// SPDX-License-Identifier: GPL-2.0 /* gaspressures.c * --------------- * This file contains the routines to calculate the gas pressures in the cylinders. * The functions below support the code in profile.c. * The high-level function is populate_pressure_information(), called by function * create_plot_info_new() in profile.c. The other functions below are, in turn, * called by populate_pressure_information(). The calling sequence is as follows: * * populate_pressure_information() -> calc_pressure_time() * -> fill_missing_tank_pressures() -> fill_missing_segment_pressures() * -> get_pr_interpolate_data() * * The pr_track_t related functions below implement a linked list that is used by * the majority of the functions below. The linked list covers a part of the dive profile * for which there are no cylinder pressure data. Each element in the linked list * represents a segment between two consecutive points on the dive profile. * pr_track_t is defined in gaspressures.h */ #include "ssrf.h" #include "dive.h" #include "display.h" #include "profile.h" #include "gaspressures.h" #include "pref.h" static pr_track_t *pr_track_alloc(int start, int t_start) { pr_track_t *pt = malloc(sizeof(pr_track_t)); pt->start = start; pt->end = 0; pt->t_start = pt->t_end = t_start; pt->pressure_time = 0; pt->next = NULL; return pt; } /* poor man's linked list */ static pr_track_t *list_last(pr_track_t *list) { pr_track_t *tail = list; if (!tail) return NULL; while (tail->next) { tail = tail->next; } return tail; } static pr_track_t *list_add(pr_track_t *list, pr_track_t *element) { pr_track_t *tail = list_last(list); if (!tail) return element; tail->next = element; return list; } static void list_free(pr_track_t *list) { if (!list) return; list_free(list->next); free(list); } #ifdef DEBUG_PR_TRACK static void dump_pr_track(int cyl, pr_track_t *track_pr) { pr_track_t *list; printf("cyl%d:\n", cyl); list = track_pr; while (list) { printf(" start %d end %d t_start %d:%02d t_end %d:%02d pt %d\n", mbar_to_PSI(list->start), mbar_to_PSI(list->end), FRACTION(list->t_start, 60), FRACTION(list->t_end, 60), list->pressure_time); list = list->next; } } #endif /* * This looks at the pressures for one cylinder, and * calculates any missing beginning/end pressures for * each segment by taking the over-all SAC-rate into * account for that cylinder. * * NOTE! Many segments have full pressure information * (both beginning and ending pressure). But if we have * switched away from a cylinder, we will have the * beginning pressure for the first segment with a * missing end pressure. We may then have one or more * segments without beginning or end pressures, until * we finally have a segment with an end pressure. * * We want to spread out the pressure over these missing * segments according to how big of a time_pressure area * they have. */ static void fill_missing_segment_pressures(pr_track_t *list, enum interpolation_strategy strategy) { double magic; while (list) { int start = list->start, end; pr_track_t *tmp = list; int pt_sum = 0, pt = 0; for (;;) { pt_sum += tmp->pressure_time; end = tmp->end; if (end) break; end = start; if (!tmp->next) break; tmp = tmp->next; } if (!start) start = end; /* * Now 'start' and 'end' contain the pressure values * for the set of segments described by 'list'..'tmp'. * pt_sum is the sum of all the pressure-times of the * segments. * * Now dole out the pressures relative to pressure-time. */ list->start = start; tmp->end = end; switch (strategy) { case SAC: for (;;) { int pressure; pt += list->pressure_time; pressure = start; if (pt_sum) pressure -= lrint((start - end) * (double)pt / pt_sum); list->end = pressure; if (list == tmp) break; list = list->next; list->start = pressure; } break; case TIME: if (list->t_end && (tmp->t_start - tmp->t_end)) { magic = (list->t_start - tmp->t_end) / (tmp->t_start - tmp->t_end); list->end = lrint(start - (start - end) * magic); } else { list->end = start; } break; case CONSTANT: list->end = start; } /* Ok, we've done that set of segments */ list = list->next; } } #ifdef DEBUG_PR_INTERPOLATE void dump_pr_interpolate(int i, pr_interpolate_t interpolate_pr) { printf("Interpolate for entry %d: start %d - end %d - pt %d - acc_pt %d\n", i, interpolate_pr.start, interpolate_pr.end, interpolate_pr.pressure_time, interpolate_pr.acc_pressure_time); } #endif static struct pr_interpolate_struct get_pr_interpolate_data(pr_track_t *segment, struct plot_info *pi, int cur) { // cur = index to pi->entry corresponding to t_end of segment; struct pr_interpolate_struct interpolate; int i; struct plot_data *entry; interpolate.start = segment->start; interpolate.end = segment->end; interpolate.acc_pressure_time = 0; interpolate.pressure_time = 0; for (i = 0; i < pi->nr; i++) { entry = pi->entry + i; if (entry->sec < segment->t_start) continue; interpolate.pressure_time += entry->pressure_time; if (entry->sec >= segment->t_end) break; if (i <= cur) interpolate.acc_pressure_time += entry->pressure_time; } return interpolate; } static void fill_missing_tank_pressures(struct dive *dive, struct plot_info *pi, pr_track_t *track_pr, int cyl) { int i; struct plot_data *entry; pr_interpolate_t interpolate = { 0, 0, 0, 0 }; pr_track_t *last_segment = NULL; int cur_pr; enum interpolation_strategy strategy; /* no segment where this cylinder is used */ if (!track_pr) return; if (dive->cylinder[cyl].cylinder_use == OC_GAS) strategy = SAC; else strategy = TIME; fill_missing_segment_pressures(track_pr, strategy); // Interpolate the missing tank pressure values .. cur_pr = track_pr->start; // in the pr_track_t lists of structures // and keep the starting pressure for each cylinder. #ifdef DEBUG_PR_TRACK dump_pr_track(cyl, track_pr); #endif /* Transfer interpolated cylinder pressures from pr_track strucktures to plotdata * Go down the list of tank pressures in plot_info. Align them with the start & * end times of each profile segment represented by a pr_track_t structure. Get * the accumulated pressure_depths from the pr_track_t structures and then * interpolate the pressure where these do not exist in the plot_info pressure * variables. Pressure values are transferred from the pr_track_t structures * to the plot_info structure, allowing us to plot the tank pressure. * * The first two pi structures are "fillers", but in case we don't have a sample * at time 0 we need to process the second of them here, therefore i=1 */ for (i = 1; i < pi->nr; i++) { // For each point on the profile: double magic; pr_track_t *segment; int pressure; int *save_pressure, *save_interpolated; entry = pi->entry + i; save_pressure = &(entry->pressure[cyl][SENSOR_PR]); save_interpolated = &(entry->pressure[cyl][INTERPOLATED_PR]); pressure = *save_pressure ? *save_pressure : *save_interpolated; if (pressure) { // If there is a valid pressure value, last_segment = NULL; // get rid of interpolation data, cur_pr = pressure; // set current pressure continue; // and skip to next point. } // If there is NO valid pressure value.. // Find the pressure segment corresponding to this entry.. segment = track_pr; while (segment && segment->t_end < entry->sec) // Find the track_pr with end time.. segment = segment->next; // ..that matches the plot_info time (entry->sec) // After last segment? All done. if (!segment) break; // Before first segment, or between segments.. Go on, no interpolation. if (segment->t_start > entry->sec) continue; if (!segment->pressure_time) { // Empty segment? *save_pressure = cur_pr; // Just use our current pressure continue; // and skip to next point. } // If there is a valid segment but no tank pressure .. if (segment == last_segment) { interpolate.acc_pressure_time += entry->pressure_time; } else { // Set up an interpolation structure interpolate = get_pr_interpolate_data(segment, pi, i); last_segment = segment; } if(dive->cylinder[cyl].cylinder_use == OC_GAS) { /* if this segment has pressure_time, then calculate a new interpolated pressure */ if (interpolate.pressure_time) { /* Overall pressure change over total pressure-time for this segment*/ magic = (interpolate.end - interpolate.start) / (double)interpolate.pressure_time; /* Use that overall pressure change to update the current pressure */ cur_pr = lrint(interpolate.start + magic * interpolate.acc_pressure_time); } } else { magic = (interpolate.end - interpolate.start) / (segment->t_end - segment->t_start); cur_pr = lrint(segment->start + magic * (entry->sec - segment->t_start)); } *save_interpolated = cur_pr; // and store the interpolated data in plot_info } } /* * What's the pressure-time between two plot data entries? * We're calculating the integral of pressure over time by * adding these up. * * The units won't matter as long as everybody agrees about * them, since they'll cancel out - we use this to calculate * a constant SAC-rate-equivalent, but we only use it to * scale pressures, so it ends up being a unitless scaling * factor. */ static inline int calc_pressure_time(struct dive *dive, struct plot_data *a, struct plot_data *b) { int time = b->sec - a->sec; int depth = (a->depth + b->depth) / 2; if (depth <= SURFACE_THRESHOLD) return 0; return depth_to_mbar(depth, dive) * time; } #ifdef PRINT_PRESSURES_DEBUG // A CCR debugging tool that prints the gas pressures in cylinder 0 and in the diluent cylinder, used in populate_pressure_information(): static void debug_print_pressures(struct