data items. In this situation, the data reflect the time point along
the dive profile shown by the mouse cursor (see right-hand part of figure (*B*) above
where the Information Box reflects the situation at the position of the cursor
[arrow] in that image). Moving the cursor horizontally lets the Information Box show information for any point
along the
dive profile.
In this mode, the Information Box gives extensive statistics about depth, gas
and ceiling characteristics of the particular dive. These include: Time period
into the dive (indicated by a @), depth, cylinder pressure (P), temperature,
ascent/descent rate, surface air consumption (SAC), oxygen partial pressure,
maximum operating depth, equivalent air depth (EAD), equivalent narcotic depth
(END), equivalent air density depth (EADD), decompression requirements at that
instant in time (Deco), time to surface (TTS), the calculated ceiling, as well
as the calculated ceiling for several Bühlmann tissue compartments.
The user has control over the display of some statistics, shown as four
buttons on the left of the profile panel. These are:
[icon="images/icons/MOD.jpg"]
[NOTE]
Clicking this button causes the Information Box to display the *Maximum Operating Depth
(MOD)* of the dive, given the
gas mixture used. MOD is dependent on the oxygen concentration in the breathing gas.
For air (21% oxygen) it is around 57 m if a maximum pO~2~ of 1.4 is specified in the *Preferences* section
(select _File_ -> Preferences -> Graph_ and edit the text box _Max pO~2~ when showing MOD_.
Below the MOD there is a markedly increased
risk of exposure to the dangers of oxygen toxicity.
[icon="images/icons/NDL.jpg"]
[NOTE]
Clicking this button causes the Information Box to display either the *No-deco Limit (NDL)* or the
*Total Time to Surface (TTS)*. NDL is the time duration that a diver can continue with a
dive, given the present depth, that does not require decompression (that is, before an
ascent ceiling appears). Once a diver has exceeded the NDL and decompression is required (that
is, there is an ascent ceiling above the diver) then TTS gives the number of minutes
required before the diver can surface. TTS includes ascent time as well as decompression
time. TTS is calculated assuming an ascent surface air consumption (SAC) for
the gas currently used. Even if the profile contains several gas
switches, TTS at a specific moment during the dive is calculated using the current gas.
TTS longer than 2 hours is not accurately calculated and Subsurface only indicates _TTS > 2h_.
[icon="images/icons/SAC.jpg"]
[NOTE]
Clicking this button causes the Information Box to display the *Surface Air Consumption (SAC)*.
SAC is an indication of the surface-normalized respiration rate of a diver. The value of SAC
is less than the real
respiration rate because a diver at 10m uses breathing gas at a rate roughly double that of
the equivalent rate at the surface. SAC gives an indication of breathing gas consumption rate
independent of the depth of the dive, so the respiratory rates of different dives
can be compared. The units for SAC is liters/min or cubic ft/min.
[icon="images/icons/EAD.jpg"]
[NOTE]
Clicking this button displays the *Equivalent Air Depth (EAD)* for
nitrox dives as well as the *Equivalent
Narcotic Depth (END)* for trimix dives. These are
important to divers breathe gases other than air. Their
values are dependent on the composition of the breathing gas. The EAD
is the depth of a hypothetical air dive that has the same partial
pressure of nitrogen as the current depth of the nitrox dive at
hand. A nitrox dive leads to the same decompression obligation as an
air dive to the depth equalling the EAD. The END is the depth of a
hypothetical air dive that has the same sum of partial pressures of
the narcotic gases nitrogen and oxygen as the current trimix dive. A
trimix diver can expect the same narcotic effect as a diver breathing
air diving at a depth equalling the END.
Figure (*B*) above shows an information box with a nearly complete set of data.
[[S_gas_pressure_graph]]
==== The Gas Pressure Bar Graph
On the left of the *Information Box* is a vertical bar graph showing the
pressures of the nitrogen (and other inert gases, e.g. helium, if applicable) that the diver
was inhaling _at a particular instant during the dive_. It is shown by the position
of the cursor on the *Dive Profile*. The drawing on the left below indicates the
meaning of the different parts of the Gas Pressure Bar Graph.
image::images/GasPressureBarGraph.jpg["FIGURE:Gas Pressure bar Graph",align="center"]
- The light green area indicates the total gas, with the top margin of the light green
area showing the total gas pressure inhaled by the diver and measured from the bottom
of the graph to the top of the light green area. This pressure has a _relative_ value in the graph
and does not indicate absolute pressure.
- The horizontal black line underneath the light green margin indicates the equilibrium pressure
of the inert gases inhaled by the diver, usually nitrogen. In
the case of trimix, it is the pressures of nitrogen and helium combined. In this example,
the user is diving with EAN32, so the inert gas pressure is 68% of the distance from the
bottom of the graph to the total gas pressure value.
- The dark green area at the bottom of the graph represents the pressures of inert gas in each
of the 16 tissue compartments, following the Bühlmann algorithm, the fast tissues being on the
left hand side.
- The top black horizontal line indicates the gradient factor that applies to the depth of
the diver at the particular point on the *Dive Profile*. The gradient factor shown is an
interpolation between the GFLow and GFHigh values specified in the Graph tab of the *Preferences
Panel* of *Subsurface*.
- The bottom margin of the red area in the graph indicates the Bühlman-derived M-value. That is the
pressure value of inert gases at which bubble formation is expected to be severe, resulting
in decompression sickness.
These five values are shown on the left in the graph above. The way the Gas Pressure Bar Graph changes
during a dive can be seen on the right hand side of the above figure for a diver using EAN32.
- Graph *A* indicates the start of a dive with the diver at the surface. The pressures in all
the tissue compartments are still at the equilibrium pressure because no diving has taken place.
- Graph *B* indicates the situation after a descent to 30 meters. Few of the tissue compartments have had
time to respond to the descent, so their gas pressures are far below the equilibrium gas pressure.
- Graph *C* represents the pressures after 30 minutes at 30 m. The fast compartments have attained
equilibrium (i.e. they have reached the hight of the black line indicating the equilibrium pressure). The
slower compartments (towards the right) have not reached equilibrium and are in the process of slowly
increasing in pressure.
- Graph *D* shows the pressures after ascent to a depth of 4.5 meters. Since during ascent the total
inhaled gas pressure has decreased strongly from 4 bar to 1.45 bar, the pressures in the different tissue
compartments now exceed that of the total gas pressure and approach the gradient factor value (i.e.
the top black horizontal line). Further ascent will result in exceeding the gradient
factor value (GFHigh), endangering the diver.
- Graph *E* indicates the situation after remaining at 4.5 meters for 10 minutes. The fast compartments
have decreased in pressure. As expected, the pressures in the slow compartments have not changed much.
The pressures in the fast compartments do not approach the GFHigh value any more and the diver is safer
than in the situation indicated in graph *D*.
== Organizing the logbook (Manipulating groups of dives)
=== The Dive List context menu
@ -3025,9 +3100,10 @@ was no gas switch to such a cylinder), then these cylinders are omitted from tha
the mean depth of the dive, up to any time instant during the dive. Normally this is a u-shaped line indicating the deepest mean depth just before
ascent.
[[GradientFactors_Ref]]
* *Misc*:
[[GradientFactors_Ref]]
** Gradient Factors (GFLow and GFHigh):* Set the _gradient factors_ used while diving. GF_Low is
the gradient factor at depth and GF_High is used just below the surface.
At intermediate depths gradient factors between GF_Low and GF_High are used.