Eliminate packed struct for Cochran

Removed the packed struct and replaced with byte offsets.
Fixed salinity for EMC.
Added start temp for CMDR and Gemini.

[Dirk Hohndel: whitespace cleanup]

Signed-off-by: John Van Ostrand <john@vanostrand.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This commit is contained in:
John Van Ostrand 2014-10-29 11:14:44 -04:00 committed by Dirk Hohndel
parent 4d9c30d424
commit 3b5781508c
5 changed files with 105 additions and 316 deletions

121
cochran.c
View file

@ -10,8 +10,7 @@
#include "file.h"
#include "units.h"
#include "gettext.h"
#include "cochran_emc.h"
#include "cochran_cmdr.h"
#include "cochran.h"
#include "divelist.h"
#include <libdivecomputer/parser.h>
@ -445,30 +444,29 @@ static void cochran_parse_samples(struct dive *dive, const unsigned char *log,
struct divecomputer *dc = &dive->dc;
struct sample *sample;
const struct cochran_cmdr_log_t *log_cmdr = (struct cochran_cmdr_log_t *) log;
const struct cochran_emc_log_t *log_emc = (struct cochran_emc_log_t *) log;
// Initialize stat variables
*max_depth = 0, *avg_depth = 0, *min_temp = 0xFF;
// Get starting depth and temp (tank PSI???)
switch (config.type) {
case TYPE_GEMINI:
depth = (float)(log_cmdr->start_depth[0]
+ log_cmdr->start_depth[1] * 256) / 4;
psi = log_cmdr->start_psi[0] + log_cmdr->start_psi[1] * 256;
sgc_rate = (float)(log_cmdr->start_sgc[0]
+ log_cmdr->start_sgc[1] * 256) / 2;
depth = (float) (log[CMD_START_DEPTH]
+ log[CMD_START_DEPTH + 1] * 256) / 4;
temp = log[CMD_START_TEMP];
psi = log[CMD_START_PSI] + log[CMD_START_PSI + 1] * 256;
sgc_rate = (float)(log[CMD_START_SGC]
+ log[CMD_START_SGC + 1] * 256) / 2;
break;
case TYPE_COMMANDER:
depth = (float)(log_cmdr->start_depth[0]
+ log_cmdr->start_depth[1] * 256) / 4;
depth = (float) (log[CMD_START_DEPTH]
+ log[CMD_START_DEPTH + 1] * 256) / 4;
temp = log[CMD_START_TEMP];
break;
case TYPE_EMC:
depth = (float)log_emc->start_depth[0] / 256
+ log_emc->start_depth[1];
temp = log_emc->start_temperature;
depth = (float) log [EMC_START_DEPTH] / 256
+ log[EMC_START_DEPTH + 1];
temp = log[EMC_START_TEMP];
break;
}
@ -656,8 +654,7 @@ static void cochran_parse_dive(const unsigned char *decode, unsigned mod,
dive = alloc_dive();
dc = &dive->dc;
struct cochran_cmdr_log_t *cmdr_log = (struct cochran_cmdr_log_t *) (buf + 0x4914);
struct cochran_emc_log_t *emc_log = (struct cochran_emc_log_t *) (buf + 0x4914);
unsigned char *log = (buf + 0x4914);
switch (config.type) {
case TYPE_GEMINI:
@ -666,45 +663,45 @@ static void cochran_parse_dive(const unsigned char *decode, unsigned mod,
dc->model = "Gemini";
