The profile info was generated using nasty string concatenation that the
membuffers are much better at anyway. And membuffers don't need those
arbitrarily sized fixed buffers (500 bytes? Why 500 bytes?).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
libdivecomputer already supports this, but we didn't save it.
Tested-by: Oscar Isoz <jan.oscar.isoz@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
With this patch the tooltip is ready to work on the new profile, we just
need to actually use it.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Created a method to check if calculations should take place
taking into consideration what changed on the model. if the
model changes *everything*, them, all calculations should
be done, but if just some of the columns of the model are
changed, only those columns should trigger an visual update
on the items.
In theory this patch looks right, but something is wrong (
calculations are not being made. ), so I'll commit this any
how, and fix on the next commit.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This is a better way since we can enable / disable the deco by changing
the preferences later, and that will not need to recalculate everything
just because a polygon was set to invisible.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This commit is rather big, and I forgot to cut it in pieces.
The first part creates a new 'calculate_gas_information' that will not
fill the profile_info->maxpp member ( that should be removed from it as
soon as the new dialog is finished ). The reason for that is that all of
the profile data will be calculated and the graph needs to update
dynamically, so whenever the settings changes, I ask for the model which
is the biggest graph and replot only the ones we need.
The second part adds a new animation function 'animdelete' to fade-out and
delete the item when it's done. the old function 'hide' did just that but
a hide shouldn't delete anything.
The third part is preferenes awareness for the PP graphs. I created two
new functions that receive the settings key for visibility and use the
QSettings to show / hide them. This also works quite well for the axis;
if no graph is visible, the axis will also hide itself.
The fourth part is colors. The pp graphs now have the correct colors.
And a bit of code cleanup too.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This version of the create plot info is the same as before, with the
difference that it doesn't depends on the gc.
Also fixed a crash.
The Pressure Index, Information and interpolated seems wrong,
I'm getting only zeroes.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Another futile attempt to cleanup the code and make coding style and
whitespace consistent. I tried to add a file that describes the key points
of our coding style. I have no illusions that this will help the least
bit...
This commit should ONLY change whitespace
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Created a new version of calculate_max_limits that doesn't have a
graphics_context and returns a plot_info. The code is basically the same
as the old calculate_max_limits, so there's not much to talk about.
The rest of the code is just boilerplate to plug the Profile
code with the axis and model stuff, to be plotted on screen.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This model encapsulates the plot_info struct and provides
a consistent way to show it using the Qt Model view system
in the C++ and QML way. For a QGraphicsItem that should show
a Profile, this is the start.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Earlier we converted the C++ code to using true/false, and this converts
the C code to using the same style.
We already depended on stdbool.h in subsurfacestartup.[ch], and we build
with -std=gnu99 so nobody could build subsurface without a c99 compiler.
[Dirk Hohndel: small change suggested by Thiago Macieira: don't include
stdbool.h for C++]
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Interpolated pressure should always be set, even it we didn't
calculate a new one. In this case we should just use the last one.
Signed-off-by:Rodrigo Severo <rodrigo@fabricadeideias.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
When an interpolated segment is on the surface we get no pressure time -
and try to divide by zero.
(plus a small whitespace issue that slipped throught the cracks earlier)
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
The small straight parts at the end of tank pressure lines are more of a
aesthetic issue, not causing real harm so it is no reason to remove the
SURFACE_THRESHOLD test from pressure_time function only because of this.
Also improved interpolate data debuging, rearranged
get_pr_interpolate_data and removed an unused variable from
get_pr_interpolate_data. No real change here, just trying to make the code
clearer.
[Dirk Hohndel: clean up whitespace damage from this and the previous
commit]
Signed-off-by: Rodrigo Severo <rodrigo@fabricadeideias.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Interpolated lines for tank pressures were presenting discontinuities
(sudden drops) and stalls (horizontal lines) with certain dive profiles.
The main reason seems to be that the discrete interpolation of tank
pressure was adding small pressure increments that could be rounded down
or up repeatedly generating cumulative rounding errors that would mean
either a delay on pressure drop that would be drawn as a sudden drop or as
a premature pressure drop that would result in a flat line.
This patch changes the way the discrete interpolation is done, so that we
don't have cumulative rounding errors distorting tank pressure lines.
To calculate accumulated pressure_time values the get_pr_interpolate_data
function was created. The fact that get_pr_interpolate_data transverses
the beginning of the plot_info entry list for each entry that needs
interpolated tank pressure isn't optimal at all. There might be a way to
properly track the data necessary to interpolate tank pressures from
inside the main pi->entry loop in fill_missing_tank_pressures.
Unfortunately I didn't manage to do it inside fill_missing_tank_pressures
so we have get_pr_interpolate_data.
The SURFACE_THRESHOLD test from pressure_time function was also removed as
no matter how shallow the diver is, if he is using the cylinder to breathe
the cylinders tank pressure should be affected.
Signed-off-by: Rodrigo Severo <rodrigo@fabricadeideias.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
These adds some ifdef's around some debug functions to disable them when
not using them.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
last_pressure is updated a couple of lines later, so no need to do it
here.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
NDL and TTS doesn't show up in the printed profiles, and it takes
significant time to calculate, so just don't do it.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
While playing with the ruler, I figured that it happened only once that
my minimum speed was not 0 for a segment long enough to get any display.
And it was a "dive" in an hyperbaric chamber...
This patch replaces the minimum speed with the maximum descent speed and
the maximum speed with the maximum ascent speed.
Signed-off-by: Alexandre Belloni <alexandre.belloni@piout.net>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Don't calculate pressure-track for depth above SURFACE_THRESHOLD,
because then we would guess that were actually at surface breathing.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Use get_cylinder_index that handles SAMPLE_EVENT_GASCHANGE and
SAMPLE_EVENT_GASCHANGE2.
