// SPDX-License-Identifier: GPL-2.0 /* profile.c */ /* creates all the necessary data for drawing the dive profile */ #include "ssrf.h" #include "gettext.h" #include #include #include #include "dive.h" #include "subsurface-string.h" #include "display.h" #include "divelist.h" #include "profile.h" #include "gaspressures.h" #include "deco.h" #include "libdivecomputer/parser.h" #include "libdivecomputer/version.h" #include "membuffer.h" #include "qthelper.h" #include "format.h" //#define DEBUG_GAS 1 #define MAX_PROFILE_DECO 7200 extern int ascent_velocity(int depth, int avg_depth, int bottom_time); struct dive *current_dive = NULL; unsigned int dc_number = 0; static struct plot_data *last_pi_entry_new = NULL; #ifdef DEBUG_PI /* debugging tool - not normally used */ static void dump_pi(struct plot_info *pi) { int i; printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n" " maxpressure:%d mintemp:%d maxtemp:%d\n", pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth, pi->maxpressure, pi->mintemp, pi->maxtemp); for (i = 0; i < pi->nr; i++) { struct plot_data *entry = &pi->entry[i]; printf(" entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n" " time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n", i, entry->sensor[0], entry->sec, entry->pressure[0], entry->pressure[1], entry->sec / 60, entry->sec % 60, entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed, entry->pressures.o2, entry->pressures.he, entry->pressures.n2, entry->pressures.o2 + entry->pressures.he + entry->pressures.n2); } printf(" }\n"); } #endif #define ROUND_UP(x, y) ((((x) + (y) - 1) / (y)) * (y)) #define DIV_UP(x, y) (((x) + (y) - 1) / (y)) /* * When showing dive profiles, we scale things to the * current dive. However, we don't scale past less than * 30 minutes or 90 ft, just so that small dives show * up as such unless zoom is enabled. * We also need to add 180 seconds at the end so the min/max * plots correctly */ int get_maxtime(struct plot_info *pi) { int seconds = pi->maxtime; int DURATION_THR = (pi->dive_type == FREEDIVING ? 60 : 600); int CEILING = (pi->dive_type == FREEDIVING ? 30 : 60); if (prefs.zoomed_plot) { /* Rounded up to one minute, with at least 2.5 minutes to * spare. * For dive times shorter than 10 minutes, we use seconds/4 to * calculate the space dynamically. * This is seamless since 600/4 = 150. */ if (seconds < DURATION_THR) return ROUND_UP(seconds + seconds / 4, CEILING); else return ROUND_UP(seconds + DURATION_THR/4, CEILING); } else { #ifndef SUBSURFACE_MOBILE /* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */ return MAX(30 * 60, ROUND_UP(seconds + DURATION_THR/4, CEILING * 5)); #else /* just add 2.5 minutes so we have a consistant right margin */ return seconds + DURATION_THR / 4; #endif } } /* get the maximum depth to which we want to plot * take into account the additional vertical space needed to plot * partial pressure graphs */ int get_maxdepth(struct plot_info *pi) { unsigned mm = pi->maxdepth; int md; if (prefs.zoomed_plot) { /* Rounded up to 10m, with at least 3m to spare */ md = ROUND_UP(mm + 3000, 10000); } else { /* Minimum 30m, rounded up to 10m, with at least 3m to spare */ md = MAX((unsigned)30000, ROUND_UP(mm + 3000, 10000)); } md += lrint(pi->maxpp * 9000); return md; } /* collect all event names and whether we display them */ struct ev_select *ev_namelist; int evn_allocated; int evn_used; #if WE_DONT_USE_THIS /* we need to implement event filters in Qt */ int evn_foreach (void (*callback)(const char *, bool *, void *), void *data) { int i; for (i = 0; i < evn_used; i++) { /* here we display an event name on screen - so translate */ callback(translate("gettextFromC", ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data); } return i; } #endif /* WE_DONT_USE_THIS */ void clear_events(void) { for (int i = 0; i < evn_used; i++) free(ev_namelist[i].ev_name); evn_used = 0; } void remember_event(const char *eventname) { int i = 0, len; if (!eventname || (len = strlen(eventname)) == 0) return; while (i < evn_used) { if (!strncmp(eventname, ev_namelist[i].ev_name, len)) return; i++; } if (evn_used == evn_allocated) { evn_allocated += 10; ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select)); if (!ev_namelist) /* we are screwed, but let's just bail out */ return; } ev_namelist[evn_used].ev_name = strdup(eventname); ev_namelist[evn_used].plot_ev = true; evn_used++; } /* UNUSED! */ static int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive) __attribute__((unused)); /* Get local sac-rate (in ml/min) between entry1 and entry2 */ static int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive) { int index = 0; cylinder_t *cyl; int duration = entry2->sec - entry1->sec; int depth, airuse; pressure_t a, b; double atm; if (duration <= 0) return 0; a.mbar = GET_PRESSURE(entry1, 0); b.mbar = GET_PRESSURE(entry2, 0); if (!b.mbar || a.mbar <= b.mbar) return 0; /* Mean pressure in ATM */ depth = (entry1->depth + entry2->depth) / 2; atm = depth_to_atm(depth, dive); cyl = dive->cylinder + index; airuse = gas_volume(cyl, a) - gas_volume(cyl, b); /* milliliters per minute */ return