mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-30 22:20:21 +00:00
gas model: replace Redlich-Kwong with least-square quintic
This goes back to just doing air compressibility, but using the least-squares quintic polynomial equation that Lubomir generated based on the Wikipedia table for air at 300K in the 1-500 bar range. We might be able to do similar things for mixed gases.. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This commit is contained in:
parent
3f30832471
commit
3260dd9c15
1 changed files with 65 additions and 2 deletions
|
@ -13,7 +13,7 @@
|
|||
*
|
||||
*/
|
||||
|
||||
double redlich_kwong_equation(double t_red, double p_red, double z_init)
|
||||
static double redlich_kwong_equation(double t_red, double p_red, double z_init)
|
||||
{
|
||||
return (1.0/(1.0 - 0.08664*p_red/(t_red * z_init)) -
|
||||
0.42748/(sqrt(t_red * t_red * t_red) * ((t_red*z_init/p_red + 0.08664))));
|
||||
|
@ -25,7 +25,7 @@ double redlich_kwong_equation(double t_red, double p_red, double z_init)
|
|||
*/
|
||||
#define STANDARD_TEMPERATURE 293.0
|
||||
|
||||
double gas_compressibility_factor(struct gasmix *gas, double bar)
|
||||
static double redlich_kwong_compressibility_factor(struct gasmix *gas, double bar)
|
||||
{
|
||||
/* Critical points according to https://en.wikipedia.org/wiki/Critical_point_(thermodynamics) */
|
||||
|
||||
|
@ -46,3 +46,66 @@ double gas_compressibility_factor(struct gasmix *gas, double bar)
|
|||
redlich_kwong_equation(STANDARD_TEMPERATURE/tc, bar/pc,
|
||||
redlich_kwong_equation(STANDARD_TEMPERATURE/tc, bar/pc,1.0))));
|
||||
}
|
||||
|
||||
/*
|
||||
* This is a quintic formula by Lubomir I. Ivanov that has
|
||||
* been optimized for the least-square error to the air
|
||||
* compressibility factor table (at 300K) taken from Wikipedia:
|
||||
*
|
||||
* bar z_factor
|
||||
* --- ------
|
||||
* 1: 0.9999
|
||||
* 5: 0.9987
|
||||
* 10: 0.9974
|
||||
* 20: 0.9950
|
||||
* 40: 0.9917
|
||||
* 60: 0.9901
|
||||
* 80: 0.9903
|
||||
* 100: 0.9930
|
||||
* 150: 1.0074
|
||||
* 200: 1.0326
|
||||
* 250: 1.0669
|
||||
* 300: 1.1089
|
||||
* 400: 1.2073
|
||||
* 500: 1.3163
|
||||
*/
|
||||
static double air_compressibility_factor(double bar)
|
||||
{
|
||||
double x0 = 1.0,
|
||||
x1 = bar,
|
||||
x2 = x1*x1,
|
||||
x3 = x2*x1,
|
||||
x4 = x2*x2,
|
||||
x5 = x2*x3;
|
||||
|
||||
return + x0 * 1.0002556612420115
|
||||
- x1 * 0.0003115084635183305
|
||||
+ x2 * 0.00000227808965401253
|
||||
+ x3 * 1.91596422989e-9
|
||||
- x4 * 8.78421542e-12
|
||||
+ x5 * 6.77746e-15;
|
||||
}
|
||||
|
||||
/*
|
||||
* We end up using specialized functions for known gases, because
|
||||
* we have special tables for them.
|
||||
*
|
||||
* For now, let's do just air.
|
||||
*
|
||||
* We have other tables for other gases, see for example:
|
||||
*
|
||||
* http://ww.baue.org/library/zfactor_table.php
|
||||
*
|
||||
* and then we have the Redlich-Kwong function, but that seems
|
||||
* to be almost too generic, and not specific enough to the very
|
||||
* particular pressure and temperature ranges we care about..
|
||||
*/
|
||||
double gas_compressibility_factor(struct gasmix *gas, double bar)
|
||||
{
|
||||
#if 1
|
||||
return air_compressibility_factor(bar);
|
||||
#else
|
||||
/* Fall back on generic function */
|
||||
return redlich_kwong_compressibility_factor(gas, bar);
|
||||
#endif
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue