#include "configuredivecomputerthreads.h" #include "libdivecomputer/hw.h" #include #include #include #define OSTC3_GAS1 0x10 #define OSTC3_GAS2 0x11 #define OSTC3_GAS3 0x12 #define OSTC3_GAS4 0x13 #define OSTC3_GAS5 0x14 #define OSTC3_DIL1 0x15 #define OSTC3_DIL2 0x16 #define OSTC3_DIL3 0x17 #define OSTC3_DIL4 0x18 #define OSTC3_DIL5 0x19 #define OSTC3_SP1 0x1A #define OSTC3_SP2 0x1B #define OSTC3_SP3 0x1C #define OSTC3_SP4 0x1D #define OSTC3_SP5 0x1E #define OSTC3_CCR_MODE 0x1F #define OSTC3_DIVE_MODE 0x20 #define OSTC3_DECO_TYPE 0x21 #define OSTC3_PPO2_MAX 0x22 #define OSTC3_PPO2_MIN 0x23 #define OSTC3_FUTURE_TTS 0x24 #define OSTC3_GF_LOW 0x25 #define OSTC3_GF_HIGH 0x26 #define OSTC3_AGF_LOW 0x27 #define OSTC3_AGF_HIGH 0x28 #define OSTC3_AGF_SELECTABLE 0x29 #define OSTC3_SATURATION 0x2A #define OSTC3_DESATURATION 0x2B #define OSTC3_LAST_DECO 0x2C #define OSTC3_BRIGHTNESS 0x2D #define OSTC3_UNITS 0x2E #define OSTC3_SAMPLING_RATE 0x2F #define OSTC3_SALINITY 0x30 #define OSTC3_DIVEMODE_COLOR 0x31 #define OSTC3_LANGUAGE 0x32 #define OSTC3_DATE_FORMAT 0x33 #define OSTC3_COMPASS_GAIN 0x34 #define OSTC3_PRESSURE_SENSOR_OFFSET 0x35 #define OSTC3_SAFETY_STOP 0x36 #define OSTC3_CALIBRATION_GAS_O2 0x37 #define OSTC3_SETPOINT_FALLBACK 0x38 #define OSTC3_FLIP_SCREEN 0x39 #define SUUNTO_VYPER_MAXDEPTH 0x1e #define SUUNTO_VYPER_TOTAL_TIME 0x20 #define SUUNTO_VYPER_NUMBEROFDIVES 0x22 #define SUUNTO_VYPER_COMPUTER_TYPE 0x24 #define SUUNTO_VYPER_FIRMWARE 0x25 #define SUUNTO_VYPER_SERIALNUMBER 0x26 #define SUUNTO_VYPER_CUSTOM_TEXT 0x2c #define SUUNTO_VYPER_SAMPLING_RATE 0x53 #define SUUNTO_VYPER_ALTITUDE_SAFETY 0x54 #define SUUNTO_VYPER_TIMEFORMAT 0x60 #define SUUNTO_VYPER_UNITS 0x62 #define SUUNTO_VYPER_MODEL 0x63 #define SUUNTO_VYPER_LIGHT 0x64 #define SUUNTO_VYPER_ALARM_DEPTH_TIME 0x65 #define SUUNTO_VYPER_ALARM_TIME 0x66 #define SUUNTO_VYPER_ALARM_DEPTH 0x68 #define SUUNTO_VYPER_CUSTOM_TEXT_LENGHT 30 #ifdef DEBUG_OSTC // Fake io to ostc memory banks #define hw_ostc_device_eeprom_read local_hw_ostc_device_eeprom_read #define hw_ostc_device_eeprom_write local_hw_ostc_device_eeprom_write #define hw_ostc_device_clock local_hw_ostc_device_clock #define OSTC_FILE "../OSTC-data-dump.bin" static dc_status_t local_hw_ostc_device_eeprom_read(void *ignored, unsigned char bank, unsigned char data[], unsigned int data_size) { FILE *f; if ((f = fopen(OSTC_FILE, "r")) == NULL) return DC_STATUS_NODEVICE; fseek(f, bank * 256, SEEK_SET); if (fread(data, sizeof(unsigned char), data_size, f) != data_size) { fclose(f); return DC_STATUS_IO; } fclose(f); return DC_STATUS_SUCCESS; } static dc_status_t local_hw_ostc_device_eeprom_write(void *ignored, unsigned char bank, unsigned char data[], unsigned int data_size) { FILE *f; if ((f = fopen(OSTC_FILE, "r+")) == NULL) f = fopen(OSTC_FILE, "w"); fseek(f, bank * 256, SEEK_SET); fwrite(data, sizeof(unsigned char), data_size, f); fclose(f); return DC_STATUS_SUCCESS; } static dc_status_t local_hw_ostc_device_clock(void *ignored, dc_datetime_t *time) { qDebug() << "Setting OSTC time"; return DC_STATUS_SUCCESS; } #endif ReadSettingsThread::ReadSettingsThread(QObject *parent, device_data_t *data) : QThread(parent), m_data(data) { } static int read_ostc_cf(unsigned char data[], unsigned char cf) { return data[128 + (cf % 32) * 4 + 3] << 8 ^ data[128 + (cf % 32) * 4 + 2]; } static void write_ostc_cf(unsigned char data[], unsigned char cf, unsigned char max_CF, unsigned int value) { // Only write settings supported by this firmware. if (cf > max_CF) return; data[128 + (cf % 32) * 4 + 3] = (value & 0xff00) >> 8; data[128 + (cf % 32) * 4 + 2] = (value & 0x00ff); } void ReadSettingsThread::run() { bool supported = false; dc_status_t rc; #ifdef DEBUG_OSTC if (strcmp(m_data->vendor, "Heinrichs Weikamp") == 0 && strcmp(m_data->product, "OSTC 2N") == 0) rc = DC_STATUS_SUCCESS; else #endif rc = dc_device_open(&m_data->device, m_data->context, m_data->descriptor, m_data->devname); if (rc == DC_STATUS_SUCCESS) { DeviceDetails *m_deviceDetails = new DeviceDetails(0); switch (dc_device_get_type(m_data->device)) { case DC_FAMILY_SUUNTO_VYPER: { unsigned char data[SUUNTO_VYPER_CUSTOM_TEXT_LENGHT + 1]; rc = dc_device_read(m_data->device, SUUNTO_VYPER_COMPUTER_TYPE, data, 1); if (rc == DC_STATUS_SUCCESS) { const char *model; // FIXME: grab this info from libdivecomputer descriptor // instead of hard coded here switch(data[0]) { case 0x03: model = "Stinger"; break; case 0x04: model = "Mosquito"; break; case 0x05: model = "D3"; break; case 0x0A: model = "Vyper"; break; case 0x0B: model = "Vytec"; break; case 0x0C: model = "Cobra"; break; case 0x0D: model = "Gekko"; break; case 0x16: model = "Zoop"; break; case 20: case 30: case 60: // Suunto Spyder have there sample interval at this position // Fallthrough default: supported = false; goto unsupported_dc_error; } // We found a supported device // we can safely proceed with reading/writing to this device. supported = true; m_deviceDetails->setModel(model); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_MAXDEPTH, data, 2); if (rc == DC_STATUS_SUCCESS) { // in ft * 128.0 int depth = feet_to_mm(data[0] << 8 ^ data[1]) / 128; m_deviceDetails->setMaxDepth(depth); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_TOTAL_TIME, data, 2); if (rc == DC_STATUS_SUCCESS) { int total_time = data[0] << 8 ^ data[1]; m_deviceDetails->setTotalTime(total_time); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_NUMBEROFDIVES, data, 2); if (rc == DC_STATUS_SUCCESS) { int number_of_dives = data[0] << 8 ^ data[1]; m_deviceDetails->setNumberOfDives(number_of_dives); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_FIRMWARE, data, 1); if (rc == DC_STATUS_SUCCESS) { m_deviceDetails->setFirmwareVersion(QString::number(data[0]) + ".0.0"); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_SERIALNUMBER, data, 4); if (rc == DC_STATUS_SUCCESS) { int serial_number = data[0] * 1000000 + data[1] * 10000 + data[2] * 100 + data[3]; m_deviceDetails->setSerialNo(QString::number(serial_number)); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_CUSTOM_TEXT, data, SUUNTO_VYPER_CUSTOM_TEXT_LENGHT); if (rc == DC_STATUS_SUCCESS) { data[SUUNTO_VYPER_CUSTOM_TEXT_LENGHT] = 0; m_deviceDetails->setCustomText((const char*) data); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_SAMPLING_RATE, data, 1); if (rc == DC_STATUS_SUCCESS) { m_deviceDetails->setSamplingRate((int) data[0]); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_ALTITUDE_SAFETY, data, 1); if (rc == DC_STATUS_SUCCESS) { m_deviceDetails->setAltitude(data[0] & 0x03); m_deviceDetails->setPersonalSafety(data[0] >> 2 & 0x03); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_TIMEFORMAT, data, 1); if (rc == DC_STATUS_SUCCESS) { m_deviceDetails->setTimeFormat(data[0] & 0x01); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_UNITS, data, 1); if (rc == DC_STATUS_SUCCESS) { m_deviceDetails->setUnits(data[0] & 0x01); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_MODEL, data, 1); if (rc == DC_STATUS_SUCCESS) { m_deviceDetails->setDiveMode(data[0] & 0x03); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_LIGHT, data, 1); if (rc == DC_STATUS_SUCCESS) { m_deviceDetails->setLightEnabled(data[0] >> 7); m_deviceDetails->setLight(data[0] & 0x7F); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_ALARM_DEPTH_TIME, data, 1); if (rc == DC_STATUS_SUCCESS) { m_deviceDetails->setAlarmTimeEnabled(data[0] & 0x01); m_deviceDetails->setAlarmDepthEnabled(data[0] >> 1 & 0x01); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_ALARM_TIME, data, 2); if (rc == DC_STATUS_SUCCESS) { m_deviceDetails->setAlarmTime(data[0] << 8 ^ data[1]); } rc = dc_device_read(m_data->device, SUUNTO_VYPER_ALARM_DEPTH, data, 2); if (rc == DC_STATUS_SUCCESS) { int depth = feet_to_mm(data[0] << 8 ^ data[1]) / 128; m_deviceDetails->setAlarmDepth(depth); } emit devicedetails(m_deviceDetails); break; } #if DC_VERSION_CHECK(0, 5, 0) case DC_FAMILY_HW_OSTC3: { supported = true; //Read gas mixes gas gas1; gas gas2; gas gas3; gas gas4; gas gas5; //Gas 1 unsigned char gasData[4] = {0,0,0,0}; rc = hw_ostc3_device_config_read(m_data->device, OSTC3_GAS1, gasData, sizeof(gasData)); if (rc == DC_STATUS_SUCCESS) { //Gas data read successful gas1.oxygen = gasData[0]; gas1.helium = gasData[1]; gas1.type = gasData[2]; gas1.depth = gasData[3]; } //Gas 2 rc = hw_ostc3_device_config_read(m_data->device, OSTC3_GAS2, gasData, sizeof(gasData)); if (rc == DC_STATUS_SUCCESS) { //Gas data read successful gas2.oxygen = gasData[0]; gas2.helium = gasData[1]; gas2.type = gasData[2]; gas2.depth = gasData[3]; } //Gas 3 rc = hw_ostc3_device_config_read(m_data->device, OSTC3_GAS3, gasData, sizeof(gasData)); if (rc == DC_STATUS_SUCCESS) { //Gas data read successful gas3.oxygen = gasData[0]; gas3.helium = gasData[1]; gas3.type = gasData[2]; gas3.depth = gasData[3]; } //Gas 4 rc = hw_ostc3_device_config_read(m_data->device, OSTC3_GAS4, gasData, sizeof(gasData)); if (rc == DC_STATUS_SUCCESS) { //Gas data read successful gas4.oxygen = gasData[0]; gas4.helium = gasData[1]; gas4.type = gasData[2]; gas4.depth = gasData[3]; } //Gas 5 rc = hw_ostc3_device_config_read(m_data->device, OSTC3_GAS5, gasData, sizeof(gasData)); if (rc == DC_STATUS_SUCCESS) { //Gas data read successful gas5.oxygen = gasData[0]; gas5.helium = gasData[1]; gas5.type = gasData[2]; gas5.depth = gasData[3]; } m_deviceDetails->setGas1(gas1); m_deviceDetails->setGas2(gas2); m_deviceDetails->setGas3(gas3); m_deviceDetails->setGas4(gas4); m_deviceDetails->setGas5(gas5); //Read Dil Values gas dil1; gas dil2; gas dil3; gas dil4; gas dil5; //Dil 1 unsigned char dilData[4] = {0,0,0,0}; rc = hw_ostc3_device_config_read(m_data->device, OSTC3_DIL1, dilData, sizeof(dilData)); if (rc == DC_STATUS_SUCCESS) { //Data read successful dil1.oxygen = dilData[0]; dil1.helium = dilData[1]; dil1.type = dilData[2]; dil1.depth = dilData[3]; } //Dil 2 rc = hw_ostc3_device_config_read(m_data->device, OSTC3_DIL2, dilData, sizeof(dilData)); if (rc == DC_STATUS_SUCCESS) { //Data read successful dil2.oxygen = dilData[0]; dil2.helium = dilData[1]; dil2.type = dilData[2]; dil2.depth = dilData[3]; } //Dil 3 rc = hw_ostc3_device_config_read(m_data->device, OSTC3_DIL3, dilData, sizeof(dilData)); if (rc == DC_STATUS_SUCCESS) { //Data read successful dil3.oxygen = dilData[0]; dil3.helium = dilData[1]; dil3.type = dilData[2]; dil3.depth = dilData[3]; } //Dil 4 rc = hw_ostc3_device_config_read(m_data->device, OSTC3_DIL4, dilData, sizeof(dilData)); if (rc == DC_STATUS_SUCCESS) { //Data read successful dil4.oxygen = dilData[0]; dil4.helium = dilData[1]; dil4.type = dilData[2]; dil4.depth = dilData[3]; } //Dil 5 rc = hw_ostc3_device_config_read(m_data->device, OSTC3_DIL5, dilData, sizeof(dilData)); if (rc == DC_STATUS_SUCCESS) { //Data read successful dil5.oxygen = dilData[0]; dil5.helium = dilData[1]; dil5.type = dilData[2]; dil5.depth = dilData[3]; } m_deviceDetails->setDil1(dil1); m_deviceDetails->setDil2(dil2); m_deviceDetails->setDil3(dil3); m_deviceDetails->setDil4(dil4); m_deviceDetails->setDil5(dil5); //Read set point Values setpoint sp1; setpoint sp2; setpoint sp3; setpoint sp4; setpoint sp5; unsigned char spData[2] = {0,0}; //Sp 1 rc = hw_ostc3_device_config_read(m_data->device, OSTC3_SP1, spData, sizeof(spData)); if (rc == DC_STATUS_SUCCESS) { //Data read successful sp1.sp = spData[0]; sp1.depth = spData[1]; } //Sp 2 rc = hw_ostc3_device_config_read(m_data->device, OSTC3_SP2, spData, sizeof(spData)); if (rc == DC_STATUS_SUCCESS) { //Data read successful sp2.sp = spData[0]; sp2.depth = spData[1]; } //Sp 3 rc = hw_ostc3_device_config_read(m_data->device, OSTC3_SP3, spData, sizeof(spData)); if (rc == DC_STATUS_SUCCESS) { //Data read successful sp3.sp = spData[0]; sp3.depth = spData[1]; } //Sp 4 rc = hw_ostc3_device_config_read(m_data->device, OSTC3_SP4, spData, sizeof(spData)); if (rc == DC_STATUS_SUCCESS) { //Data read successful sp4.sp = spData[0]; sp4.depth = spData[1]; } //Sp 5 rc = hw_ostc3_device_config_read(m_data->device, OSTC3_SP5, spData, sizeof(spData)); if (rc == DC_STATUS_SUCCESS) { //Data read successful sp5.sp = spData[0]; sp5.depth = spData[1]; } m_deviceDetails->setSp1(sp1); m_deviceDetails->setSp2(sp2); m_deviceDetails->setSp3(sp3); m_deviceDetails->setSp4(sp4); m_deviceDetails->setSp5(sp5); //Read other settings unsigned char uData[1] = {0}; #define READ_SETTING(_OSTC3_SETTING, _DEVICE_DETAIL) \ rc = hw_ostc3_device_config_read(m_data->device, _OSTC3_SETTING, uData, sizeof(uData)); \ if (rc == DC_STATUS_SUCCESS) \ m_deviceDetails->_DEVICE_DETAIL(uData[0]); READ_SETTING(OSTC3_DIVE_MODE, setDiveMode) READ_SETTING(OSTC3_SATURATION, setSaturation) READ_SETTING(OSTC3_DESATURATION, setDesaturation) READ_SETTING(OSTC3_LAST_DECO, setLastDeco) READ_SETTING(OSTC3_BRIGHTNESS, setBrightness) READ_SETTING(OSTC3_UNITS, setUnits) READ_SETTING(OSTC3_SAMPLING_RATE,setSamplingRate) READ_SETTING(OSTC3_SALINITY, setSalinity) READ_SETTING(OSTC3_DIVEMODE_COLOR,setDiveModeColor) READ_SETTING(OSTC3_LANGUAGE, setLanguage) READ_SETTING(OSTC3_DATE_FORMAT, setDateFormat) READ_SETTING(OSTC3_COMPASS_GAIN, setCompassGain) READ_SETTING(OSTC3_SAFETY_STOP, setSafetyStop) READ_SETTING(OSTC3_GF_HIGH, setGfHigh) READ_SETTING(OSTC3_GF_LOW, setGfLow) READ_SETTING(OSTC3_PPO2_MIN, setPpO2Min) READ_SETTING(OSTC3_PPO2_MAX, setPpO2Max) READ_SETTING(OSTC3_FUTURE_TTS, setFutureTTS) READ_SETTING(OSTC3_CCR_MODE, setCcrMode) READ_SETTING(OSTC3_DECO_TYPE, setDecoType) READ_SETTING(OSTC3_AGF_SELECTABLE, setAGFSelectable) READ_SETTING(OSTC3_AGF_HIGH, setAGFHigh) READ_SETTING(OSTC3_AGF_LOW, setAGFLow) READ_SETTING(OSTC3_CALIBRATION_GAS_O2, setCalibrationGas) READ_SETTING(OSTC3_FLIP_SCREEN, setFlipScreen) READ_SETTING(OSTC3_SETPOINT_FALLBACK, setSetPointFallback) #undef READ_SETTING rc = hw_ostc3_device_config_read(m_data->device, OSTC3_PRESSURE_SENSOR_OFFSET, uData, sizeof(uData)); if (rc == DC_STATUS_SUCCESS) { // OSTC3 stores the pressureSensorOffset in two-complement m_deviceDetails->setPressureSensorOffset((signed char) uData[0]); } //read firmware settings unsigned char fData[64] = {0}; rc = hw_ostc3_device_version (m_data->device, fData, sizeof (fData)); if (rc == DC_STATUS_SUCCESS) { int serial = fData[0] + (fData[1] << 8); m_deviceDetails->setSerialNo(QString::number(serial)); m_deviceDetails->setFirmwareVersion(QString::number(fData[2]) + "." + QString::number(fData[3])); QByteArray ar((char *)fData + 4, 60); m_deviceDetails->setCustomText(ar.trimmed()); } emit devicedetails(m_deviceDetails); break; } #ifdef DEBUG_OSTC case DC_FAMILY_NULL: #endif case DC_FAMILY_HW_OSTC: { supported = true; unsigned char data[256] = {}; #ifdef DEBUG_OSTC_CF unsigned char max_CF = 0; #endif rc = hw_ostc_device_eeprom_read(m_data->device, 0, data, sizeof(data)); if (rc == DC_STATUS_SUCCESS) { m_deviceDetails->setSerialNo(QString::number(data[1] << 8 ^ data[0])); m_deviceDetails->setNumberOfDives(data[3] << 8 ^ data[2]); //Byte5-6: //Gas 1 default (%O2=21, %He=0) gas gas1; gas1.oxygen = data[6]; gas1.helium = data[7]; //Byte9-10: //Gas 2 default (%O2=21, %He=0) gas gas2; gas2.oxygen = data[10]; gas2.helium = data[11]; //Byte13-14: //Gas 3 default (%O2=21, %He=0) gas gas3; gas3.oxygen = data[14]; gas3.helium = data[15]; //Byte17-18: //Gas 4 default (%O2=21, %He=0) gas gas4; gas4.oxygen = data[18]; gas4.helium = data[19]; //Byte21-22: //Gas 5 default (%O2=21, %He=0) gas gas5; gas5.oxygen = data[22]; gas5.helium = data[23]; //Byte25-26: //Gas 6 current (%O2, %He) m_deviceDetails->setSalinity(data[26]); // Active Gas Flag Register gas1.type = data[27] & 0x01; gas2.type = (data[27] & 0x02) >> 1; gas3.type = (data[27] & 0x04) >> 2; gas4.type = (data[27] & 0x08) >> 3; gas5.type = (data[27] & 0x10) >> 4; gas1.depth = data[28]; gas2.depth = data[29]; gas3.depth = data[30]; gas4.depth = data[31]; gas5.depth = data[32]; // 33 which gas is Fist gas switch(data[33]) { case 1: gas1.type = 2; break; case 2: gas2.type = 2; break; case 3: gas3.type = 2; break; case 4: gas4.type = 2; break; case 5: gas5.type = 2; break; default: //Error? break; } // Data filled up, set the gases. m_deviceDetails->setGas1(gas1); m_deviceDetails->setGas2(gas2); m_deviceDetails->setGas3(gas3); m_deviceDetails->setGas4(gas4); m_deviceDetails->setGas5(gas5); m_deviceDetails->setDecoType(data[34]); //Byte36: //Use O2 Sensor Module in CC Modes (0= OFF, 1= ON) (Only available in old OSTC1 - unused for OSTC Mk.2/2N) //m_deviceDetails->setCcrMode(data[35]); setpoint sp1; sp1.sp = data[36]; sp1.depth = 0; setpoint sp2; sp2.sp = data[37]; sp2.depth = 0; setpoint sp3; sp3.sp = data[38]; sp3.depth = 