lrint(airuse / atm * 60 / duration); } #define HALF_INTERVAL 9 * 30 /* * Run the min/max calculations: over a 9 minute interval * around the entry point (indices 0, 1, 2 respectively). */ static void analyze_plot_info_minmax(struct plot_info *pi, int entry_index) { struct plot_data *plot_entry = pi->entry + entry_index; // fixed struct plot_data *p = plot_entry; // moves with 'entry' int start = p->sec - HALF_INTERVAL, end = p->sec + HALF_INTERVAL; int min, max; /* Go back 'seconds' in time */ while (entry_index > 0) { if (p[-1].sec < start) break; entry_index--; p--; } // indexes to the min/max entries min = max = entry_index; /* Then go forward until we hit an entry past the time */ while (entry_index < pi->nr) { int time = p->sec; int depth = p->depth; if (time > end) break; if (depth < pi->entry[min].depth) min = entry_index; if (depth > pi->entry[max].depth) max = entry_index; p++; entry_index++; } plot_entry->min = min; plot_entry->max = max; } static velocity_t velocity(int speed) { velocity_t v; if (speed < -304) /* ascent faster than -60ft/min */ v = CRAZY; else if (speed < -152) /* above -30ft/min */ v = FAST; else if (speed < -76) /* -15ft/min */ v = MODERATE; else if (speed < -25) /* -5ft/min */ v = SLOW; else if (speed < 25) /* very hard to find data, but it appears that the recommendations for descent are usually about 2x ascent rate; still, we want stable to mean stable */ v = STABLE; else if (speed < 152) /* between 5 and 30ft/min is considered slow */ v = SLOW; else if (speed < 304) /* up to 60ft/min is moderate */ v = MODERATE; else if (speed < 507) /* up to 100ft/min is fast */ v = FAST; else /* more than that is just crazy - you'll blow your ears out */ v = CRAZY; return v; } struct plot_info *analyze_plot_info(struct plot_info *pi) { int i; int nr = pi->nr; /* Smoothing function: 5-point triangular smooth */ for (i = 2; i < nr; i++) { struct plot_data *entry = pi->entry + i; int depth; if (i < nr - 2) { depth = entry[-2].depth + 2 * entry[-1].depth + 3 * entry[0].depth + 2 * entry[1].depth + entry[2].depth; entry->smoothed = (depth + 4) / 9; } /* vertical velocity in mm/sec */ /* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */ if (entry[0].sec - entry[-1].sec) { entry->speed = (entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec); entry->velocity = velocity(entry->speed); /* if our samples are short and we aren't too FAST*/ if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) { int past = -2; while (i + past > 0 && entry[0].sec - entry[past].sec < 15) past--; entry->velocity = velocity((entry[0].depth - entry[past].depth) / (entry[0].sec - entry[past].sec)); } } else { entry->velocity = STABLE; entry->speed = 0; } } /* get minmax data */ for (i = 0; i < nr; i++) analyze_plot_info_minmax(pi, i); return pi; } /* * If the event has an explicit cylinder index, * we return that. If it doesn't, we return the best * match based on the gasmix. * * Some dive computers give cylinder indexes, some * give just the gas mix. */ int get_cylinder_index(const struct dive *dive, const struct event *ev) { int best; struct gasmix mix; if (ev->gas.index >= 0) return ev->gas.index; /* * This should no longer happen! * * We now match up gas change events with their cylinders at dive * event fixup time. */ fprintf(stderr, "Still looking up cylinder based on gas mix in get_cylinder_index()!\n"); mix = get_gasmix_from_event(dive, ev); best = find_best_gasmix_match(mix, dive->cylinder); return best < 0 ? 0 : best; } struct event *get_next_event_mutable(struct event *event, const char *name) { if (!name || !*name) return NULL; while (event) { if (!strcmp(event->name, name)) return event; event = event->next; } return event; } const struct event *get_next_event(const struct event *event, const char *name) { return get_next_event_mutable((struct event *)event, name); } static int count_events(struct divecomputer *dc) { int result = 0; struct event *ev = dc->events; while (ev != NULL) { result++; ev = ev->next; } return result; } static int set_setpoint(struct plot_info *pi, int i, int setpoint, int end) { while (i < pi->nr) { struct plot_data *entry = pi->entry + i; if (entry->sec > end) break; entry->o2pressure.mbar = setpoint; i++; } return i; } static void check_setpoint_events(const struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { UNUSED(dive); int i = 0; pressure_t setpoint; setpoint.mbar = 0; const struct event *ev = get_next_event(dc->events, "SP change"); if (!ev) return; do { i = set_setpoint(pi, i, setpoint.mbar, ev->time.seconds); setpoint.mbar = ev->value; if (setpoint.mbar) dc->divemode = CCR; ev = get_next_event(ev->next, "SP change"); } while (ev); set_setpoint(pi, i, setpoint.mbar, INT_MAX); } struct plot_info calculate_max_limits_new(struct dive *dive, struct divecomputer *given_dc) { struct divecomputer *dc = &(dive->dc); bool seen = false; static struct plot_info pi; int maxdepth = dive->maxdepth.mm; int maxtime = 0; int maxpressure = 0, minpressure = INT_MAX; int maxhr = 0, minhr = INT_MAX; int mintemp = dive->mintemp.mkelvin; int maxtemp = dive->maxtemp.mkelvin; int cyl; /* Get the per-cylinder maximum pressure if they are manual */ for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { int mbar = dive->cylinder[cyl].start.mbar; if (mbar > maxpressure) maxpressure = mbar; if (mbar < minpressure) minpressure = mbar; } /* Then do all the samples from all the dive computers */ do { if (dc == given_dc) seen = true; int i = dc->samples; int lastdepth = 0; struct sample *s = dc->sample; struct event *ev; while (--i >= 0) { int depth = s->depth.mm; int pressure = s->pressure[0].mbar; int temperature = s->temperature.mkelvin; int heartbeat = s->heartbeat; if (!mintemp && temperature < mintemp) mintemp = temperature; if (temperature > maxtemp) maxtemp = temperature; if (pressure && pressure < minpressure) minpressure = pressure; if (pressure > maxpressure) maxpressure = pressure; if (heartbeat > maxhr) maxhr = heartbeat; if (heartbeat && heartbeat < minhr) minhr = heartbeat; if (depth > maxdepth) maxdepth = s->depth.mm; if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD || in_planner()) && s->time.seconds > maxtime) maxtime = s->time.seconds; lastdepth = depth; s++; } /* Make sure we can fit all events */ ev = dc->events; while (ev) { if (ev->time.seconds > maxtime) maxtime = ev->time.seconds; ev = ev->next; } dc = dc->next; if (dc == NULL && !seen) { dc = given_dc; seen = true; } } while (dc != NULL); if (minpressure > maxpressure) minpressure = 0; if (minhr > maxhr) minhr = maxhr; memset(&pi, 0, sizeof(pi)); pi.maxdepth = maxdepth; pi.maxtime = maxtime; pi.maxpressure = maxpressure; pi.minpressure = minpressure; pi.minhr = minhr; pi.maxhr = maxhr; pi.mintemp = mintemp; pi.maxtemp = maxtemp; return pi; } /* copy the previous entry (we know this exists), update time and depth * and zero out the sensor pressure (since this is a synthetic entry) * increment the entry pointer and the count of synthetic entries. */ #define INSERT_ENTRY(_time, _depth, _sac) \ *entry = entry[-1]; \ entry->sec = _time; \ entry->depth = _depth; \ entry->running_sum = (entry - 1)->running_sum + (_time - (entry - 1)->sec) * (_depth + (entry - 1)->depth) / 2; \ memset(entry->pressure, 0, sizeof(entry->pressure)); \ entry->sac = _sac; \ entry->ndl = -1; \ entry->bearing = -1; \ entry++; \ idx++ struct plot_data *populate_plot_entries(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { UNUSED(dive); int idx, maxtime, nr, i; int lastdepth, lasttime, lasttemp = 0; struct plot_data *plot_data; struct event *ev = dc->events; maxtime = pi->maxtime; /* * We want to have a plot_info event at least every 10s (so "maxtime/10+1"), * but samples could be more dense than that (so add in dc->samples). We also * need to have one for every event (so count events and add that) and * additionally we want two surface events around the whole thing (thus the * additional 4). There is also one extra space for a final entry * that has time > maxtime (because there can be surface samples * past "maxtime" in the original sample data) */ nr = dc->samples + 6 + maxtime / 10 + count_events(dc); plot_data = calloc(nr, sizeof(struct plot_data)); pi->entry = plot_data; if (!plot_data) return NULL; pi->nr = nr; idx = 2; /* the two extra events at the start */ lastdepth = 0; lasttime = 0; /* skip events at time = 0 */ while (ev && ev->time.seconds == 0) ev = ev->next; for (i = 0; i < dc->samples; i++) { struct plot_data *entry = plot_data + idx; struct sample *sample = dc->sample + i; int time = sample->time.seconds; int offset, delta; int depth = sample->depth.mm; int sac = sample->sac.mliter; /* Add intermediate plot entries if required */ delta = time - lasttime; if (delta <= 0) { time = lasttime; delta = 1; // avoid divide by 0 } for (offset = 10; offset < delta; offset += 10) { if (lasttime + offset > maxtime) break; /* Add events if they are between plot entries */ while (ev && (int)ev->time.seconds < lasttime + offset) { INSERT_ENTRY(ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta), sac); ev = ev->next; } /* now insert the time interpolated entry */ INSERT_ENTRY(lasttime + offset, interpolate(lastdepth, depth, offset, delta), sac); /* skip events that happened at this time */ while (ev && (int)ev->time.seconds == lasttime + offset) ev = ev->next; } /* Add events if they are between plot entries */ while (ev && (int)ev->time.seconds < time) { INSERT_ENTRY(ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta), sac); ev = ev->next; } entry->sec = time; entry->depth = depth; entry->running_sum = (entry - 1)->running_sum + (time - (entry - 1)->sec) * (depth + (entry - 1)->depth) / 2; entry->stopdepth = sample->stopdepth.mm; entry->stoptime = sample->stoptime.seconds; entry->ndl = sample->ndl.seconds; entry->tts = sample->tts.seconds; entry->in_deco = sample->in_deco; entry->cns = sample->cns; if (dc->divemode == CCR || (dc->divemode == PSCR && dc->no_o2sensors)) { entry->o2pressure.mbar = entry->o2setpoint.mbar = sample->setpoint.mbar; // for rebreathers entry->o2sensor[0].mbar = sample->o2sensor[0].mbar; // for up to three rebreather O2 sensors entry->o2sensor[1].mbar = sample->o2sensor[1].mbar; entry->o2sensor[2].mbar = sample->o2sensor[2].mbar; } else { entry->pressures.o2 = sample->setpoint.mbar / 1000.0; } if (sample->pressure[0].mbar) SENSOR_PRESSURE(entry, sample->sensor[0]) = sample->pressure[0].mbar; if (sample->pressure[1].mbar) SENSOR_PRESSURE(entry, sample->sensor[1]) = sample->pressure[1].mbar; if (sample->temperature.mkelvin) entry->temperature = lasttemp = sample->temperature.mkelvin; else entry->temperature = lasttemp; entry->heartbeat = sample->heartbeat; entry->bearing = sample->bearing.degrees; entry->sac = sample->sac.mliter; if (sample->rbt.seconds) entry->rbt = sample->rbt.seconds; /* skip events that happened at this time */ while (ev && (int)ev->time.seconds == time) ev = ev->next; lasttime = time; lastdepth = depth; idx++; if (time > maxtime) break; } /* Add any remaining events */ while (ev) { struct plot_data *entry = plot_data + idx; int time = ev->time.seconds; if (time > lasttime) { INSERT_ENTRY(ev->time.seconds, 0, 0); lasttime = time; } ev = ev->next; } /* Add two final surface events */ plot_data[idx++].sec = lasttime + 1; plot_data[idx++].sec = lasttime + 2; pi->nr = idx; return plot_data; } #undef INSERT_ENTRY /* * Calculate the sac rate between the two plot entries 'first' and 'last'. * * Everything in between has a cylinder pressure for at least some of the cylinders. */ static int sac_between(struct dive *dive, struct plot_data *first, struct plot_data *last, unsigned int gases) { int i, airuse; double pressuretime; if (first == last) return 0; /* Get airuse for the set of cylinders over the range */ airuse = 0; for (i = 0; i < MAX_CYLINDERS; i++) { pressure_t a, b; cylinder_t *cyl; int cyluse; if (!(gases & (1u << i))) continue; a.mbar = GET_PRESSURE(first, i); b.mbar = GET_PRESSURE(last, i); cyl = dive->cylinder + i; cyluse = gas_volume(cyl, a) - gas_volume(cyl, b); if (cyluse > 0) airuse += cyluse; } if (!airuse) return 0; /* Calculate depthpressure integrated over time */ pressuretime = 0.0; do { int depth = (first[0].depth + first[1].depth) / 2; int time = first[1].sec - first[0].sec; double atm = depth_to_atm(depth, dive); pressuretime += atm * time; } while (++first < last); /* Turn "atmseconds" into "atmminutes" */ pressuretime /= 60; /* SAC = mliter per minute */ return lrint(airuse / pressuretime); } /* Which of the set of gases have pressure data */ static unsigned int have_pressures(struct plot_data *entry, unsigned int gases) { int i; for (i = 0; i < MAX_CYLINDERS; i++) { unsigned int mask = 1 << i; if (gases & mask) { if (!GET_PRESSURE(entry, i)) gases &= ~mask; } } return gases; } /* * Try to do the momentary sac rate for this entry, averaging over one * minute. */ static void fill_sac(struct dive *dive, struct plot_info *pi, int idx, unsigned int gases) { struct plot_data *entry = pi->entry + idx; struct plot_data *first, *last; int time; if (entry->sac) return; /* * We may not have pressure data for all the cylinders, * but we'll calculate the SAC for the ones we do have. */ gases = have_pressures(entry, gases); if (!gases) return; /* * Try to go back 30 seconds to get 'first'. * Stop if the cylinder pressure data set changes. */ first = entry; time = entry->sec - 30; while (idx > 0) { struct plot_data *prev = first-1; if (prev->depth < SURFACE_THRESHOLD && first->depth < SURFACE_THRESHOLD) break; if (prev->sec < time) break; if (have_pressures(prev, gases) != gases) break; idx--; first = prev; } /* Now find an entry a minute after the first one */ last = first; time = first->sec + 60; while (++idx < pi->nr) { struct plot_data *next = last+1; if (next->depth < SURFACE_THRESHOLD && last->depth < SURFACE_THRESHOLD) break; if (next->sec > time) break; if (have_pressures(next, gases) != gases) break; last = next; } /* Ok, now calculate the SAC between 'first' and 'last' */ entry->sac = sac_between(dive, first, last, gases); } /* * Create a bitmap of cylinders that match our current gasmix */ static unsigned int matching_gases(struct dive *dive, struct gasmix gasmix) { int i; unsigned int gases = 0; for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder + i; if (same_gasmix(gasmix, cyl->gasmix)) gases |= 1 << i; } return gases; } static void calculate_sac(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { struct gasmix gasmix = gasmix_invalid; const struct event *ev = NULL; unsigned int gases = 0; for (int i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; struct gasmix newmix = get_gasmix(dive, dc, entry->sec, &ev, gasmix); if (!same_gasmix(newmix, gasmix)) { gasmix = newmix; gases = matching_gases(dive, newmix); } fill_sac(dive, pi, i, gases); } } static void populate_secondary_sensor_data(const struct divecomputer *dc, struct plot_info *pi) { UNUSED(dc); UNUSED(pi); /* We should try to see if it has interesting pressure data here */ } /* * This adds a pressure entry to the plot_info based on the gas change * information and the manually filled in pressures. */ static void add_plot_pressure(struct plot_info *pi, int time, int cyl, pressure_t p) { struct plot_data *entry; if (pi->nr <= 0) { fprintf(stderr, "add_plot_pressure(): called with pi->nr <= 0\n"); return; } for (int i = 0; i < pi->nr; i++) { entry = pi->entry + i; if (entry->sec >= time) break; } SENSOR_PRESSURE(entry, cyl) = p.mbar; } static void setup_gas_sensor_pressure(const struct dive *dive, const struct divecomputer *dc, struct plot_info *pi) { int prev, i; const struct event *ev; int seen[MAX_CYLINDERS] = { 0, }; unsigned int first[MAX_CYLINDERS] = { 0, }; unsigned int last[MAX_CYLINDERS] = { 0, }; const struct divecomputer *secondary; prev = explicit_first_cylinder(dive, dc); seen[prev] = 1; for (i = 0; i < MAX_CYLINDERS; i++) last[i] = INT_MAX; for (ev = get_next_event(dc->events, "gaschange"); ev != NULL; ev = get_next_event(ev->next, "gaschange")) { int cyl = ev->gas.index; int sec = ev->time.seconds; if (cyl < 0) continue; last[prev] = sec; prev = cyl; last[cyl] = sec; if (!seen[cyl]) { // The end time may be updated by a subsequent cylinder change first[cyl] = sec; seen[cyl] = 1; } } last[prev] = INT_MAX; // Fill in "seen[]" array - mark cylinders we're not interested // in as negative. for (i = 0; i < MAX_CYLINDERS; i++) { const cylinder_t *cyl = dive->cylinder + i; int start = cyl->start.mbar; int end = cyl->end.mbar; /* * Fundamentally uninteresting? * * A dive computer with no pressure data isn't interesting * to plot pressures for even if we've seen it.. */ if (!start || !end || start == end) { seen[i] = -1; continue; } /* If we've seen it, we're definitely interested */ if (seen[i]) continue; /* If it's only mentioned by other dc's, ignore it */ for_each_dc(dive, secondary) { if (has_gaschange_event(dive, secondary, i)) { seen[i] = -1; break; } } } for (i = 0; i < MAX_CYLINDERS; i++) { if (seen[i] >= 0) { const cylinder_t *cyl = dive->cylinder + i; add_plot_pressure(pi, first[i], i, cyl->start); add_plot_pressure(pi, last[i], i, cyl->end); } } /* * Here, we should try to walk through all the dive computers, * and try to see if they have sensor data different from the * primary dive computer (dc). */ secondary = &dive->dc; do { if (secondary == dc) continue; populate_secondary_sensor_data(dc, pi); } while ((secondary = secondary->next) != NULL); } #ifndef SUBSURFACE_MOBILE /* calculate DECO STOP / TTS / NDL */ static void calculate_ndl_tts(struct deco_state *ds, const struct dive *dive, struct plot_data *entry, struct gasmix gasmix, double surface_pressure,enum divemode_t divemode) { /* should this be configurable? */ /* ascent speed up to first deco stop */ const int ascent_s_per_step = 1; const int ascent_s_per_deco_step = 1; /* how long time steps in deco calculations? */ const int time_stepsize = 60; const int deco_stepsize = 3000; /* at what depth is the current deco-step? */ int next_stop = ROUND_UP(deco_allowed_depth( tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)), surface_pressure, dive, 1), deco_stepsize); int ascent_depth = entry->depth; /* at what time should we give up and say that we got enuff NDL? */ /* If iterating through a dive, entry->tts_calc needs to be reset */ entry->tts_calc = 0; /* If we don't have a ceiling yet, calculate ndl. Don't try to calculate * a ndl for lower values than 3m it would take forever */ if (next_stop == 0) { if (entry->depth < 3000) { entry->ndl = MAX_PROFILE_DECO; return; } /* stop if the ndl is above max_ndl seconds, and call it plenty of time */ while (entry->ndl_calc < MAX_PROFILE_DECO && deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)), surface_pressure, dive, 1) <= 0 ) { entry->ndl_calc += time_stepsize; add_segment(ds, depth_to_bar(entry->depth, dive), gasmix, time_stepsize, entry->o2pressure.mbar, divemode, prefs.bottomsac); } /* we don't need to calculate anything else */ return; } /* We are in deco */ entry->in_deco_calc = true; /* Add segments for movement to stopdepth */ for (; ascent_depth > next_stop; ascent_depth -= ascent_s_per_step * ascent_velocity(ascent_depth, entry->running_sum / entry->sec, 0), entry->tts_calc += ascent_s_per_step) { add_segment(ds, depth_to_bar(ascent_depth, dive), gasmix, ascent_s_per_step, entry->o2pressure.mbar, divemode, prefs.decosac); next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(ascent_depth, dive)), surface_pressure, dive, 1), deco_stepsize); } ascent_depth = next_stop; /* And how long is the current deco-step? */ entry->stoptime_calc = 0; entry->stopdepth_calc = next_stop; next_stop -= deco_stepsize; /* And how long is the total TTS */ while (next_stop >= 0) { /* save the time for the first stop to show in the graph */ if (ascent_depth == entry->stopdepth_calc) entry->stoptime_calc += time_stepsize; entry->tts_calc += time_stepsize; if (entry->tts_calc > MAX_PROFILE_DECO) break; add_segment(ds, depth_to_bar(ascent_depth, dive), gasmix, time_stepsize, entry->o2pressure.mbar, divemode, prefs.decosac); if (deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(ascent_depth,dive)), surface_pressure, dive, 1) <= next_stop) { /* move to the next stop and add the travel between stops */ for (; ascent_depth > next_stop; ascent_depth -= ascent_s_per_deco_step * ascent_velocity(ascent_depth, entry->running_sum / entry->sec, 0), entry->tts_calc += ascent_s_per_deco_step) add_segment(ds, depth_to_bar(ascent_depth, dive), gasmix, ascent_s_per_deco_step, entry->o2pressure.mbar, divemode, prefs.decosac); ascent_depth = next_stop; next_stop -= deco_stepsize; } } } /* Let's try to do some deco calculations. */ void calculate_deco_information(struct deco_state *ds, const struct deco_state *planner_ds, const struct dive *dive, const struct divecomputer *dc, struct plot_info *pi, bool print_mode) { int i, count_iteration = 0; double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : get_surface_pressure_in_mbar(dive, true)) / 1000.0; bool first_iteration = true; int prev_deco_time = 10000000, time_deep_ceiling = 0; if (!in_planner()) { ds->deco_time = 0; } else { ds->deco_time = planner_ds->deco_time; ds->first_ceiling_pressure = planner_ds->first_ceiling_pressure; } struct deco_state *cache_data_initial = NULL; lock_planner(); /* For VPM-B outside the planner, cache the initial deco state for CVA iterations */ if (decoMode() == VPMB) { cache_deco_state(ds, &cache_data_initial); } /* For VPM-B outside the planner, iterate until deco time converges (usually one or two iterations after the initial) * Set maximum number of iterations to 10 just in case */ while ((abs(prev_deco_time - ds->deco_time) >= 30) && (count_iteration < 10)) { int last_ndl_tts_calc_time = 0, first_ceiling = 0, current_ceiling, last_ceiling = 0, final_tts = 0 , time_clear_ceiling = 0; if (decoMode() == VPMB) ds->first_ceiling_pressure.mbar = depth_to_mbar(first_ceiling, dive); struct gasmix gasmix = gasmix_invalid; const struct event *ev = NULL, *evd = NULL; enum divemode_t current_divemode = UNDEF_COMP_TYPE; for (i = 1; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; int j, t0 = (entry - 1)->sec, t1 = entry->sec; int time_stepsize = 20; current_divemode = get_current_divemode(dc, entry->sec, &evd, ¤t_divemode); gasmix = get_gasmix(dive, dc, t1, &ev, gasmix); entry->ambpressure = depth_to_bar(entry->depth, dive); entry->gfline = get_gf(ds, entry->ambpressure, dive) * (100.0 - AMB_PERCENTAGE) + AMB_PERCENTAGE; if (t0 > t1) { fprintf(stderr, "non-monotonous dive stamps %d %d\n", t0, t1); int xchg = t1; t1 = t0; t0 = xchg; } if (t0 != t1 && t1 - t0 < time_stepsize) time_stepsize = t1 - t0; for (j = t0 + time_stepsize; j <= t1; j += time_stepsize) { int depth = interpolate(entry[-1].depth, entry[0].depth, j - t0, t1 - t0); add_segment(ds, depth_to_bar(depth, dive), gasmix, time_stepsize, entry->o2pressure.mbar, current_divemode, entry->sac); entry->icd_warning = ds->icd_warning; if ((t1 - j < time_stepsize) && (j < t1)) time_stepsize = t1 - j; } if (t0 == t1) { entry->ceiling = (entry - 1)->ceiling; } else { /* Keep updating the VPM-B gradients until the start of the ascent phase of the dive. */ if (decoMode() == VPMB && last_ceiling >= first_ceiling && first_iteration == true) { nuclear_regeneration(ds, t1); vpmb_start_gradient(ds); /* For CVA iterations, calculate next gradient */ if (!first_iteration || in_planner()) vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0); } entry->ceiling = deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)), surface_pressure, dive, !prefs.calcceiling3m); if (prefs.calcceiling3m) current_ceiling = deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry->depth, dive)), surface_pressure, dive, true); else current_ceiling = entry->ceiling; last_ceiling = current_ceiling; /* If using VPM-B, take first_ceiling_pressure as the deepest ceiling */ if (decoMode() == VPMB) { if (current_ceiling >= first_ceiling || (time_deep_ceiling == t0 && entry->depth == (entry - 1)->depth)) { time_deep_ceiling = t1; first_ceiling = current_ceiling; ds->first_ceiling_pressure.mbar = depth_to_mbar(first_ceiling, dive); if (first_iteration) { nuclear_regeneration(ds, t1); vpmb_start_gradient(ds); /* For CVA calculations, deco time = dive time remaining is a good guess, but we want to over-estimate deco_time for the first iteration so it converges correctly, so add 30min*/ if (!in_planner()) ds->deco_time = pi->maxtime - t1 + 1800; vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0); } } // Use the point where the ceiling clears as the end of deco phase for CVA calculations if (current_ceiling > 0) time_clear_ceiling = 0; else if (time_clear_ceiling == 0 && t1 > time_deep_ceiling) time_clear_ceiling = t1; } } entry->surface_gf = 0.0; for (j = 0; j < 16; j++) { double m_value = ds->buehlmann_inertgas_a[j] + entry->ambpressure / ds->buehlmann_inertgas_b[j]; double surface_m_value = ds->buehlmann_inertgas_a[j] + surface_pressure / ds->buehlmann_inertgas_b[j]; entry->ceilings[j] = deco_allowed_depth(ds->tolerated_by_tissue[j], surface_pressure, dive, 1); entry->percentages[j] = ds->tissue_inertgas_saturation[j] < entry->ambpressure ? lrint(ds->tissue_inertgas_saturation[j] / entry->ambpressure * AMB_PERCENTAGE) : lrint(AMB_PERCENTAGE + (ds->tissue_inertgas_saturation[j] - entry->ambpressure) / (m_value - entry->ambpressure) * (100.0 - AMB_PERCENTAGE)); double surface_gf = 100.0 * (ds->tissue_inertgas_saturation[j] - surface_pressure) / (surface_m_value - surface_pressure); if (surface_gf > entry->surface_gf) entry->surface_gf = surface_gf; } /* should we do more calculations? * We don't for print-mode because this info doesn't show up there * If the ceiling hasn't cleared by the last data point, we need tts for VPM-B CVA calculation * It is not necessary to do these calculation on the first VPMB iteration, except for the last data point */ if ((prefs.calcndltts && !print_mode && (decoMode() != VPMB || in_planner() || !first_iteration)) || (decoMode() == VPMB && !in_planner() && i == pi->nr - 1)) { /* only calculate ndl/tts on every 30 seconds */ if ((entry->sec - last_ndl_tts_calc_time) < 30 && i != pi->nr - 1) { struct plot_data *prev_entry = (entry - 1); entry->stoptime_calc = prev_entry->stoptime_calc; entry->stopdepth_calc = prev_entry->stopdepth_calc; entry->tts_calc = prev_entry->tts_calc; entry->ndl_calc = prev_entry->ndl_calc; continue; } last_ndl_tts_calc_time = entry->sec; /* We are going to mess up deco state, so store it for later restore */ struct deco_state *cache_data = NULL; cache_deco_state(ds, &cache_data); calculate_ndl_tts(ds, dive, entry, gasmix, surface_pressure, current_divemode); if (decoMode() == VPMB && !in_planner() && i == pi->nr - 1) final_tts = entry->tts_calc; /* Restore "real" deco state for next real time step */ restore_deco_state(cache_data, ds, decoMode() == VPMB); free(cache_data); } } if (decoMode() == VPMB && !in_planner()) { int this_deco_time; prev_deco_time = ds->deco_time; // Do we need to update deco_time? if (final_tts > 0) ds->deco_time = last_ndl_tts_calc_time + final_tts - time_deep_ceiling; else if (time_clear_ceiling > 0) /* Consistent with planner, deco_time ends after ascending (20s @9m/min from 3m) * at end of whole minute after clearing ceiling. The deepest ceiling when planning a dive * comes typically 10-60s after the end of the bottom time, so add 20s to the calculated * deco time. */ ds->deco_time = ROUND_UP(time_clear_ceiling - time_deep_ceiling + 20, 60) + 20; vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0); final_tts = 0; last_ndl_tts_calc_time = 0; first_ceiling = 0; first_iteration = false; count_iteration ++; this_deco_time = ds->deco_time; restore_deco_state(cache_data_initial, ds, true); ds->deco_time = this_deco_time; } else { // With Buhlmann iterating isn't needed. This makes the while condition false. prev_deco_time = ds->deco_time = 0; } } free(cache_data_initial); #if DECO_CALC_DEBUG & 1 dump_tissues(ds); #endif unlock_planner(); } #endif /* Function calculate_ccr_po2: This function takes information from one plot_data structure (i.e. one point on * the dive profile), containing the oxygen sensor values of a CCR system and, for that plot_data structure, * calculates the po2 value from the sensor data. Several rules are applied, depending on how many o2 sensors * there are and the differences among the readings from these sensors. */ static int calculate_ccr_po2(struct plot_data *entry, struct divecomputer *dc) { int sump = 0, minp = 999999, maxp = -999999; int diff_limit = 100; // The limit beyond which O2 sensor differences are considered significant (default = 100 mbar) int i, np = 0; for (i = 0; i < dc->no_o2sensors; i++) if (entry->o2sensor[i].mbar) { // Valid reading ++np; sump += entry->o2sensor[i].mbar; minp = MIN(minp, entry->o2sensor[i].mbar); maxp = MAX(maxp, entry->o2sensor[i].mbar); } switch (np) { case 0: // Uhoh return entry->o2pressure.mbar; case 1: // Return what we have return sump; case 2: // Take the average return sump / 2; case 3: // Voting logic if (2 * maxp - sump + minp < diff_limit) { // Upper difference acceptable... if (2 * minp - sump + maxp) // ...and lower difference acceptable return sump / 3; else return (sump - minp) / 2; } else { if (2 * minp - sump + maxp) // ...but lower difference acceptable return (sump - maxp) / 2; else return sump / 3; } default: // This should not happen assert(np <= 3); return 0; } } static void calculate_gas_information_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { int i; double amb_pressure; struct gasmix gasmix = gasmix_invalid; const struct event *evg = NULL, *evd = NULL; enum divemode_t current_divemode = UNDEF_COMP_TYPE; for (i = 1; i < pi->nr; i++) { int fn2, fhe; struct plot_data *entry = pi->entry + i; gasmix = get_gasmix(dive, dc, entry->sec, &evg, gasmix); amb_pressure = depth_to_bar(entry->depth, dive); current_divemode = get_current_divemode(dc, entry->sec, &evd, ¤t_divemode); fill_pressures(&entry->pressures, amb_pressure, gasmix, (current_divemode == OC) ? 