This also removes the need for a special case where get_gasidx returns
-1, because get_cylinder_index always returns the "closest" gas that it
finds.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
In the Gtk version there were no option to disable the showing of time
in the mouse over, so this removes that option to limit the amount of
clutter in the settings panel.
This also renames the time and temperature to match the names they used
to have. T -> @, Temp -> T
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
When reordering the info overlay content to make it jump around less,
somehow the SAC data got printed twice.
[Dirk Hohndel: rewrote incorrect commit message]
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Store the calculated values in separate variables in the plot_data
struct, and display them separate. This makes sure we don't confuse the
calculated values with the ones from a dc, and now we can compare the
two.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Break the huge calculate_deco_information into three different functions.
One for the current deco calculations, one for the ndl/tts/deco stop and
one for the gas calculations.
This makes it easier to disable/enable different functionality.
This also gets rid if the ccrdive state variable, and keeps that state
in the plot_data struct. Now we calculate the deco before we calculate
the gas properties, so if we have a po2, we're in ccr-mode, and if we
don't, we're in oc mode.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
When moving along the plot, it's hard to look at a certain value when its
place in the info box moves due to values being added or removed above it.
This commit moves the "stable" values up top in the info box and the
values that come and go further down, so that the box expands downwards.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This changes the special handling of ndl calculations when we deem that we
are too shallow for doing them. Previously we just set ndl to -1 and
printed a "-", now we return and print max_ndl, just as how most
divecomputers work.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Let the user choose if the calculation of ndl and tts is worth the time
it takes.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This will fill out the gaps of temperature data between all the points
so we always have a temperature to show in the info box.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Ruler was hard-coded to use seconds as speed unit. This makes it use
get_vertical_speed_units to switch between seconds and minutes.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This is really nice to have when looking at specific parts of a dive.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
D as in depth, T as in time and not another T as in temp.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This may seem like a really odd change - but with this change the Qt tools
can correctly parse the C files (and qt-gui.cpp) and get the context for
the translatable strings right.
It's not super-pretty (I'll admit that _("string literal") is much easier
on the eye than translate("gettextFromC", "string literal") ) but I think
this will be the price of success.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
I am not removing this but leaving it around as this is useful for a
feature that we still need to enable - the ability to filter out which
events to display. This existed in 3.1 but is missing in the Qt version.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
- remove the build flags and libraries from the Makefile / Configure.mk
- remove the glib types (gboolean, gchar, gint64, gint)
- comment out / hack around gettext
- replace the glib file helper functions
- replace g_ascii_strtod
- replace g_build_filename
- use environment variables instead of g_get_home_dir() & g_get_user_name()
- comment out GPS string parsing (uses glib utf8 macros)
This needs massive cleanup, but it's a snapshot of what I have right now, in
case people want to look at it.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Some people (free divers) are loving ft/s or m/s units for vertical speeds.
Now they can choose between /min or /s in the configuration (only Qt UI).
Signed-off-by: Patrick Valsecchi <patrick@thus.ch>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
I ran subsurface with valgrind and it found a few errors.
[Dirk Hohndel: split this out from a much bigger patch that is still under
review]
Signed-off-by: Patrick Valsecchi <patrick@thus.ch>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
There is debate on this one, as free divers WANT the xx/sec values.
This needs to become flexible depending on whether you are in freedive
mode or not.
Fixes#202
Signed-off-by: Patrick Valsecchi <patrick@thus.ch>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This patch adds a ruler QGraphicsItem which can be dragged
along the profile. The ruler displays minimum, maximum and
average for depth and speed (ascent/descent rate). Also, all used
gas will be displayed.
This also adds a new attribute to struct plot_data to store the
speed (not just as velocity_t).
Signed-off-by: Maximilian Güntner <maximilian.guentner@gmail.com>
plot_data.o2 and plot_data.he was wrong for all dives, due to that
cylinderindex was set right first in populate_pressure_information, and
thus those two contained bogus information.
This makes the plot-text use cylinderindex-lookup as everything else.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This is really nice to have when looking at specific coutures of a dive
or events.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Old gasswitch events only contains O2, so don't look at he part when
the event doesn't contain a He part.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Calculate TTS and NDL, and Deco stops when they don't already exist in
the samle and show them in the mouse-over.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
When seeing that you have 0 min left, it looks kinda wierd, so rather
round up instead of down.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
In calculate_deco_information we compute the ppo2 so we can graph it,
but if we send that ppo2 on to add_segment it will just reverse the
computation and introduce errors.
Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This is a feature that had been requested a few times in the past and when
debugging my "show only used gases" commit I realized that this would have
been extremely useful to have...
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
I think that displaying tissue loadings either as pressure or as
percentages is not very intuitive but that it makes much more sense when
translated to ceiling depths.
This change enables just that for the 16 tissues in our calculated ceiling
and visualizes this in the profile graph.
There is a checkbox in the preferences to turn this on. If enabled, all
tissues having non-trivial ceilings are also shown in the info box.
Signed-off-by: Robert C. Helling <helling@atdotde.de>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
After the 3.1 release it is time to shift the focus on the Qt effort - and
the best way to do this is to merge the changes in the Qt branch into
master.
Linus was extremely nice and did a merge for me. I decided to do my own
merge instead (which by accident actually based on a different version of
the Qt branch) and then used his merge to double check what I was doing.
I resolved a few things differently but overall what we did was very much
the same (and I say this with pride since Linus is a professional git
merger)
Here's his merge commit message:
This is a rough and tumble merge of the Qt branch into 'master',
trying to sort out the conflicts as best as I could.
There were two major kinds of conflicts:
- the Makefile changes, in particular the split of the single
Makefile into Rules.mk and Configure.mk, along with the obvious Qt
build changes themselves.
Those changes conflicted with some of the updates done in mainline
wrt "release" targets and some helper macros ($(NAME) etc).
Resolved by largely taking the Qt branch versions, and then editing
in the most obvious parts of the Makefile updates from mainline.
