core: use std::vector<> to store divecomputer samples

This is a hairy one, because the sample code is rather tricky.

There was a pattern of looping through pairs of adjacent samples,
for interpolation purposes. Add an range adapter to generalize
such loops.

Removes the finish_sample() function: The code would call
prepare_sample() to start parsing of samples and then
finish_sample() to actuall add it. I.e. a kind of commit().

Since, with one exception, all users of prepare_sample()
called finish_sample() in all code paths, we might just add
the sample in the first place. The exception was sample_end()
in parse.cpp. This brings a small change: samples are now
added, even if they could only be parsed partially. I doubt
that this makes any difference, since it will only happen
for broken divelogs anyway.

Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
This commit is contained in:
Berthold Stoeger 2024-05-19 12:38:38 +02:00 committed by bstoeger
parent bc761344d4
commit f120fecccb
28 changed files with 588 additions and 715 deletions

View file

@ -21,6 +21,7 @@ divecomputer::~divecomputer()
}
divecomputer::divecomputer(divecomputer &&) = default;
divecomputer &divecomputer::operator=(const divecomputer &) = default;
/*
* Good fake dive profiles are hard.
@ -81,7 +82,7 @@ divecomputer::divecomputer(divecomputer &&) = default;
* In general, we have more free variables than we have constraints,
* but we can aim for certain basics, like a good ascent slope.
*/
static int fill_samples(struct sample *s, int max_d, int avg_d, int max_t, double slope, double d_frac)
static int fill_samples(std::vector<sample> &s, int max_d, int avg_d, int max_t, double slope, double d_frac)
{
double t_frac = max_t * (1 - avg_d / (double)max_d);
int t1 = lrint(max_d / slope);
@ -108,7 +109,7 @@ static int fill_samples(struct sample *s, int max_d, int avg_d, int max_t, doubl
* we should assume either a PADI rectangular profile (for short and/or
* shallow dives) or more reasonably a six point profile with a 3 minute
* safety stop at 5m */
static void fill_samples_no_avg(struct sample *s, int max_d, int max_t, double slope)
static void fill_samples_no_avg(std::vector<sample> &s, int max_d, int max_t, double slope)
{
// shallow or short dives are just trapecoids based on the given slope
if (max_d < 10000 || max_t < 600) {
@ -130,27 +131,24 @@ static void fill_samples_no_avg(struct sample *s, int max_d, int max_t, double s
void fake_dc(struct divecomputer *dc)
{
alloc_samples(dc, 6);
struct sample *fake = dc->sample;
int i;
dc->samples = 6;
/* The dive has no samples, so create a few fake ones */
int max_t = dc->duration.seconds;
int max_d = dc->maxdepth.mm;
int avg_d = dc->meandepth.mm;
memset(fake, 0, 6 * sizeof(struct sample));
if (!max_t || !max_d) {
dc->samples.clear();
return;
}
std::vector<struct sample> &fake = dc->samples;
fake.resize(6);
fake[5].time.seconds = max_t;
for (i = 0; i < 6; i++) {
for (int i = 0; i < 6; i++) {
fake[i].bearing.degrees = -1;
fake[i].ndl.seconds = -1;
}
if (!max_t || !max_d) {
dc->samples = 0;
return;
}
/* Set last manually entered time to the total dive length */
dc->last_manual_time = dc->duration;
@ -167,7 +165,7 @@ void fake_dc(struct divecomputer *dc)
* the user supplied data */
fill_samples_no_avg(fake, max_d, max_t, std::max(2.0 * max_d / max_t, (double)prefs.ascratelast6m));
if (fake[3].time.seconds == 0) { // just a 4 point profile
dc->samples = 4;
dc->samples.resize(4);
fake[3].time.seconds = max_t;
}
return;
@ -235,16 +233,16 @@ enum divemode_t get_current_divemode(const struct divecomputer *dc, int time, co
int get_depth_at_time(const struct divecomputer *dc, unsigned int time)
{
int depth = 0;
if (dc && dc->sample)
for (int i = 0; i < dc->samples; i++) {
if (dc->sample[i].time.seconds > (int)time)
if (dc) {
for (const auto &sample: dc->samples) {
if (sample.time.seconds > (int)time)