0; m_deviceDetails->setSp1(sp1); m_deviceDetails->setSp2(sp2); m_deviceDetails->setSp3(sp3); // Byte41-42: // Lowest Battery voltage seen (in mV) // Byte43: // Lowest Battery voltage seen at (Month) // Byte44: // Lowest Battery voltage seen at (Day) // Byte45: // Lowest Battery voltage seen at (Year) // Byte46-47: // Lowest Battery voltage seen at (Temperature in 0.1 °C) // Byte48: // Last complete charge at (Month) // Byte49: // Last complete charge at (Day) // Byte50: // Last complete charge at (Year) // Byte51-52: // Total charge cycles // Byte53-54: // Total complete charge cycles // Byte55-56: // Temperature Extrema minimum (Temperature in 0.1 °C) // Byte57: // Temperature Extrema minimum at (Month) // Byte58: // Temperature Extrema minimum at (Day) // Byte59: // Temperature Extrema minimum at (Year) // Byte60-61: // Temperature Extrema maximum (Temperature in 0.1 °C) // Byte62: // Temperature Extrema maximum at (Month) // Byte63: // Temperature Extrema maximum at (Day) // Byte64: // Temperature Extrema maximum at (Year) // Byte65: // Custom Text active (=1), Custom Text Disabled (<>1) // Byte66-90: // TO FIX EDITOR SYNTAX/INDENT { // (25Bytes): Custom Text for Surfacemode (Real text must end with "}") // Example: OSTC Dive Computer} (19 Characters incl. "}") Bytes 85-90 will be ignored. if (data[64] == 1) { // Make shure the data is null-terminated data[89] = 0; // Find the internal termination and replace it with 0 char *term = strchr((char *) data + 65, (int)'}'); if (term) *term = 0; m_deviceDetails->setCustomText((const char*) data + 65); } // Byte91: // Dim OLED in Divemode (>0), Normal mode (=0) // Byte92: // Date format for all outputs: // =0: MM/DD/YY // =1: DD/MM/YY // =2: YY/MM/DD m_deviceDetails->setDateFormat(data[91]); // Byte93: // Total number of CF used in installed firmware #ifdef DEBUG_OSTC_CF max_CF = data[92]; #endif // Byte94: // Last selected view for customview area in surface mode // Byte95: // Last selected view for customview area in dive mode // Byte96-97: // Diluent 1 Default (%O2,%He) // Byte98-99: // Diluent 1 Current (%O2,%He) gas dil1 = {}; dil1.oxygen = data[97]; dil1.helium = data[98]; // Byte100-101: // Gasuent 2 Default (%O2,%He) // Byte102-103: // Gasuent 2 Current (%O2,%He) gas dil2 = {}; dil2.oxygen = data[101]; dil2.helium = data[102]; // Byte104-105: // Gasuent 3 Default (%O2,%He) // Byte106-107: // Gasuent 3 Current (%O2,%He) gas dil3 = {}; dil3.oxygen = data[105]; dil3.helium = data[106]; // Byte108-109: // Gasuent 4 Default (%O2,%He) // Byte110-111: // Gasuent 4 Current (%O2,%He) gas dil4 = {}; dil4.oxygen = data[109]; dil4.helium = data[110]; // Byte112-113: // Gasuent 5 Default (%O2,%He) // Byte114-115: // Gasuent 5 Current (%O2,%He) gas dil5 = {}; dil5.oxygen = data[113]; dil5.helium = data[114]; // Byte116: // First Diluent (1-5) switch(data[115]) { case 1: dil1.type = 2; break; case 2: dil2.type = 2; break; case 3: dil3.type = 2; break; case 4: dil4.type = 2; break; case 5: dil5.type = 2; break; default: //Error? break; } m_deviceDetails->setDil1(dil1); m_deviceDetails->setDil2(dil2); m_deviceDetails->setDil3(dil3); m_deviceDetails->setDil4(dil4); m_deviceDetails->setDil5(dil5); // Byte117-128: // not used/reserved // Byte129-256: // 32 custom Functions (CF0-CF31) // Decode the relevant ones // CF11: Factor for saturation processes m_deviceDetails->setSaturation(read_ostc_cf(data, 11)); // CF12: Factor for desaturation processes m_deviceDetails->setDesaturation(read_ostc_cf(data, 12)); // CF17: Lower threshold for ppO2 warning m_deviceDetails->setPpO2Min(read_ostc_cf(data, 17)); // CF18: Upper threshold for ppO2 warning m_deviceDetails->setPpO2Max(read_ostc_cf(data, 18)); // CF20: Depth sampling rate for Profile storage m_deviceDetails->setSamplingRate(read_ostc_cf(data, 20)); // CF29: Depth of last decompression stop m_deviceDetails->setLastDeco(read_ostc_cf(data, 29)); #ifdef DEBUG_OSTC_CF for(int cf = 0; cf <= 31 && cf <= max_CF; cf++) printf("CF %d: %d\n", cf, read_ostc_cf(data, cf)); #endif #ifdef DEBUG_OSTC local_hw_ostc_device_eeprom_write(m_data->device, 0, data, sizeof(data)); #endif } rc = hw_ostc_device_eeprom_read(m_data->device, 