NOTE! The script/get_version shell script was made to just fail
silently on not finding a git repository, which avoided having to
take some particularly ugly Makefile changes.
- Various random updates in mainline to support things like dive tags.
The conflicts were mainly to the gtk GUI parts, which obviously
looked different afterwards. I fixed things up to look like the
newer code, but since the gtk files themselves are actually dead in
the Qt branch, this is largely irrelevant.
NOTE! This does *NOT* introduce the equivalent Qt functionality.
The fields are there in the code now, but there's no Qt UI for the
whole dive tag stuff etc.
This seems to compile for me (although I have to force
"QMAKE=qmake-qt4" on f19), and results in a Linux binary that seems to
work, but it is otherwise largely untested.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
The selected dive was being set to zero when the program
started, but zero is actually the first dive. There
were workarounds on the gtk code for that probably
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
The value of 0 that we used is actually a valid value and could cause
confusion.
Suggested-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Align statistics tab labels as per infotab.
Amend helper function to show degree symbol for temp measurements.
Change order of member initialisation list to match order of decl
(ProfileGraphicsView::ProfileGraphicsView)
Signed-off-by: Amit Chaudhuri <amit.k.chaudhuri@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Plot the numbers on the left of the profile.
It seems that everythign is being plotted -
But I can see that there are coordinate-errors on the
code. ( the GTK one plots some curves below of the
dive, but the Qt one is overlapping - probably the
way that I'm using the gc information)
Need to investigate a bit.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
a few code was moved around, a macro that contained
the form of x ? : y; had to be rewritten to x ? x : y
since c++ doesn't allow ternarys without the middle operator.
The color-choosing for the Cylinder Pressure broke
on the Qt port - but it's a small issue.
I'm painting everyone as 'dark green' now, will
fix that later.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Make the graphics_context part of the ProfileGraphicsView and remember
that the plot info is already a part of the graphics_context (we kept
passing around both of them in the Gtk code... pointless but a leftover
from before adding the pi to the gc...)
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
There are subtle differences, the Cairo version looks
prettier - but that's fixable. I did a small triangle
and a exclamation mark on it. maybe a gradient would
make a good difference there.
this item has a ItemIgnoresTransformation tag, so
scalling, rotating or zooming will not change it's
size.
The tooltips are not yet ported.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
The plot_text function from the cairo-methods are now ported
on the qt version. this patch moves around some code since
quite defines are already used and I didn't want to reinvent
the whell.
Original code used varargs, but I prefered to change it
, so now it receives just a reference to a QString object
and the string must be constructed before sending,
using the .arg methods.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
The mean depth now is plotted correctly.
I wanted to do more stuff on this commit, but since
it required that a few things on profile.c got moved
to profile.h, commited to not have a huge blob for review.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
The first plotting method was removed from profile.c
to profilegraphics.cpp and some conversion ( almost 1 to 1 )
was made so that the code could work.
Since the code is big - this commit has just a part of it
working - it plots the grid. but already works for testing
the resizing of the window and Zooming ( unimplemented )
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Started working on the Qt version of the Plot, initially
nothing is printed - but this is not a bad thing,
the program doesn't explodes too. :)
some work had to be done about the 'bool/gboolean' stuff
so I removed all gbooleans in the code that I'v encountered.
A new file was created ( profile.h ) so I could put the
signatures of helper methods that cairo used to call.
till now the code computes the max limits.
Next patch the first drawing will be made.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
The colors on colors.h were done to fill a special
struct by Subsurface - I removed that structure and
replaced the code that generated the map of colors
to a QMap. I know that this changes are not very
'welcomed', but C++ has issues on creating & initializing
complex static members, this was the best way that I could
think of.
Signed-off-by: Tomaz Canabrava <tcanabrava@kde.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Doing this on Arch Linux with gcc 4.8.0 helped find one real bug.
The rest are simply changes to make static functions externally visible
(as they are kept around to eventually become helpers used by Qt) which
for now avoids the warnings.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
- rip all Gtk code from qt-gui.cpp
- don't compile Gtk specific files
- don't link against Gtk libraries
- don't compile modules we don't use at all (yet)
- use #if USE_GTK_UI on the remaining files to disable Gtk related parts
- disable the non-functional Cochran support while I'm at it
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
The pressure interpolation code mostly worked for the simple cases, but
got terminally confused for some more complex gas change situations,
resulting in nonsensical interpolations.
This simplifies and clarifies the code a bit, and in the process fixes a
few special cases where the gas interpolation segments didn't end up
having the end conditions set.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
They do the "02=0 means air" thing autmatically, and make for less
typing. So use them more widely in places that looked up the o2 and he
permille values of a gasmix.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
get_cylinder_index() looks up which cylinder to use based on the
gaschange event that describes the mix. However, it was both buggy and
not very good.
It was buggy because it didn't understand about our air rules, and it
was not very good because it required an exact match (after rounding our
permille-based numbers to percent).
So fix it to use the right permille values, and look for a closest match
(using the normal sum-of-squares distance function - although I wonder
if we should consider helium percentages to be "more important" and give
them a stronger weight).
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
.. so that different computers that have different ordering of the same
cylinders will see the end result the same way.
This also fixes up the sample sensor index and generates special initial
tank change events for the dive computers that had their cylinder
indexes renamed on them.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Some colors such as the ones for ceiling were still green on B/W
print. This patch makes all colors in the second row
of profile.c:profile_color monochrome.
Signed-off-by: Lubomir I. Ivanov <neolit123@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Also make the profile border color the same as the depth grid color.
Fixes#97
Signed-off-by: Lubomir I. Ivanov <neolit123@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This replaces the hardcoded sizes all over the sources.
Make the size in the text_render_options_t a double - With this you can
compile Subsurface with
make CLCFLAGS=-DTEXT_SCALE=1.5
and the fonts in the profile are 50% bigger. Very nice on a high-pixel
density display.