dc->deviceid = buf[0x18c] * 256 + buf[0x18d]; // serial no
fill_default_cylinder(&dive->cylinder[0]);
dive->cylinder[0].gasmix.o2.permille = (cmdr_log->o2_percent[0][0] / 256
+ cmdr_log->o2_percent[0][1]) * 10;
dive->cylinder[0].gasmix.o2.permille = (log[CMD_O2_PERCENT] / 256
+ log[CMD_O2_PERCENT + 1]) * 10;
dive->cylinder[0].gasmix.he.permille = 0;
} else {
dc->model = "Commander";
dc->deviceid = array_uint32_le(buf + 0x31e); // serial no
for (g = 0; g < 2; g++) {
fill_default_cylinder(&dive->cylinder[g]);
dive->cylinder[g].gasmix.o2.permille = (cmdr_log->o2_percent[g][0] / 256
+ cmdr_log->o2_percent[g][1]) * 10;
dive->cylinder[g].gasmix.o2.permille = (log[CMD_O2_PERCENT + g * 2] / 256
+ log[CMD_O2_PERCENT + g * 2 + 1]) * 10;
dive->cylinder[g].gasmix.he.permille = 0;
}
}
tm.tm_year = cmdr_log->year;
tm.tm_mon = cmdr_log->month - 1;
tm.tm_mday = cmdr_log->day;
tm.tm_hour = cmdr_log->hour;
tm.tm_min = cmdr_log->minutes;
tm.tm_sec = cmdr_log->seconds;
tm.tm_year = log[CMD_YEAR];
tm.tm_mon = log[CMD_MON] - 1;
tm.tm_mday = log[CMD_DAY];
tm.tm_hour = log[CMD_HOUR];
tm.tm_min = log[CMD_MIN];
tm.tm_sec = log[CMD_SEC];
tm.tm_isdst = -1;
dive->when = dc->when = utc_mktime(&tm);
dive->number = cmdr_log->number[0] + cmdr_log->number[1] * 256 + 1;
dc->duration.seconds = (cmdr_log->bt[0] + cmdr_log->bt[1] * 256) * 60;
dc->surfacetime.seconds = (cmdr_log->sit[0] + cmdr_log->sit[1] * 256) * 60;
dc->maxdepth.mm = (cmdr_log->max_depth[0] +
cmdr_log->max_depth[1] * 256) / 4 * FEET * 1000;
dc->meandepth.mm = (cmdr_log->avg_depth[0] +
cmdr_log->avg_depth[1] * 256) / 4 * FEET * 1000;
dc->watertemp.mkelvin = C_to_mkelvin((cmdr_log->temp / 32) - 1.8);
dive->number = log[CMD_NUMBER] + log[CMD_NUMBER + 1] * 256 + 1;
dc->duration.seconds = (log[CMD_BT] + log[CMD_BT + 1] * 256) * 60;
dc->surfacetime.seconds = (log[CMD_SIT] + log[CMD_SIT + 1] * 256) * 60;
dc->maxdepth.mm = (log[CMD_MAX_DEPTH] +
log[CMD_MAX_DEPTH + 1] * 256) / 4 * FEET * 1000;
dc->meandepth.mm = (log[CMD_AVG_DEPTH] +
log[CMD_AVG_DEPTH + 1] * 256) / 4 * FEET * 1000;
dc->watertemp.mkelvin = C_to_mkelvin((log[CMD_MIN_TEMP] / 32) - 1.8);
dc->surface_pressure.mbar = ATM / BAR * pow(1 - 0.0000225577
* (double) cmdr_log->altitude * 250 * FEET, 5.25588) * 1000;
dc->salinity = 10000 + 150 * emc_log->water_conductivity;
* (double) log[CMD_ALTITUDE] * 250 * FEET, 5.25588) * 1000;
dc->salinity = 10000 + 150 * log[CMD_WATER_CONDUCTIVITY];
SHA1(cmdr_log->number, 2, (unsigned char *)csum);
SHA1(log + CMD_NUMBER, 2, (unsigned char *)csum);
dc->diveid = csum[0];
if (cmdr_log->max_depth[0] == 0xff && cmdr_log->max_depth[1] == 0xff)
if (log[CMD_MAX_DEPTH] == 0xff && log[CMD_MAX_DEPTH + 1] == 0xff)