1, data, sizeof(data)); if (rc == DC_STATUS_SUCCESS) { // Byte1: // Logbook version indicator (Not writable!) // Byte2-3: // Last Firmware installed, 1st Byte.2nd Byte (e.g. „1.90“) (Not writable!) m_deviceDetails->setFirmwareVersion(QString::number(data[1]) + "." + QString::number(data[2])); // Byte4: // OLED brightness (=0: Eco, =1 High) (Not writable!) // Byte5-11: // Time/Date vault during firmware updates // Byte12-128 // not used/reserved // Byte129-256: // 32 custom Functions (CF 32-63) // Decode the relevant ones // CF32: Gradient Factor low m_deviceDetails->setGfLow(read_ostc_cf(data, 32)); // CF33: Gradient Factor high m_deviceDetails->setGfHigh(read_ostc_cf(data, 33)); // CF58: Future time to surface setFutureTTS m_deviceDetails->setFutureTTS(read_ostc_cf(data, 58)); #ifdef DEBUG_OSTC_CF for(int cf = 32; cf <= 63 && cf <= max_CF; cf++) printf("CF %d: %d\n", cf, read_ostc_cf(data, cf)); #endif #ifdef DEBUG_OSTC local_hw_ostc_device_eeprom_write(m_data->device, 1, data, sizeof(data)); #endif } rc = hw_ostc_device_eeprom_read(m_data->device, 2, data, sizeof(data)); if (rc == DC_STATUS_SUCCESS) { // Byte1-4: // not used/reserved (Not writable!) // Byte5-128: // not used/reserved // Byte129-256: // 32 custom Functions (CF 64-95) // Decode the relevant ones // CF65: Show safety stop m_deviceDetails->setSafetyStop(read_ostc_cf(data, 65)); // CF67: Alternaitve Gradient Factor low m_deviceDetails->setAGFLow(read_ostc_cf(data, 67)); // CF68: Alternative Gradient Factor high m_deviceDetails->setAGFHigh(read_ostc_cf(data, 68)); // CF69: Allow Gradient Factor change m_deviceDetails->setAGFSelectable(read_ostc_cf(data, 69)); #ifdef DEBUG_OSTC_CF for(int cf = 64; cf <= 95 && cf <= max_CF; cf++) printf("CF %d: %d\n", cf, read_ostc_cf(data, cf)); #endif #ifdef DEBUG_OSTC local_hw_ostc_device_eeprom_write(m_data->device, 2, data, sizeof(data)); #endif } emit devicedetails(m_deviceDetails); break; } #endif // divecomputer 0.5.0 default: supported = false; break; } } else { lastError = tr("Could not a establish connection to the dive computer."); emit error(lastError); } unsupported_dc_error: dc_device_close(m_data->device); if (!supported) { lastError = tr("This feature is not yet available for the selected dive computer."); emit error(lastError); } } WriteSettingsThread::WriteSettingsThread(QObject *parent, device_data_t *data) : QThread(parent), m_data(data) { } void WriteSettingsThread::setDeviceDetails(DeviceDetails *details) { m_deviceDetails = details; } void WriteSettingsThread::run() { bool supported = false; dc_status_t rc; rc = dc_device_open(&m_data->device, m_data->context, m_data->descriptor, m_data->devname); if (rc == DC_STATUS_SUCCESS) { switch (dc_device_get_type(m_data->device)) { case DC_FAMILY_SUUNTO_VYPER: unsigned char data; unsigned char data2[2]; // Maybee we should read the model from the device to sanity check it here too.. // For now we just check that we actually read a device before writing to one. if (m_deviceDetails->model() == "") break; else supported = true; dc_device_write(m_data->device, SUUNTO_VYPER_CUSTOM_TEXT, // Convert the customText to a 30 char wide padded with " " (const unsigned char *) QString("%1").arg(m_deviceDetails->customText(), -30, QChar(' ')).toUtf8().data(), SUUNTO_VYPER_CUSTOM_TEXT_LENGHT); data = m_deviceDetails->samplingRate(); dc_device_write(m_data->device, SUUNTO_VYPER_SAMPLING_RATE, &data, 1); data = m_deviceDetails->personalSafety() << 2 ^ m_deviceDetails->altitude(); dc_device_write(m_data->device, SUUNTO_VYPER_ALTITUDE_SAFETY, &data, 1); data = m_deviceDetails->timeFormat(); dc_device_write(m_data->device, SUUNTO_VYPER_TIMEFORMAT, &data, 1); data = m_deviceDetails->units(); dc_device_write(m_data->device, SUUNTO_VYPER_UNITS, &data, 1); data = m_deviceDetails->diveMode(); dc_device_write(m_data->device, SUUNTO_VYPER_MODEL, &data, 1); data = m_deviceDetails->lightEnabled() << 7 ^ (m_deviceDetails->light() & 0x7F); dc_device_write(m_data->device, SUUNTO_VYPER_LIGHT, &data, 1); data = m_deviceDetails->alarmDepthEnabled() << 1 ^ m_deviceDetails->alarmTimeEnabled(); dc_device_write(m_data->device, SUUNTO_VYPER_ALARM_DEPTH_TIME, &data, 