Also remove the unused text_render_options for event text.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
As logical extension of the ability to add bookmarks and gas changes this
adds the ability to remove (any arbitrary) event that happens at the mouse
position (specifically, that is within +/- six (scaled) pixels around the
x-position (time) of the mouse). That's the same width that the triangle
marker occupies which was moved to be centered around the event time in
commit 5752e9742e86 ("Finetune event triangle position to have the top
point at the event time").
Fixes#60
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This is completely bogus as all it does is print out the corresponding
time for the spot we right-clicked on the profile. But that at least shows
that the infrastructure is working as intended...
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
- Add a button and callback to the print dialog to let the user select
color printing.
- Add a state variable to the options struct to track the users choice.
- Use a darker color for the grid on dive plot; that way we can see it.
- Default to use color printing.
Signed-off-by: Amit Chaudhuri <amit.k.chaudhuri@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
A couple of these could clearly cause a crash just like the one fixed by
commit 00865f5a1e1a ("equipment.c: Fix potential buffer overflow in
size_data_funct()").
One would append user input to fixed length buffer without checking.
We were hardcoding the (correct) max path length in macos.c - replaced by
the actual OS constant.
But the vast majority are just extremely generous guesses how long
localized strings could possibly be.
Yes, this commit is likely leaning towards overkill. But we have now been
bitten by buffer overflow crashes twice that were caused by localization,
so I tried to go through all of the code and identify every possible
buffer that could be affected by this.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
this patch adds a 3rd column to the media array of rgba so we now have one
each for screen, b/w & color printing. I have defaulted to using the
same color printing & screen, but this can be altered anytime.
I have checked that the application still compiles and prints. The print
out (colour option selected) shows the deco ceiling steps in pink but
everything else appears grey scale. Further work will be required to apply
the colours to the print out, although I'm not yet sure what that involves.
Signed-off-by: Amit Chaudhuri <amit.k.chaudhuri@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
We create a fake divecomputer in order to draw a reasonable profile, but
when setting that up we used an empty divecomputer instead of starting
with the one that we have. This lost data (e.g., the model name of the
dc).
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This creates a helper function called "gas_volume()" that takes the
cylinder and a particular pressure, and returns the estimated volume of
the gas at surface pressure, including proper approximation of the
incompressibility of gas.
It very much is an approximation, but it's closer to reality than
assuming a pure ideal gas. See for example compressibility at
http://en.wikipedia.org/wiki/Compressibility_factor
Suggested-by: Jukka Lind <jukka.lind@iki.fi>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Uses profile.c:evn_foreach() to retrieve the number of events, which
if zero, no table is added in the dialog and the label is added instead.
Signed-off-by: Lubomir I. Ivanov <neolit123@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
GET_LOCAL_SAC did not check if the two entries had different time stamps
and could therefore cause a divide-by-zero. x86 doesn't fault on that -
it's still wrong. This now calls a function that does proper checking of
all the values involved in the calculation.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
While the profile switched between different divecomputers, the Dive Info
notebook always showed either information from the first divecomputer or
(with some of the recent changes) information that had been collected from
all divecomputers and somehow consolidated for the dive.
With this commit we now show the data from the same divecomputer that is
also shown in the profile (which means if some data is available from one
of the divecomputers and not from another that will be correctly reflected
in the Dive Info notebook as the user cycles through the divecomputers.
This does beg the question if we should have some kind of "best data
available, considering all divecomputers" mode - but that's definitely not
something I'll tackle prior to 3.0.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Populate during dive fixup as the maximum depth shown by all the
divecomputers. Use this value (instead of the one in the first
divecomputer) in printing, statistics, etc.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
In commit b6c9301e58 ("Move more dive computer filled data to the
divecomputer structure") we moved the fields that get filled in by the
dive computers to be per-divecomputer data structures.
This patch re-creates some of those fields back in the "struct dive",
but now the fields are initialized to be a reasonable average from the
dive computer data. We already did some of this for the temperature
min/max fields for the statistics, so this just continues that trend.
The goal is to make it easy to look at "dive values" without having to
iterate over dive computers every time you do. Just do it once in
"fixup_dive()" instead.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
There are two ways to look at surface pressure. One is to say "what was
the surface pressure during that dive?" - in that case we now return an
average over the pressure reported by the different divecomputers (or the
standard 1013mbar if none reported any).
Or you want to do specific calculations for a specific divecomputer - in
which case we access only the pressure reported by THAT divecomputer, if
present (and fall back to the previous case, otherwise).
We still have lots of places in Subsurface that only act on the first
divecomputer. As a side effect of this change we now make this more
obvious as we in those cases pass a pointer to the first divecomputer
explicitly to the calculations.
Either way, this commit should prevent us from ever mistakenly basing our
calculations on a surface pressure of 0 (which is the initial bug in
deco.c that triggered all this).
Similar changes need to be made for other elements that we currently only
use from the first divecomputer, i.e., salinity.
Reported-by: Robert C. Helling <helling@atdotde.de>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
The temperature plot line was drawn to the end of the dive, but the last
temperature plot text was printed near the last temperature *sample*.
This was most visible on dives/test27.xml where two "20˚C" were
printed on top of each other at the start of the dive, while nothing
was printed at the end.
Signed-off-by: Henrik Brautaset Aronsen <subsurface@henrik.synth.no>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
We had this special logic to not show the end of a dive when a dive
computer shows a series of very shallow samples (basically snorkeling
back to shore after the dive ended). However, that logic ended up being
global per dive, which is very annoying when you have two or more dive
computers, and it decides to cut off the second one because the first
one surfaces.
So get rid of this per-dive state, and just use the plot-info 'maxtime'
field for this (we never used the 'start' case anyway). That way we
will properly cut off boring surface entries only when they are past the
end of the interesting entries of *all* dive computers, and we won't be
cutting things short.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
It seemed so smart to just base the coordinates on what's already in the
graphics context. Except that we apparently got a 0 to 0 range for y
coordinates if there are no pressure samples for a dive.