corrupt_dive = 1;
break;
@ -713,37 +710,39 @@ static void cochran_parse_dive(const unsigned char *decode, unsigned mod,
dc->deviceid = array_uint32_le(buf + 0x31e); // serial no
for (g = 0; g < 4; g++) {
fill_default_cylinder(&dive->cylinder[g]);
dive->cylinder[g].gasmix.o2.permille = (emc_log->o2_percent[g][0] / 256
+ emc_log->o2_percent[g][1]) * 10;
dive->cylinder[g].gasmix.he.permille = (emc_log->he_percent[g][0] / 256
+ emc_log->he_percent[g][1]) * 10;
dive->cylinder[g].gasmix.o2.permille =
(log[EMC_O2_PERCENT + g * 2] / 256
+ log[EMC_O2_PERCENT + g * 2 + 1]) * 10;
dive->cylinder[g].gasmix.he.permille =
(log[EMC_HE_PERCENT + g * 2] / 256
+ log[EMC_HE_PERCENT + g * 2 + 1]) * 10;
}
tm.tm_year = emc_log->year;
tm.tm_mon = emc_log->month - 1;
tm.tm_mday = emc_log->day;
tm.tm_hour = emc_log->hour;
tm.tm_min = emc_log->minutes;
tm.tm_sec = emc_log->seconds;
tm.tm_year = log[EMC_YEAR];
tm.tm_mon = log[EMC_MON] - 1;
tm.tm_mday = log[EMC_DAY];
tm.tm_hour = log[EMC_HOUR];
tm.tm_min = log[EMC_MIN];
tm.tm_sec = log[EMC_SEC];
tm.tm_isdst = -1;
dive->when = dc->when = utc_mktime(&tm);
dive->number = emc_log->number[0] + emc_log->number[1] * 256 + 1;
dc->duration.seconds = (emc_log->bt[0] + emc_log->bt[1] * 256) * 60;
dc->surfacetime.seconds = (emc_log->sit[0] + emc_log->sit[1] * 256) * 60;
dc->maxdepth.mm = (emc_log->max_depth[0] +
emc_log->max_depth[1] * 256) / 4 * FEET * 1000;
dc->meandepth.mm = (emc_log->avg_depth[0] +
emc_log->avg_depth[1] * 256) / 4 * FEET * 1000;
dc->watertemp.mkelvin = C_to_mkelvin((emc_log->temp - 32) / 1.8);
dive->number = log[EMC_NUMBER] + log[EMC_NUMBER + 1] * 256 + 1;
dc->duration.seconds = (log[EMC_BT] + log[EMC_BT + 1] * 256) * 60;
dc->surfacetime.seconds = (log[EMC_SIT] + log[EMC_SIT + 1] * 256) * 60;
dc->maxdepth.mm = (log[EMC_MAX_DEPTH] +
log[EMC_MAX_DEPTH + 1] * 256) / 4 * FEET * 1000;
dc->meandepth.mm = (log[EMC_AVG_DEPTH] +
log[EMC_AVG_DEPTH + 1] * 256) / 4 * FEET * 1000;
dc->watertemp.mkelvin = C_to_mkelvin((log[EMC_MIN_TEMP] - 32) / 1.8);
dc->surface_pressure.mbar = ATM / BAR * pow(1 - 0.0000225577
* (double) emc_log->altitude * 250 * FEET, 5.25588) * 1000;
dc->salinity = 10000 + 150 * emc_log->water_conductivity;
* (double) log[EMC_ALTITUDE] * 250 * FEET, 5.25588) * 1000;
dc->salinity = 10000 + 150 * (log[EMC_WATER_CONDUCTIVITY] & 0x3);
SHA1(emc_log->number, 2, (unsigned char *)csum);
SHA1(log + EMC_NUMBER, 2, (unsigned char *)csum);
dc->diveid = csum[0];
if (emc_log->max_depth[0] == 0xff && emc_log->max_depth[1] == 0xff)
if (log[EMC_MAX_DEPTH] == 0xff && log[EMC_MAX_DEPTH + 1] == 0xff)
corrupt_dive = 1;
break;