plot_info *pi) { int i; for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; printf("%5d |%9d | %9d || %9d | %9d |\n", i, SENSOR_PRESSURE(entry), INTERPOLATED_PRESSURE(entry), DILUENT_PRESSURE(entry), INTERPOLATED_DILUENT_PRESSURE(entry)); } } #endif /* This function goes through the list of tank pressures, either SENSOR_PRESSURE(entry) or O2CYLINDER_PRESSURE(entry), * of structure plot_info for the dive profile where each item in the list corresponds to one point (node) of the * profile. It finds values for which there are no tank pressures (pressure==0). For each missing item (node) of * tank pressure it creates a pr_track_alloc structure that represents a segment on the dive profile and that * contains tank pressures. There is a linked list of pr_track_alloc structures for each cylinder. These pr_track_alloc * structures ultimately allow for filling the missing tank pressure values on the dive profile using the depth_pressure * of the dive. To do this, it calculates the summed pressure-time value for the duration of the dive and stores these * in the pr_track_alloc structures. If diluent_flag = 1, then DILUENT_PRESSURE(entry) is used instead of SENSOR_PRESSURE. * This function is called by create_plot_info_new() in profile.c */ void populate_pressure_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi, int sensor) { UNUSED(dc); int first, last, cyl; cylinder_t *cylinder = dive->cylinder + sensor; pr_track_t *track = NULL; pr_track_t *current = NULL; const struct event *ev, *b_ev; int missing_pr = 0, dense = 1; enum divemode_t dmode = dc->divemode; const double gasfactor[5] = {1.0, 0.0, prefs.pscr_ratio/1000.0, 1.0, 1.0 }; /* if we have no pressure data whatsoever, this is pointless, so let's just return */ if (!cylinder->start.mbar && !cylinder->end.mbar && !cylinder->sample_start.mbar && !cylinder->sample_end.mbar) return; /* Get a rough range of where we have any pressures at all */ first = last = -1; for (int i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; unsigned pressure = SENSOR_PRESSURE(entry, sensor); if (!pressure) continue; if (first < 0) first = i; last = i; } /* No sensor data at all? */ if (first == last) return; /* * Split the range: * - missing pressure data * - gas change events to other cylinders * * Note that we only look at gas switches if this cylinder * itself has a gas change event. */ cyl = sensor; ev = NULL; if (has_gaschange_event(dive, dc, sensor)) ev = get_next_event(dc->events, "gaschange"); b_ev = get_next_event(dc->events, "modechange"); for (int i = first; i <= last; i++) { struct plot_data *entry = pi->entry + i; unsigned pressure = SENSOR_PRESSURE(entry, sensor); int time = entry->sec; while (ev && ev->time.seconds <= time) { // Find 1st gaschange event after cyl = get_cylinder_index(dive, ev); // the current gas change. if (cyl < 0) cyl = sensor; ev = get_next_event(ev->next, "gaschange"); } while (b_ev && b_ev->time.seconds <= time) { // Keep existing divemode, then dmode = b_ev->value; // find 1st divemode change event after the current b_ev = get_next_event(b_ev->next, "modechange"); // divemode change. } if (current) { // calculate pressure-time, taking into account the dive mode for this specific segment. entry->pressure_time = (int)(calc_pressure_time(dive, entry - 1, entry) * gasfactor[dmode] + 0.5); current->pressure_time += entry->pressure_time; current->t_end = entry->sec; if (pressure) current->end = pressure; } // We have a final pressure for 'current' // If a gas switch has occurred, finish the // current pressure track entry and continue // until we get back to this cylinder. if (cyl != sensor) { current = NULL; SENSOR_PRESSURE(entry, sensor) = 0; continue; } // If we have no pressure information, we will need to // continue with or without a tracking entry. Mark any // existing tracking entry as non-dense, and remember // to fill in interpolated data. if (current && !pressure) { missing_pr = 1; dense = 0; continue; } // If we already have a pressure tracking entry, and // it has not had any missing samples, just continue // using it - there's nothing to interpolate yet. if (current && dense) continue; // We need to start a new tracking entry, either // because the previous was interrupted by a gas // switch event, or because the previous one has // missing entries that need to be interpolated. // Or maybe we didn't have a previous one at all, // and this is the first pressure entry. current = pr_track_alloc(pressure, entry->sec); track = list_add(track, current); dense = 1; } if (missing_pr) { fill_missing_tank_pressures(dive, pi, track, sensor); } #ifdef PRINT_PRESSURES_DEBUG debug_print_pressures(pi); #endif list_free(track); }