This fixes the problem and GF values are shown even for dives without
pressure samples.
Reported-by: Miika Turkia <miika.turkia@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This moves some double/floating handling for po2 to plain integer. There
are still non int values around (also for phe and po2) in the plot area.
Signed-off-by: Jan Schubert <Jan.Schubert@GMX.li>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Fixing the SP change event and introducing a bailout scenario.
I decided not to use a event showing SP=0.0 nor using a gaschange event as
is in fact there is no gas change related to bailing out itself. If there
is also a gaschange for the event it will be displayed anyway.
Signed-off-by: Jan Schubert <Jan.Schubert@GMX.li>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
When the data file is closed we should reset the events that we offer for
filtering.
Reported-by: Sergey Starosek <sergey.starosek@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Commit a52b0aa5ea8d ("Show Gradient Factors in plot when showing
calculated ceilings") incorrectly modified the gc which caused the mouse
position no longer correctly being correlated to the time on the plot.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
When we create the event names, the name itself does not include the
information about whether the event is the beginning or end of some
state, so we end up having things like events named "deco" and then in
the event flags it says whether this is the *beginning* of deco, or the
end.
And when we show the event, we only used to show the name. This patch
makes us show whether it's the begin or end event for events that have
those flags. So now you see "deco begin" and "deco end" instead of just
two events both called "deco".
It would perhaps be nice if we somehow showed the range between the
events too, and paired them up visually some way, but that's a separate
and much more difficult thing to do.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Mostly coding style and whitespace changes plus making lots of functions
static that have no need to be extern. This also helped find a bit of code
that is actually no longer used.
This should have absolutely no functional impact - all changes should be
purely cosmetic. But it removes a bunch of lines of code and makes the
rest easier to read.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This adds the GFlow/high values used to calculate the ceiling (if any).
Right now it shows those numbers even if at no point of the dive there was
an actual ceiling (but only if showing the ceiling itself is enabled).
This should make it easier to for the user to make sense of the calculated
ceiling, especially if posting screen shots.
As an aside - for some dive computers like the OSTC and the Shearwaters we
should be able to also plot the GF used by its calculation which might be
interesting for comparison purposes, as both of them also give us the
ceiling (lowest deco stop) calculated during the dive..
See #13
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This made sense briefly when libdivecomputer reported ceiling data through
events with those flags, but it actually made us hide valid events from
some divecomputers that give us only very limited information (e.g., deco
events from some Suunto divecomputers).
Reported-by: Henrik Brautaset Aronsen <subsurface@henrik.synth.no>
Analyzed-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
The plot-info per-event 'same_cylinder' logic was fragile, and caused
us to not print the beginning pressure of the first cylinder.
In particular, there was a nasty interaction with not all plot entries
having pressures, and the whole logic that avoid some of the early
plot entries because they are fake entries that are just there to make
sure that we don't step off the edge of the world. When we then only
do certain things on the particular entries that don't have the same
cylinder as the last plot entry, things don't always happen like they
should.
Fix this by:
- get rid of the computed "same_cylinder" state entirely. All the
cases where we use it, we might as well just look at what the last
cylinder we used was, and thus "same_cylinder" is just about testing
the current cylinder index against that last index.
- get rid of some of the edge conditions by just writing the loops
more clearly, so that they simply don't have special cases. For
example, instead of setting some "last_pressure" for a cylinder at
cylinder changes, just set the damn thing on every single sample. The
last pressure will automatically be the pressure we set last! The code
is simpler and more straightforward.
So this simplifies the code and just makes it less fragile - it
doesn't matter if the cylinder change happens to happen at a sample
that doesn't have a pressure reading, for example, because we no
longer care so deeply about exactly which sample the cylinder change
happens at. As a result, the bug Mika noticed just goes away.
Reported-by: Miika Turkia <miika.turkia@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Commit b625332ca5ff "Display even constant temperature graph" was a little
too aggressive. If we have no temperature data at all it caused us to plot
a temperature line for absolute zero...
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Dive profile does not display the temperature graph, if we have a
constant temperature (e.g. only one reading at the start of the dive).
This patch draws the temperature graph even if max and min temperatures
are the same.
Signed-off-by: Miika Turkia <miika.turkia@gmail.com>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Temperatures can actually be negative, which means that rounding by
adding 0.5 and casting to 'int' is not correct.
We could use '(int)(rint(val))' instead, but the only place we care
about might as well just print out the floating point representation
with a precision of two digits instead. So if you have a dive computer
that gives you the precision, you might see '3.5˚C' as the temperature.
Remove the helper functions that nobody uses and that get the rounding
wrong anyway.
Reported-by: Henrik Brautaset Aronsen <subsurface@henrik.synth.no>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This moves the fields 'duration', 'surfacetime', 'maxdepth',
'meandepth', 'airtemp', 'watertemp', 'salinity' and 'surface_pressure'
to the per-divecomputer data structure. They are filled in by the dive
computer, and normally not edited.
NOTE! All actual *use* of this data was then changed from dive->field to
dive->dc.field programmatically with a shell-script and sed, and the
result then edited for details. So while the XML save and restore code
has been updated, all the displaying etc will currently always just show
the first dive computer entry.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This patch removes the need for the "string" pressurebuf in planner.c.
It also adds a unit to the partial pressures displayed in the mouse
overlay which are always displayed in bar.
BTW: Has anyone seen a pO2 shown in PSI?
Signed-off-by: Jan Schubert <Jan.Schubert@GMX.li>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This patch centralizes the definition for surface pressure, oxygen in
air, (re)defines all such values as plain integers and adapts calculations.
It eliminates 11 (!) occurrences of definitions for surface pressure and
also a few for oxygen in air.
It also rewrites the calculation for EAD, END and EADD using the new
definitons, harmonizing it for OC and CC and fixes a bug for EADD OC
calculation.