break;
depth = dc->sample[i].depth.mm;
depth = sample.depth.mm;
}
}
return depth;
}
static void free_dc(struct divecomputer *dc)
{
delete dc;
@ -257,60 +255,28 @@ void free_dive_dcs(struct divecomputer *dc)
STRUCTURED_LIST_FREE(struct divecomputer, dc->next, free_dc);
}
/* make room for num samples; if not enough space is available, the sample
* array is reallocated and the existing samples are copied. */
void alloc_samples(struct divecomputer *dc, int num)
{
if (num > dc->alloc_samples) {
dc->alloc_samples = (num * 3) / 2 + 10;
dc->sample = (struct sample *)realloc(dc->sample, dc->alloc_samples * sizeof(struct sample));
if (!dc->sample)
dc->samples = dc->alloc_samples = 0;
}
}
void free_samples(struct divecomputer *dc)
{
if (dc) {
free(dc->sample);
dc->sample = 0;
dc->samples = 0;
dc->alloc_samples = 0;
}
}
struct sample *prepare_sample(struct divecomputer *dc)
{
if (dc) {
int nr = dc->samples;
struct sample *sample;
alloc_samples(dc, nr + 1);
if (!dc->sample)
return NULL;
sample = dc->sample + nr;
memset(sample, 0, sizeof(*sample));
dc->samples.emplace_back();
auto &sample = dc->samples.back();
// Copy the sensor numbers - but not the pressure values
// from the previous sample if any.
if (nr) {
if (dc->samples.size() >= 2) {
auto &prev = dc->samples[dc->samples.size() - 2];
for (int idx = 0; idx < MAX_SENSORS; idx++)
sample->sensor[idx] = sample[-1].sensor[idx];
sample.sensor[idx] = prev.sensor[idx];
}
// Init some values with -1
sample->bearing.degrees = -1;
sample->ndl.seconds = -1;
sample.bearing.degrees = -1;
sample.ndl.seconds = -1;
return sample;
return &sample;
}
return NULL;
}
void finish_sample(struct divecomputer *dc)
{
dc->samples++;
}
struct sample *add_sample(const struct sample *sample, int time, struct divecomputer *dc)
{
struct sample *p = prepare_sample(dc);
@ -318,7 +284,6 @@ struct sample *add_sample(const struct sample *sample, int time, struct divecomp
if (p) {
*p = *sample;
p->time.seconds = time;
finish_sample(dc);
}
return p;
}
@ -331,17 +296,12 @@ struct sample *add_sample(const struct sample *sample, int time, struct divecomp
*/
void fixup_dc_duration(struct divecomputer *dc)
{
int duration, i;
int lasttime, lastdepth, depthtime;
int duration = 0;
int lasttime = 0, lastdepth = 0, depthtime = 0;
duration = 0;
lasttime = 0;
lastdepth = 0;
depthtime = 0;
for (i = 0; i < dc->samples; i++) {
struct sample *sample = dc->sample + i;
int time = sample->time.seconds;
int depth = sample->depth.mm;
for (const auto &sample: dc->samples) {
int time = sample.time.seconds;
int depth = sample.depth.mm;
/* We ignore segments at the surface */
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
@ -357,7 +317,6 @@ void fixup_dc_duration(struct divecomputer *dc)
}
}
/*
* What do the dive computers say the water temperature is?
* (not in the samples, but as dc property for dcs that support that)
@ -413,28 +372,6 @@ void copy_events(const struct divecomputer *s, struct divecomputer *d)
*pev = NULL;
}
void copy_samples(const struct divecomputer *s, struct divecomputer *d)
{
/* instead of carefully copying them one by one and calling add_sample
* over and over again, let's just copy the whole blob */
if (!s || !d)
return;
int nr = s->samples;
d->samples = nr;
d->alloc_samples = nr;
// We expect to be able to read the memory in the other end of the pointer
// if its a valid pointer, so don't expect malloc() to return NULL for
// zero-sized malloc, do it ourselves.
d->sample = NULL;
if(!nr)
return;
d->sample = (struct sample *)malloc(nr * sizeof(struct sample));
if (d->sample)
memcpy(d->sample, s->sample, nr * sizeof(struct sample));
}
void add_event_to_dc(struct divecomputer *dc, struct event *ev)
{
struct event **p;
@ -528,7 +465,6 @@ int match_one_dc(const struct divecomputer *a, const struct divecomputer *b)
void free_dc_contents(struct divecomputer *dc)
{
free(dc->sample);
free_events(dc->events);
}