Do the Boyle compensation when the gradient is needed

and not some time before and store the result in a global variable.

This stores only the bottom gradients and computes the Boyle compensation
when computing the allowed ambient pressure.

As the Boyle compensation needs a reference ambient pressure, to find the ceiling,
we have to iterate this computation until the reference pressure is close enough to
the ceiling.

Signed-off-by: Robert C. Helling <helling@atdotde.de>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This commit is contained in:
Robert C. Helling 2015-08-31 22:15:43 +02:00 committed by Dirk Hohndel
parent 3a7109e44e
commit d9306125d9
4 changed files with 74 additions and 81 deletions

147
deco.c
View file

@ -21,6 +21,9 @@
#include <assert.h> #include <assert.h>
#include <planner.h> #include <planner.h>
#define cube(x) (x * x * x)
extern bool in_planner(); extern bool in_planner();
extern pressure_t first_ceiling_pressure; extern pressure_t first_ceiling_pressure;
@ -158,10 +161,6 @@ double n2_regen_radius[16]; // rs
double he_regen_radius[16]; double he_regen_radius[16];
double max_ambient_pressure; // last moment we were descending double max_ambient_pressure; // last moment we were descending
double allowable_n2_gradient[16];
double allowable_he_gradient[16];
double total_gradient[16];
double bottom_n2_gradient[16]; double bottom_n2_gradient[16];
double bottom_he_gradient[16]; double bottom_he_gradient[16];
@ -182,7 +181,56 @@ double get_crit_radius_N2()
return vpmb_config.crit_radius_N2; return vpmb_config.crit_radius_N2;
} }
static double tissue_tolerance_calc(const struct dive *dive) // Solve another cubic equation, this time
// x^3 - B x - C == 0
// Use trigonometric formula for negative discriminants (see Wikipedia for details)
double solve_cubic2(double B, double C)
{
double discriminant = 27 * C * C - 4 * cube(B);
if (discriminant < 0.0) {
return 2.0 * sqrt(B / 3.0) * cos(acos(3.0 * C * sqrt(3.0 / B) / (2.0 * B)) / 3.0);
}
double denominator = pow(9 * C + sqrt(3 * discriminant), 1 / 3.0);
return pow(2.0 / 3.0, 1.0 / 3.0) * B / denominator + denominator / pow(18.0, 1.0 / 3.0);
}
// This is a simplified formula avoiding radii. It uses the fact that Boyle's law says
// pV = (G + P_amb) / G^3 is constant to solve for the new gradient G.
double update_gradient(double next_stop_pressure, double first_gradient)
{
double B = cube(first_gradient) / (first_ceiling_pressure.mbar / 1000.0 + first_gradient);
double C = next_stop_pressure * B;
double new_gradient = solve_cubic2(B, C);
if (new_gradient < 0.0)
report_error("Negative gradient encountered!");
return new_gradient;
}
double vpmb_tolerated_ambient_pressure(double reference_pressure, int ci)
{
double n2_gradient, he_gradient, total_gradient;
if (reference_pressure >= first_ceiling_pressure.mbar / 1000.0 || !first_ceiling_pressure.mbar) {
n2_gradient = bottom_n2_gradient[ci];
he_gradient = bottom_he_gradient[ci];
} else {
n2_gradient = update_gradient(reference_pressure, bottom_n2_gradient[ci]);
he_gradient = update_gradient(reference_pressure, bottom_he_gradient[ci]);
}
total_gradient = ((n2_gradient * tissue_n2_sat[ci]) + (he_gradient * tissue_he_sat[ci])) / (tissue_n2_sat[ci] + tissue_he_sat[ci]);
return tissue_n2_sat[ci] + tissue_he_sat[ci] + vpmb_config.other_gases_pressure - total_gradient;
}
static double tissue_tolerance_calc(const struct dive *dive, double pressure)
{ {
int ci = -1; int ci = -1;
double ret_tolerance_limit_ambient_pressure = 0.0; double ret_tolerance_limit_ambient_pressure = 0.0;
@ -234,14 +282,23 @@ static double tissue_tolerance_calc(const struct dive *dive)
} }
} else { } else {
// VPM-B ceiling // VPM-B ceiling
for (ci = 0; ci < 16; ci++) { double reference_pressure;
double tolerated = tissue_n2_sat[ci] + tissue_he_sat[ci] + vpmb_config.other_gases_pressure - total_gradient[ci];
if (tolerated >= ret_tolerance_limit_ambient_pressure) { ret_tolerance_limit_ambient_pressure = pressure;
ci_pointing_to_guiding_tissue = ci; // The Boyle compensated gradient depends on ambient pressure. For the ceiling, this should set the ambient pressure.
ret_tolerance_limit_ambient_pressure = tolerated; do {
reference_pressure = ret_tolerance_limit_ambient_pressure;
ret_tolerance_limit_ambient_pressure = 0.0;
for (ci = 0; ci < 16; ci++) {
double tolerated = vpmb_tolerated_ambient_pressure(reference_pressure, ci);
if (tolerated >= ret_tolerance_limit_ambient_pressure) {
ci_pointing_to_guiding_tissue = ci;
ret_tolerance_limit_ambient_pressure = tolerated;
}
tolerated_by_tissue[ci] = tolerated;
} }
tolerated_by_tissue[ci] = tolerated; // We are doing ok if the gradient was computed within ten centimeters of the ceiling.