And finally it removes the unneeded variable entry_ead in gtk-gui.c.
Jan
Signed-off-by: Jan Schubert <Jan.Schubert@GMX.li>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Previously we calculate the ceiling at every single second, using the
interpolated depth but then only *save* the ceiling at the points where we
have a profile event (the whole deco_allowed_depth() function doesn't
change any state, so we can just drop it entirely at points that we aren't
going to save)
Why is it incorrect? I'll try to walk through my understanding of it, by
switching things around a bit.
- the whole "minimum tissue tolerance" thing could equally well be
rewritten to be about "maximum ceiling". And that's easier to think
about (since it's what we actually show), so let's do that.
- so turning "min_pressure" into "max_ceiling", doing the whole
comparison inside the loop means is that we are calculating the
maximum ceiling value for the duration of the last sample. And then
instead of visualizing the ceiling AT THE TIME OF MAXIMUM CEILING, we
visualize that maximal ceiling value AT THE TIME OF THE SAMPLE.
End result: we visualize the ceiling at the wrong time. We visualize
what was *a* ceiling somewhere in between that sample and the previous
one, but we then assign that value to the time of the sample itself.
So it ends up having random odd effects.
And that also explains why you only see the effect during the ascent.
During the descent, the max ceiling will be at the end of our
linearization of the sampling, which is - surprise surprise - the position
of the sample itself. So we end up seeing the right ceiling at the right
time while descending. So the visualization matches the math.
But during desaturation, the maximum ceiling is not at the end of the
sample period, it's at the beginning. So the whole "max ceiling" thing has
basically turned what should be a smooth graph into something that
approaches being a step-wise graph at each sample. Ergo: a ripple.
And doing the "max_ceiling during the sample interval" thing may sound
like the safe thing to do, but the thing is, that really *is* a false
sense of safety. The ceiling value is *not* what we compute. The ceiling
value is just a visualization of what we computed. Playing games with it
can only make the visualization of the real data worse, not better.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
- MOD: Maximum Operation Depth based on a configurable limit
- EAD: Equivalent Air Depth considering N2 and (!) O2 narcotic
- END: Equivalent Nitrogen (Narcotic) Depth considering just N2 narcotic
(ignoring O2)
- EADD: Equivalent Air Density Depth
Please note that some people and even diving organisations have opposite
definitions for EAD and END. Considering A stands for Air, lets choose the
above. And considering N for Nitrogen it also fits in this scheme.
This patch moves N2_IN_AIR from deco.c to dive.h as this is already used
in several places and might be useful for future use also. It also
respecifies N2_IN_AIR to a more correct value of 78,084%, the former one
also included all other gases than oxygen appearing in air. If someone
needs to use the former value it would be more correct to use 1-O2_IN_AIR
instead.
Signed-off-by: Jan Schubert / Jan.Schubert@GMX.li
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
The max Y value of the partial pressure graph grid tends to be way too
high when only pO2 or pHe is enabled.
Signed-off-by: Henrik Brautaset Aronsen <subsurface@henrik.synth.no>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
.. and rename the badly named 'output_units/input_units' variables.
We used to have this confusing thing where we had two different units
(input vs output) that *look* like they are mirror images, but in fact
"output_units" was the user units, and "input_units" are the XML parsing
units.
So this renames them to be clearer. "output_units" is now just "units"
(it's the units a user would ever see), and "input_units" is now
"xml_parsing_units" and set by the XML file parsers to reflect the units
of the parsed file.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
We have several places where we interpolate the depth based on two
samples and the time between them. Some of them use floating point, some
of them don't, some of them meant to do it but didn't.
Just use a common helper function for it. I seriously doubt the floating
point here really matters, since doing it in integers is not going to
overflow unless we're interpolating between two samples that are hours
apart at hundreds of meters of depth, but hey, it gives that rounding to
the nearest millimeter. Which I'm sure matters.
Anyway, we can probably just get rid of the rounding and the floating
point math, but it won't really hurt either, so at least do it
consistently.
The interpolation could be for other things than just depth, but we
probably don't have anything else we'd want to interpolate. But make the
function naming generic just in case.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
While one might argue that multiple samples with the same time are 'odd'
that still shouldn't be an excuse to incorrectly reset the ceiling value
for them back to 0.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
o) Instead of using gradient factors as means of comparison, I now use
pressure (as in: maximal ambient pressure).
o) tissue_tolerance_calc() now computes the maximal ambient pressure now
respecting gradient factors. For this, it needs to know about the
surface pressure (as refernce for GF_high), thus gets *dive as an
argument. It is called from add_segment() which this also needs *dive
as an additional argument.
o) This implies deco_allowed_depth is now mainly a ambient-pressure to
depth conversion with decorations to avoid negative depth (i.e. no deco
obliation), implementation of quantization (!smooth => multiples of 3m)
and explicit setting of last deco depth (e.g. 6m for O2 deco).
o) gf_low_pressure_this_dive (slight change of name), the max depth in
pressure units is updated in add_segment. I set the minimal value in
buehlmann_config to the equivalent of 20m as otherwise good values of
GF_low add a lot of deco to shallow dives which do not need deep stops
in the first place.
o) The bogus loop is gone as well as actual_gradient_limit() and
gradient_factor_calculation() and large parts of deco_allowed_depth()
although I did not delete the code but put it in comments.
o) The meat is in the formula in lines 147-154 of deco.c. Here is the
rationale:
Without gradient factors, the M-value (i.e the maximal tissue pressure)
at a given depth is given by ambient_pressure / buehlmann_b + a.
According to "Clearing Up The Confusion About "Deep Stops" by Erik C.
Baker (as found via google) the effect of the gradient factors is no
replace this by a reduced affine relation (i.e. another line) such that
at the surface the difference between M-value and ambient pressure is
reduced by a factor GF_high and at the maximal depth by a factor
GF_low.