1); data2[0] = m_deviceDetails->alarmTime() >> 8; data2[1] = m_deviceDetails->alarmTime() & 0xFF; dc_device_write(m_data->device, SUUNTO_VYPER_ALARM_TIME, data2, 2); data2[0] = (int)(mm_to_feet(m_deviceDetails->alarmDepth()) * 128) >> 8; data2[1] = (int)(mm_to_feet(m_deviceDetails->alarmDepth()) * 128) & 0x0FF; dc_device_write(m_data->device, SUUNTO_VYPER_ALARM_DEPTH, data2, 2); break; #if DC_VERSION_CHECK(0,5,0) case DC_FAMILY_HW_OSTC3: { supported = true; //write gas values unsigned char gas1Data[4] = {m_deviceDetails->gas1().oxygen, m_deviceDetails->gas1().helium, m_deviceDetails->gas1().type, m_deviceDetails->gas1().depth}; unsigned char gas2Data[4] = {m_deviceDetails->gas2().oxygen, m_deviceDetails->gas2().helium, m_deviceDetails->gas2().type, m_deviceDetails->gas2().depth}; unsigned char gas3Data[4] = {m_deviceDetails->gas3().oxygen, m_deviceDetails->gas3().helium, m_deviceDetails->gas3().type, m_deviceDetails->gas3().depth}; unsigned char gas4Data[4] = {m_deviceDetails->gas4().oxygen, m_deviceDetails->gas4().helium, m_deviceDetails->gas4().type, m_deviceDetails->gas4().depth}; unsigned char gas5Data[4] = {m_deviceDetails->gas5().oxygen, m_deviceDetails->gas5().helium, m_deviceDetails->gas5().type, m_deviceDetails->gas5().depth}; //gas 1 hw_ostc3_device_config_write(m_data->device, OSTC3_GAS1, gas1Data, sizeof(gas1Data)); //gas 2 hw_ostc3_device_config_write(m_data->device, OSTC3_GAS2, gas2Data, sizeof(gas2Data)); //gas 3 hw_ostc3_device_config_write(m_data->device, OSTC3_GAS3, gas3Data, sizeof(gas3Data)); //gas 4 hw_ostc3_device_config_write(m_data->device, OSTC3_GAS4, gas4Data, sizeof(gas4Data)); //gas 5 hw_ostc3_device_config_write(m_data->device, OSTC3_GAS5, gas5Data, sizeof(gas5Data)); //write set point values unsigned char sp1Data[2] = {m_deviceDetails->sp1().sp, m_deviceDetails->sp1().depth}; unsigned char sp2Data[2] = {m_deviceDetails->sp2().sp, m_deviceDetails->sp2().depth}; unsigned char sp3Data[2] = {m_deviceDetails->sp3().sp, m_deviceDetails->sp3().depth}; unsigned char sp4Data[2] = {m_deviceDetails->sp4().sp, m_deviceDetails->sp4().depth}; unsigned char sp5Data[2] = {m_deviceDetails->sp5().sp, m_deviceDetails->sp5().depth}; //sp 1 hw_ostc3_device_config_write(m_data->device, OSTC3_SP1, sp1Data, sizeof(sp1Data)); //sp 2 hw_ostc3_device_config_write(m_data->device, OSTC3_SP2, sp2Data, sizeof(sp2Data)); //sp 3 hw_ostc3_device_config_write(m_data->device, OSTC3_SP3, sp3Data, sizeof(sp3Data)); //sp 4 hw_ostc3_device_config_write(m_data->device, OSTC3_SP4, sp4Data, sizeof(sp4Data)); //sp 5 hw_ostc3_device_config_write(m_data->device, OSTC3_SP5, sp5Data, sizeof(sp5Data)); //write dil values unsigned char dil1Data[4] = {m_deviceDetails->dil1().oxygen, m_deviceDetails->dil1().helium, m_deviceDetails->dil1().type, m_deviceDetails->dil1().depth}; unsigned char dil2Data[4] = {m_deviceDetails->dil2().oxygen, m_deviceDetails->dil2().helium, m_deviceDetails->dil2().type, m_deviceDetails->dil2().depth}; unsigned char dil3Data[4] = {m_deviceDetails->dil3().oxygen, m_deviceDetails->dil3().helium, m_deviceDetails->dil3().type, m_deviceDetails->dil3().depth}; unsigned char dil4Data[4] = {m_deviceDetails->dil4().oxygen, m_deviceDetails->dil4().helium, m_deviceDetails->dil4().type, m_deviceDetails->dil4().depth}; unsigned char dil5Data[4] = {m_deviceDetails->dil5().oxygen, m_deviceDetails->dil5().helium, m_deviceDetails->dil5().type, m_deviceDetails->dil5().depth}; //dil 1 hw_ostc3_device_config_write(m_data->device, OSTC3_DIL1, dil1Data, sizeof(gas1Data)); //dil 2 hw_ostc3_device_config_write(m_data->device, OSTC3_DIL2, dil2Data, sizeof(dil2Data)); //dil 3 hw_ostc3_device_config_write(m_data->device, OSTC3_DIL3, dil3Data, sizeof(dil3Data)); //dil 4 hw_ostc3_device_config_write(m_data->device, OSTC3_DIL4, dil4Data, sizeof(dil4Data)); //dil 5 hw_ostc3_device_config_write(m_data->device, OSTC3_DIL5, dil5Data, sizeof(dil5Data)); //write general settings //custom text hw_ostc3_device_customtext(m_data->device, m_deviceDetails->customText().toUtf8().data()); unsigned char data[1] = {0}; #define WRITE_SETTING(_OSTC3_SETTING, _DEVICE_DETAIL) \ data[0] = m_deviceDetails->_DEVICE_DETAIL(); \ hw_ostc3_device_config_write(m_data->device, _OSTC3_SETTING, data, sizeof(data)); WRITE_SETTING(OSTC3_DIVE_MODE, diveMode) WRITE_SETTING(OSTC3_SATURATION, saturation) WRITE_SETTING(OSTC3_DESATURATION, desaturation) WRITE_SETTING(OSTC3_LAST_DECO, lastDeco) WRITE_SETTING(OSTC3_BRIGHTNESS, brightness) WRITE_SETTING(OSTC3_UNITS, units) WRITE_SETTING(OSTC3_SAMPLING_RATE, samplingRate) WRITE_SETTING(OSTC3_SALINITY, salinity) WRITE_SETTING(OSTC3_DIVEMODE_COLOR, diveModeColor) WRITE_SETTING(OSTC3_LANGUAGE, language) WRITE_SETTING(OSTC3_DATE_FORMAT, dateFormat) WRITE_SETTING(OSTC3_COMPASS_GAIN, compassGain) WRITE_SETTING(OSTC3_SAFETY_STOP, safetyStop) WRITE_SETTING(OSTC3_GF_HIGH, gfHigh) WRITE_SETTING(OSTC3_GF_LOW, gfLow) WRITE_SETTING(OSTC3_PPO2_MIN, ppO2Min) WRITE_SETTING(OSTC3_PPO2_MAX, ppO2Max) WRITE_SETTING(OSTC3_FUTURE_TTS, futureTTS) WRITE_SETTING(OSTC3_CCR_MODE, ccrMode) WRITE_SETTING(OSTC3_DECO_TYPE, decoType) WRITE_SETTING(OSTC3_AGF_SELECTABLE, aGFSelectable) WRITE_SETTING(OSTC3_AGF_HIGH, aGFHigh) WRITE_SETTING(OSTC3_AGF_LOW, aGFLow) WRITE_SETTING(OSTC3_CALIBRATION_GAS_O2, calibrationGas) WRITE_SETTING(OSTC3_FLIP_SCREEN, flipScreen) WRITE_SETTING(OSTC3_SETPOINT_FALLBACK, setPointFallback) #undef WRITE_SETTING // OSTC3 stores the pressureSensorOffset in two-complement data[0] = (unsigned char) m_deviceDetails->pressureSensorOffset(); hw_ostc3_device_config_write(m_data->device, OSTC3_PRESSURE_SENSOR_OFFSET, data, sizeof(data)); //sync date and time if (m_deviceDetails->syncTime()) { QDateTime timeToSet = QDateTime::currentDateTime(); dc_datetime_t time; time.year = timeToSet.date().year(); time.month = timeToSet.date().month(); time.day = timeToSet.date().day(); time.hour = timeToSet.time().hour(); time.minute = timeToSet.time().minute(); time.second = timeToSet.time().second(); hw_ostc3_device_clock(m_data->device, &time); } break; } #endif // divecomputer 0.5.0 default: supported = false; break; } dc_device_close(m_data->device); if (!supported) { lastError = tr("This feature is not yet available for the selected dive computer."); emit error(lastError); } } else { lastError = tr("Could not a establish connection to the dive computer."); emit error(lastError); } } FirmwareUpdateThread::FirmwareUpdateThread(QObject *parent, device_data_t *data, QString fileName) : QThread(parent), m_data(data), m_fileName(fileName) { } void FirmwareUpdateThread::run() { bool supported = false; dc_status_t rc; rc = dc_device_open(&m_data->device, m_data->context, m_data->descriptor, m_data->devname); if (rc == DC_STATUS_SUCCESS) { switch (dc_device_get_type(m_data->device)) { #if DC_VERSION_CHECK(0, 5, 0) case DC_FAMILY_HW_OSTC3: //Not Yet supported //supported = true; //rc = hw_ostc3_device_fwupdate(m_data->device, m_fileName.toUtf8().data()); break; case DC_FAMILY_HW_OSTC: supported = true; rc = hw_ostc_device_fwupdate(m_data->device, m_fileName.toUtf8().data()); break; #endif // divecomputer 0.5.0 default: supported = false; break; } dc_device_close(m_data->device); if (!supported) { lastError = tr("This feature is not yet available for the selected dive computer."); emit error(lastError); } else if (rc != DC_STATUS_SUCCESS) { lastError = tr("Firmware update failed!"); } } else { lastError = tr("Could not a establish connection to the dive computer."); emit error(lastError); } } ResetSettingsThread::ResetSettingsThread(QObject *parent, device_data_t *data) : QThread(parent), m_data(data) { } void ResetSettingsThread::run() { bool supported = false; dc_status_t rc; rc = dc_device_open(&m_data->device, m_data->context, m_data->descriptor, m_data->devname); if (rc == DC_STATUS_SUCCESS) { #if DC_VERSION_CHECK(0, 5, 0) if (dc_device_get_type(m_data->device) == DC_FAMILY_HW_OSTC3) { supported = true; hw_ostc3_device_config_reset(m_data->device); } #endif // divecomputer 0.5.0 dc_device_close(m_data->device); if (!supported) { lastError = tr("This feature is not yet available for the selected dive computer."); emit error(lastError); } } else { lastError = tr("Could not a establish connection to the dive computer."); emit error(lastError); } }