} } while (fabs(ret_tolerance_limit_ambient_pressure - reference_pressure) > 0.01);
} }
return ret_tolerance_limit_ambient_pressure; return ret_tolerance_limit_ambient_pressure;
} }
@ -311,10 +368,8 @@ void vpmb_start_gradient()
double gradient_n2, gradient_he; double gradient_n2, gradient_he;
for (ci = 0; ci < 16; ++ci) { for (ci = 0; ci < 16; ++ci) {
initial_n2_gradient[ci] = bottom_n2_gradient[ci] = allowable_n2_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / n2_regen_radius[ci]); initial_n2_gradient[ci] = bottom_n2_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / n2_regen_radius[ci]);
initial_he_gradient[ci] = bottom_he_gradient[ci] = allowable_he_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / he_regen_radius[ci]); initial_he_gradient[ci] = bottom_he_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / he_regen_radius[ci]);
total_gradient[ci] = ((allowable_n2_gradient[ci] * tissue_n2_sat[ci]) + (allowable_he_gradient[ci] * tissue_he_sat[ci])) / (tissue_n2_sat[ci] + tissue_he_sat[ci]);
} }
} }
@ -338,17 +393,14 @@ void vpmb_next_gradient(double deco_time, double surface_pressure)
he_c = vpmb_config.surface_tension_gamma * vpmb_config.surface_tension_gamma * vpmb_config.crit_volume_lambda * max_he_crushing_pressure[ci]; he_c = vpmb_config.surface_tension_gamma * vpmb_config.surface_tension_gamma * vpmb_config.crit_volume_lambda * max_he_crushing_pressure[ci];
he_c = he_c / (vpmb_config.skin_compression_gammaC * vpmb_config.skin_compression_gammaC * desat_time); he_c = he_c / (vpmb_config.skin_compression_gammaC * vpmb_config.skin_compression_gammaC * desat_time);
bottom_n2_gradient[ci] = allowable_n2_gradient[ci] = 0.5 * ( n2_b + sqrt(n2_b * n2_b - 4.0 * n2_c)); bottom_n2_gradient[ci] = 0.5 * ( n2_b + sqrt(n2_b * n2_b - 4.0 * n2_c));
bottom_he_gradient[ci] = allowable_he_gradient[ci] = 0.5 * ( he_b + sqrt(he_b * he_b - 4.0 * he_c)); bottom_he_gradient[ci] = 0.5 * ( he_b + sqrt(he_b * he_b - 4.0 * he_c));
total_gradient[ci] = ((allowable_n2_gradient[ci] * tissue_n2_sat[ci]) + (allowable_he_gradient[ci] * tissue_he_sat[ci])) / (tissue_n2_sat[ci] + tissue_he_sat[ci]);
} }
} }
// A*r^3 - B*r^2 - C == 0 // A*r^3 - B*r^2 - C == 0
// Solved with the help of mathematica // Solved with the help of mathematica
#define cube(x) (x * x * x)
double solve_cubic(double A, double B, double C) double solve_cubic(double A, double B, double C)
{ {
double BA = B/A; double BA = B/A;
@ -367,57 +419,6 @@ double solve_cubic(double A, double B, double C)
} }
// Solve another cubic equation, this time
// x^3 - B x - C == 0
// Use trigonometric formula for negative discriminants (see Wikipedia for details)
double solve_cubic2(double B, double C)
{
double discriminant = 27 * C * C - 4 * cube(B);
if (discriminant < 0.0) {
return 2.0 * sqrt(B / 3.0) * cos(acos(3.0 * C * sqrt(3.0 / B) / (2.0 * B)) / 3.0);
}
double denominator = pow(9 * C + sqrt(3 * discriminant), 1 / 3.0);
return pow(2.0 / 3.0, 1.0 / 3.0) * B / denominator + denominator / pow(18.0, 1.0 / 3.0);
}
// This is a simplified formula avoiding radii. It uses the fact that Boyle's law says
// pV = (G + P_amb) / G^3 is constant to solve for the new gradient G.
double update_gradient(double next_stop_pressure, double first_gradient)
{
double B = cube(first_gradient) / (first_ceiling_pressure.mbar / 1000.0 + first_gradient);
double C = next_stop_pressure * B;
double new_gradient = solve_cubic2(B, C);
if (new_gradient < 0.0)
report_error("Negative gradient encountered!");
return new_gradient;
}
void boyles_law(double next_stop_pressure)
{
int ci;
if (!in_planner() || prefs.deco_mode != VPMB)
return;
// This should be a tautology but prevents a numerical instability.
if (IS_FP_SAME(next_stop_pressure, first_ceiling_pressure.mbar / 1000.0))
return;
if (!first_ceiling_pressure.mbar)
return;
for (ci = 0; ci < 16; ++ci) {
allowable_n2_gradient[ci] = update_gradient(next_stop_pressure, bottom_n2_gradient[ci]);
allowable_he_gradient[ci] = update_gradient(next_stop_pressure, bottom_he_gradient[ci]);
total_gradient[ci] = ((allowable_n2_gradient[ci] * tissue_n2_sat[ci]) + (allowable_he_gradient[ci] * tissue_he_sat[ci])) / (tissue_n2_sat[ci] + tissue_he_sat[ci]);
}
}
void nuclear_regeneration(double time) void nuclear_regeneration(double time)
{ {
@ -507,7 +508,7 @@ double add_segment(double pressure, const struct gasmix *gasmix, int period_in_s
tissue_he_sat[ci] += he_satmult * phe_oversat * he_f; tissue_he_sat[ci] += he_satmult * phe_oversat * he_f;
} }
calc_crushing_pressure(pressure); calc_crushing_pressure(pressure);
return tissue_tolerance_calc(dive); return tissue_tolerance_calc(dive, pressure);
} }
void dump_tissues() void dump_tissues()