That is, we are looking for parameters alpha and beta such that
alpha surface + beta = surface + gf_high * (surface/b + a - surface)
and
alpha max_p + beta = max_p + gf_low * (max_p/b + a - max_p)
This can be solved for alpha and beta and then inverted to obtain the
max ambient pressure given tissue loadings. The result is the above
mentioned formula.
Signed-off-by: Robert C. Helling <helling@atdotde.de>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
A strange and buggy dive where time goes backwards (right now easy to
create with the dive plan editor) can cause us to run out of plot info
elements.
This prevents that from causing memory corruption by refusing to go back
in time.
Reported-by: Dirk Hohndel <dirk@hohndel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Now that the pressure_time calculations are done in our "native"
integer units (millibar and seconds), we might as well keep using
integer variables.
We still do floating point calculations at various stages for the
conversions (including turning a depth in mm into a pressure in mbar),
so it's not like this avoids floating point per se. And the final
approximation is still done as a fraction of the pressure-time values,
using floating point. So floating point is very much involved, but
it's used for conversions, not (for example) to sum up lots of small
values.
With floating point, I had to think about the dynamic range in order
to convince myself that summing up small values will not subtly lose
precision.
With integers, those kinds of issues do not exist. The "lost
precision" case is not subtle, it would be a very obvious overflow,
and it's easy to think about. It turns out that for the pressure-time
integral to overflow in "just" 31 bits, we'd have to have pressures
and times that aren't even close to the range of scuba cylinder air
use (eg "spend more than a day at a depth of 200+ m").
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
I fixed the pressure-time calculations to use "proper" units, but
thinking about it some more, it turns out that units don't really
matter. As long as we use the *same* unit for calculating the
integral, and then re-calculating the step-wise entries, the units
will cancel out.
So we can simplify the "pressure_time()" function a bit, and use
whatever units are most natural for our internal representation. So
instead of using atm, use "mbar".
Now, since the units don't matter, this patch doesn't really make much
of a difference conceptually. Sure, it's a slightly simpler function,
but maybe using more "natural" units for it would be worth it. But it
turns out that using milli-bar and seconds has an advantage: we could
do all the pressure_time integral using 32-bit integers, and we'd
still be able to represent values that would be equivalent to staying
at 24 bar for a whole day.
This patch doesn't actually change the code to use integers, but with
this unit choice, we at least have that possibility.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This splits up the function to create the estimated pressures for
missing tank pressure information.
The code now has a separate pass to create the beginning and ending
pressures for segments that lack them, and fill them in to match the
overall SAC-rate for that cylinder.
In the process, it also fixes the calculation of the interpolated gas
pressure: you can see this in test-dive 13, where we switch back to the
first tank at the end of the dive. It used to be that the latter
segment of that cylinder showed in a different color from the first
segment, showing that we had a different SAC-rate. But that makes no
sense, since our interpolation is supposed to use a constant SAC-rate
for each cylinder.
The bug was that the "magic" calculation (which is just the pressure
change rate over pressure-time) was incorrect, and used the current
cylinder pressure for start-pressure calculation. But that's wrong,
since we update the current cylinder pressure as we go along, but we
didn't update the total pressure_time.
With the separate phase to calculate the segment beginning/ending
pressures, the code got simplified and the bug stood out more.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
The code was using bar, not atm to calculate the pressure_time
multiplier. But SAC-rate is relative to atm.
We could do the correction at the end (and keep the pressure_time in
"bar-seconds"), but let's just use the expected units during the
integration. Especially since this also makes a helper function to do
the calculations (with variables to keep the units obvious) instead of
having multi-line expressions that have the wrong units.
This fixes what I thought were rounding errors for the pressure graphs.
They were just unit confusion.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This splits up the (very complex) function that calculates all the plot
info data, so that the gas pressure logic is in several helper
functions, and the deco and partial pressure calculations are in a
function of their own.
That makes the code almost readable.
This also changes the cylinder pressure calculations so that if you have
manually set the beginning and end pressures, those are the ones we will
show (by making them fake "sensor pressures"). We used to shopw some
random pressure that was related to the manually entered ones only
distantly (through various rounding phases and the SAC-rate calculations).
That does make the rounding errors more obvious in the graph, but we can
fix that separately.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This simplifies - and improves - the code to generate the plot info
entries from the samples.
We used to generate exactly one plot info entry per sample, and then -
because the result doesn't have high enough granularity - we'd
generate additional plot info entries at gas change events etc.
Which resulted in all kinds of ugly special case logic. Not only for
the gas switch, btw: you can see the effects of this in the deco graph
(done at plot entry boundaries) and in the gas pressure curves.
So this throws that "do special plot entries for gas switch events"
code away entirely, and replaces it with a much more straightforward
model: we generate plot entries at a minimum of ten-second intervals.
If you have samples more often than that, you'll get more frequent
plot entries, but you'll never get less than that "every ten seconds".
As a result, the code is smaller and simpler (99 insertions, 161
deletions), and actually does a better job too.
You can see the difference especially in the test dives that only have
a few entries (or if you create a new dive without a dive computer,
using the "Add Dive" menu entry). Look at the deco graph of test-dive
20 before and after, for example. You can also see it very subtly in
the cylinder pressure curves going from line segments to curves on
that same dive.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
For dives with no samples, we crate a fake dive computer with a set of
made-up samples and use those to display the profile.
However, the actual calculations to do the maximum duration and depth
etc were always done with the "real" dive information, which is empty.
As a result, the scale of the plot ended up being bogus, and part of
the dive would be missing.
Trivially fix by just passing the same dive computer information to
calculate_max_limits() that we use for everything else.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This comes with absolutely no gui - so the plan literally needs to be
compiled into Subsurface. Not exactly a feature, but this allowed me to
focus on the planning part instead of spending time on tedious UI work.
