// SPDX-License-Identifier: GPL-2.0 #include "gas.h" #include "pref.h" #include "errorhelper.h" #include "gettext.h" #include #include #include // for QT_TRANSLATE_NOOP /* Perform isobaric counterdiffusion calculations for gas changes in trimix dives. * Here we use the rule-of-fifths where, during a change involving trimix gas, the increase in nitrogen * should not exceed one fifth of the decrease in helium. * Parameters: 1) pointers to two gas mixes, the gas being switched from and the gas being switched to. * 2) a pointer to an icd_data structure. * Output: i) The icd_data stucture is filled with the delta_N2 and delta_He numbers (as permille). * ii) Function returns a boolean indicating an exceeding of the rule-of-fifths. False = no icd problem. */ bool isobaric_counterdiffusion(struct gasmix oldgasmix, struct gasmix newgasmix, struct icd_data *results) { if (!prefs.show_icd) { results->dN2 = results->dHe = 0; return false; } results->dN2 = get_n2(newgasmix) - get_n2(oldgasmix); results->dHe = get_he(newgasmix) - get_he(oldgasmix); return get_he(oldgasmix) > 0 && results->dN2 > 0 && results->dHe < 0 && get_he(oldgasmix) && results->dN2 > 0 && 5 * results->dN2 > -results->dHe; } bool gasmix_is_invalid(struct gasmix mix) { return mix.o2.permille < 0; } int same_gasmix(struct gasmix a, struct gasmix b) { if (gasmix_is_invalid(a) || gasmix_is_invalid(b)) return 0; if (gasmix_is_air(a) && gasmix_is_air(b)) return 1; return get_o2(a) == get_o2(b) && get_he(a) == get_he(b); } void sanitize_gasmix(struct gasmix &mix) { unsigned int o2, he; o2 = get_o2(mix); he = get_he(mix); /* Regular air: leave empty */ if (!he) { if (!o2) return; /* 20.8% to 21% O2 is just air */ if (gasmix_is_air(mix)) { mix.o2.permille = 0; return; } } /* Sane mix? */ if (o2 <= 1000 && he <= 1000 && o2 + he <= 1000) return; report_info("Odd gasmix: %u O2 %u He", o2, he); mix = gasmix_air; } int gasmix_distance(struct gasmix a, struct gasmix b) { int a_o2 = get_o2(a), b_o2 = get_o2(b); int a_he = get_he(a), b_he = get_he(b); int delta_o2 = a_o2 - b_o2, delta_he = a_he - b_he; delta_he = delta_he * delta_he; delta_o2 = delta_o2 * delta_o2; return delta_he + delta_o2; } bool gasmix_is_air(struct gasmix gasmix) { int o2 = get_o2(gasmix); int he = get_he(gasmix); return (he == 0) && (o2 == 0 || ((o2 >= O2_IN_AIR - 1) && (o2 <= O2_IN_AIR + 1))); } fraction_t make_fraction(int i) { fraction_t res; res.permille = i; return res; } fraction_t get_gas_component_fraction(struct gasmix mix, enum gas_component component) { switch (component) { case O2: return make_fraction(get_o2(mix)); case N2: return make_fraction(get_n2(mix)); case HE: return make_fraction(get_he(mix)); default: return make_fraction(0); } } // O2 pressure in mbar according to the steady state model for the PSCR // NB: Ambient pressure comes in bar! int pscr_o2(const double amb_pressure, struct gasmix mix) { int o2 = (int)(get_o2(mix) * amb_pressure - (1.0 - get_o2(mix) / 1000.0) * prefs.o2consumption / (prefs.bottomsac * prefs.pscr_ratio) * 1000000); if (o2 < 0.0) // He's dead, Jim. o2 = 0.0; return o2; } /* fill_pressures(): Compute partial gas pressures in bar from gasmix and ambient pressures, possibly for OC or CCR, to be * extended to PSCT. This function does the calculations of gas pressures applicable to a single point on the dive profile. * The structure "pressures" is used to return calculated gas pressures to the calling software. * Call parameters: po2 = po2 value applicable to the record in calling function * amb_pressure = ambient pressure applicable to the record in calling function * *mix = structure containing cylinder gas mixture information. * divemode = the dive mode pertaining to this point in the dive profile. * This function called by: calculate_gas_information_new() in profile.cpp; add_segment() in deco.cpp. */ gas_pressures fill_pressures(const double amb_pressure, struct gasmix mix, double po2, enum divemode_t divemode) { struct gas_pressures pressures; if ((divemode != OC) && po2) { // This is a rebreather dive where pressures.o2 is defined if (po2 >= amb_pressure) { pressures.o2 = amb_pressure; pressures.n2 = pressures.he = 0.0; } else { pressures.o2 = po2; if (get_o2(mix) == 1000) { pressures.he = pressures.n2 = 0; } else { pressures.he = (amb_pressure - pressures.o2) * (double)get_he(mix) / (1000 - get_o2(mix)); pressures.n2 = amb_pressure - pressures.o2 - pressures.he; } } } else { if (divemode == PSCR) { /* The steady state approximation should be good enough */ pressures.o2 = pscr_o2(amb_pressure, mix) / 1000.0; if (get_o2(mix) != 1000) { pressures.he = (amb_pressure - pressures.o2) * get_he(mix) / (1000.0 - get_o2(mix)); pressures.n2 = (amb_pressure - pressures.o2) * get_n2(mix) / (1000.0 - get_o2(mix)); } else { pressures.he = pressures.n2 = 0; } } else { // Open circuit dives: no gas pressure values available, they need to be calculated pressures.o2 = get_o2(mix) / 1000.0 * amb_pressure; // These calculations are also used if the CCR calculation above.. pressures.he = get_he(mix) / 1000.0 * amb_pressure; // ..returned a po2 of zero (i.e. o2 sensor data not resolvable) pressures.n2 = get_n2(mix) / 1000.0 * amb_pressure; } } return pressures; } enum gastype gasmix_to_type(struct gasmix mix) { if (gasmix_is_air(mix)) return GASTYPE_AIR; if (get_o2(mix) >= 980) return GASTYPE_OXYGEN; if (get_he(mix) == 0) return get_o2(mix) >= 230 ? GASTYPE_NITROX : GASTYPE_AIR; if (get_o2(mix) <= 180) return GASTYPE_HYPOXIC_TRIMIX; return get_o2(mix) <= 230 ? GASTYPE_NORMOXIC_TRIMIX : GASTYPE_HYPEROXIC_TRIMIX; } static const char *gastype_names[] = { QT_TRANSLATE_NOOP("gettextFromC", "Air"), QT_TRANSLATE_NOOP("gettextFromC", "Nitrox"), QT_TRANSLATE_NOOP("gettextFromC", "Hypoxic Trimix"), QT_TRANSLATE_NOOP("gettextFromC", "Normoxic Trimix"), QT_TRANSLATE_NOOP("gettextFromC", "Hyperoxic Trimix"), QT_TRANSLATE_NOOP("gettextFromC", "Oxygen") }; const char *gastype_name(enum gastype type) { if (type < 0 || type >= GASTYPE_COUNT) return ""; return translate("gettextFromC", gastype_names[type]); }