1
dive.h
View file

@ -800,7 +800,6 @@ extern double restore_deco_state(char *data);
extern void nuclear_regeneration(double time); extern void nuclear_regeneration(double time);
extern void vpmb_start_gradient(); extern void vpmb_start_gradient();
extern void vpmb_next_gradient(double deco_time, double surface_pressure); extern void vpmb_next_gradient(double deco_time, double surface_pressure);
extern void boyles_law(double next_stop_pressure);
/* this should be converted to use our types */ /* this should be converted to use our types */
struct divedatapoint { struct divedatapoint {

View file

@ -1172,9 +1172,6 @@ bool plan(struct diveplan *diveplan, char **cached_datap, bool is_planner, bool
previous_point_time = clock; previous_point_time = clock;
stopping = true; stopping = true;
// Boyles Law compensation
boyles_law(depth_to_mbar(stoplevels[stopidx], &displayed_dive) / 1000.0);
/* Check we need to change cylinder. /* Check we need to change cylinder.
* We might not if the cylinder was chosen by the user * We might not if the cylinder was chosen by the user
* or user has selected only to switch only at required stops. * or user has selected only to switch only at required stops.
@ -1224,9 +1221,6 @@ bool plan(struct diveplan *diveplan, char **cached_datap, bool is_planner, bool
plan_add_segment(diveplan, clock - previous_point_time, depth, gas, po2, false); plan_add_segment(diveplan, clock - previous_point_time, depth, gas, po2, false);
previous_point_time = clock; previous_point_time = clock;
stopping = true; stopping = true;
// Boyles Law compensation
boyles_law(depth_to_mbar(stoplevels[stopidx], &displayed_dive) / 1000.0);
} }
/* Are we waiting to switch gas? /* Are we waiting to switch gas?

View file

@ -859,7 +859,6 @@ void calculate_deco_information(struct dive *dive, struct divecomputer *dc, stru
if ((t1 - j < time_stepsize) && (j < t1)) if ((t1 - j < time_stepsize) && (j < t1))
time_stepsize = t1 - j; time_stepsize = t1 - j;
} }
boyles_law(depth_to_mbar((entry->depth < (entry - 1)->ceiling) ? entry->depth : (entry - 1)->ceiling, &displayed_dive) / 1000.0);
if (t0 == t1) if (t0 == t1)
entry->ceiling = (entry - 1)->ceiling; entry->ceiling = (entry - 1)->ceiling;
else else