A new menu "Planner" with entry "Test Planner" calls into the hard-coded
function in planner.c. There a simple dive plan can be constructed with
calls to plan_add_segment(&diveplan, duration, depth at the end, fO2, pO2)
Calling plan(&diveplan) does the deco calculations and creates deco stops
that keep us below the ceiling (with the GFlow/high values currently
configured). The stop levels used are defined at the top of planner.c in
the stoplevels array - there is no need to do the traditional multiples of
3m or anything like that.
The dive including the ascents and deco stops all the way to the surface
is completed and then added as simulated dive to the end of the divelist
(I guess we could automatically select it later) and can be viewed.
This is crude but shows the direction we can go with this. Envision a nice
UI that allows you to simply enter the segments and pick the desired
stops.
What is missing is the ability to give the algorithm additional gases that
it can use during the deco phase - right now it simply keeps using the
last gas used in the diveplan.
All that said, there are clear bugs here - and sadly they seem to be in
the deco calculations, as with the example given the ceiling that is
calculated makes no sense. When displayed in smooth mode it has very
strange jumps up and down that I wouldn't expect. For example with GF
35/75 (the default) the deco ceiling when looking at the simulated dive
jumps from 16m back up to 13m around 14:10 into the dive. That seems very
odd.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Without this the cairo_close_path call could do silly looking things
(intersecting polygons...).
Reported-by: "Robert C. Helling" <helling@atdotde.de>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
The old implementation was broken in several ways.
For one thing the GF values are percentages, so they should normally be
0 < GF < 1 (well, some crazy people like to go above that).
With this most of the Bühlmann config constants were wrong.
Furthermore, after we adjust the pressure tolerance based on the gradient
factors, we need to convert this back into a depth (instead of passing
back the unmodified depth - oops).
Finally, this commit adds closed circuit support to the deco calculations.
Major progress and much more useful at this stage.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This also initializes the N2 tissue saturations to correct numbers
(setting them to zero was clearly silly).
With this commit we walk back in the dive_table until we find a surface
intervall that's longer than 48h. Or a dive that comes after the last one
we looked at; that would indicate that this is a divelist that contains
dives from multiple divers or dives that for other reasons are not
ordered. In a sane environment one would assume that the dives that need
to be taken into account when doing deco calculations are organized as one
trip in the XML file and so this logic should work.
One major downside of the current implementation is that we recalculate
everything whenever the plot_info is recreated - which happens quite
frequently, for example when resizing the window or even when we go into
loup mode. While this isn't all that compute intensive, this is an utter
waste and we should at least cache the saturation inherited from previous
dives (and clear that number when the selected dive changes). We don't
want to cache all of it as the recreation of the plot_info may be
triggered by the user changing equipment (and most importantly, gasmix)
information. In that case the deco data for this dive does indeed have to
be recreated. But without changing the current dive the saturation after
the last surface intervall should stay the same.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
Usually dive computers show the ceiling in terms of the next deco stop -
and those are in 3m increments. This commit also adds the ability to chose
either the typical 3m increments or the smooth ceiling that the Bühlmann
algorithm actually calculates.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This is on top of the deco information reported by the dive computer (in a
different color - currently ugly green). The user needs to enable this via
the Tec page of the preferences.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
The existing code had the somewhat retarded Ctrl-C binding for displaying
the next divecomputer and no way to go back to the previous one. With this
commit we use our keyboard grab to map Left and Right to previous and next
divecomputer. Much nicer.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This clarifies/changes the meaning of our "cylinderindex" entry in our
samples. It has been rather confused, because different dive computers
have done things differently, and the naming really hasn't helped.
There are two totally different - and independent - cylinder "indexes":
- the pressure sensor index, which indicates which cylinder the sensor
data is from.
- the "active cylinder" index, which indicates which cylinder we actually
breathe from.
These two values really are totally independent, and have nothing
what-so-ever to do with each other. The sensor index may well be fixed:
many dive computers only support a single pressure sensor (whether
wireless or wired), and the sensor index is thus always zero.
Other dive computers may support multiple pressure sensors, and the gas
switch event may - or may not - indicate that the sensor changed too. A
dive computer might give the sensor data for *all* cylinders it can read,
regardless of which one is the one we're actively breathing. In fact, some
dive computers might give sensor data for not just *your* cylinder, but
your buddies.
This patch renames "cylinderindex" in the samples as "sensor", making it
quite clear that it's about which sensor index the pressure data in the
sample is about.
The way we figure out which is the currently active gas is with an
explicit has change event. If a computer (like the Uemis Zurich) joins the
two concepts together, then a sensor change should also create a gas
switch event. This patch also changes the Uemis importer to do that.
Finally, it should be noted that the plot info works totally separately
from the sample data, and is about what we actually *display*, not about
the sample pressures etc. In the plot info, the "cylinderindex" does in
fact mean the currently active cylinder, and while it is initially set to
match the sensor information from the samples, we then walk the gas change
events and fix it up - and if the active cylinder differs from the sensor
cylinder, we clear the sensor data.
[Dirk Hohndel: this conflicted with some of my recent changes - I think
I merged things correctly...]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
This commit makes deco handling in Subsurface more compatible with the way
libdivecomputer creates the data. Previously we assumed that having a
stopdepth or stoptime and no ndl meant that we were in deco. But
libdivecomputer supports many dive computers that provide the deco state
of the diver but with no information about the next stop or the time
needed there. In order to be able to model this in Subsurface this adds an
in_deco flag to the samples. This is only stored to the XML file when it
changes so it doesn't add much overhead but will allow us to display some
deco information on dive computers like the Atomic Aquatics Cobalt or many
of the Suuntos (among others).
The commit also removes the old event based deco code that was commented
out already. And fixes the code so that the deco / ndl information is
stored for the very last sample as well.
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
We only store the model/deviceid/nickname for those dive computers that
are mentioned in the XML file. This should make the XML files nicely
selfcontained.
This also changes the code to consistently use model & deviceid to
identify a dive computer. The deviceid is NOT guaranteed to be collision
free between different libdivecomputer backends...
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>