0.0 : entry->o2pressure.mbar / 1000.0, current_divemode); fn2 = (int)(1000.0 * entry->pressures.n2 / amb_pressure); fhe = (int)(1000.0 * entry->pressures.he / amb_pressure); if (dc->divemode == PSCR) { // OC pO2 is calulated for PSCR with or without external PO2 monitoring. struct gasmix gasmix2 = get_gasmix(dive, dc, entry->sec, &evg, gasmix); entry->scr_OC_pO2.mbar = (int) depth_to_mbar(entry->depth, dive) * get_o2(gasmix2) / 1000; } /* Calculate MOD, EAD, END and EADD based on partial pressures calculated before * so there is no difference in calculating between OC and CC * END takes O₂ + N₂ (air) into account ("Narcotic" for trimix dives) * EAD just uses N₂ ("Air" for nitrox dives) */ pressure_t modpO2 = { .mbar = (int)(prefs.modpO2 * 1000) }; entry->mod = (double)gas_mod(gasmix, modpO2, dive, 1).mm; entry->end = (entry->depth + 10000) * (1000 - fhe) / 1000.0 - 10000; entry->ead = (entry->depth + 10000) * fn2 / (double)N2_IN_AIR - 10000; entry->eadd = (entry->depth + 10000) * (entry->pressures.o2 / amb_pressure * O2_DENSITY + entry->pressures.n2 / amb_pressure * N2_DENSITY + entry->pressures.he / amb_pressure * HE_DENSITY) / (O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 - 10000; entry->density = gas_density(gasmix, depth_to_mbar(entry->depth, dive)); if (entry->mod < 0) entry->mod = 0; if (entry->ead < 0) entry->ead = 0; if (entry->end < 0) entry->end = 0; if (entry->eadd < 0) entry->eadd = 0; } } void fill_o2_values(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) /* In the samples from each dive computer, there may be uninitialised oxygen * sensor or setpoint values, e.g. when events were inserted into the dive log * or if the dive computer does not report o2 values with every sample. But * for drawing the profile a complete series of valid o2 pressure values is * required. This function takes the oxygen sensor data and setpoint values * from the structures of plotinfo and replaces the zero values with their * last known values so that the oxygen sensor data are complete and ready * for plotting. This function called by: create_plot_info_new() */ { int i, j; pressure_t last_sensor[3], o2pressure; pressure_t amb_pressure; for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; if (dc->divemode == CCR || (dc->divemode == PSCR && dc->no_o2sensors)) { if (i == 0) { // For 1st iteration, initialise the last_sensor values for (j = 0; j < dc->no_o2sensors; j++) last_sensor[j].mbar = pi->entry->o2sensor[j].mbar; } else { // Now re-insert the missing oxygen pressure values for (j = 0; j < dc->no_o2sensors; j++) if (entry->o2sensor[j].mbar) last_sensor[j].mbar = entry->o2sensor[j].mbar; else entry->o2sensor[j].mbar = last_sensor[j].mbar; } // having initialised the empty o2 sensor values for this point on the profile, amb_pressure.mbar = depth_to_mbar(entry->depth, dive); o2pressure.mbar = calculate_ccr_po2(entry, dc); // ...calculate the po2 based on the sensor data entry->o2pressure.mbar = MIN(o2pressure.mbar, amb_pressure.mbar); } else { entry->o2pressure.mbar = 0; // initialise po2 to zero for dctype = OC } } } #ifdef DEBUG_GAS /* A CCR debug function that writes the cylinder pressure and the oxygen values to the file debug_print_profiledata.dat: * Called in create_plot_info_new() */ static void debug_print_profiledata(struct plot_info *pi) { FILE *f1; struct plot_data *entry; int i; if (!(f1 = fopen("debug_print_profiledata.dat", "w"))) { printf("File open error for: debug_print_profiledata.dat\n"); } else { fprintf(f1, "id t1 gas gasint t2 t3 dil dilint t4 t5 setpoint sensor1 sensor2 sensor3 t6 po2 fo2\n"); for (i = 0; i < pi->nr; i++) { entry = pi->entry + i; fprintf(f1, "%d gas=%8d %8d ; dil=%8d %8d ; o2_sp= %d %d %d %d PO2= %f\n", i, SENSOR_PRESSURE(entry), INTERPOLATED_PRESSURE(entry), O2CYLINDER_PRESSURE(entry), INTERPOLATED_O2CYLINDER_PRESSURE(entry), entry->o2pressure.mbar, entry->o2sensor[0].mbar, entry->o2sensor[1].mbar, entry->o2sensor[2].mbar, entry->pressures.o2); } fclose(f1); } } #endif /* * Create a plot-info with smoothing and ranged min/max * * This also makes sure that we have extra empty events on both * sides, so that you can do end-points without having to worry * about it. */ void create_plot_info_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi, bool fast, struct deco_state *planner_ds) { int o2, he, o2max; #ifndef SUBSURFACE_MOBILE struct deco_state plot_deco_state; init_decompression(&plot_deco_state, dive); #else UNUSED(planner_ds); #endif /* Create the new plot data */ free((void *)last_pi_entry_new); get_dive_gas(dive, &o2, &he, &o2max); if (dc->divemode == FREEDIVE){ pi->dive_type = FREEDIVE; } else if (he > 0) { pi->dive_type = TRIMIX; } else { if (o2) pi->dive_type = NITROX; else pi->dive_type = AIR; } last_pi_entry_new = populate_plot_entries(dive, dc, pi); check_setpoint_events(dive, dc, pi); /* Populate setpoints */ setup_gas_sensor_pressure(dive, dc, pi); /* Try to populate our gas pressure knowledge */ if (!fast) { for (int cyl = 0; cyl < MAX_CYLINDERS; cyl++) populate_pressure_information(dive, dc, pi, cyl); } fill_o2_values(dive, dc, pi); /* .. and insert the O2 sensor data having 0 values. */ calculate_sac(dive, dc, pi); /* Calculate sac */ #ifndef SUBSURFACE_MOBILE calculate_deco_information(&plot_deco_state, planner_ds, dive, dc, pi, false); /* and ceiling information, using gradient factor values in Preferences) */ #endif calculate_gas_information_new(dive, dc, pi); /* Calculate gas partial pressures */ #ifdef DEBUG_GAS debug_print_profiledata(pi); #endif pi->meandepth = dive->dc.meandepth.mm; analyze_plot_info(pi); } struct divecomputer *select_dc(struct dive *dive) { unsigned int max = number_of_computers(dive); unsigned int i = dc_number; /* Reset 'dc_number' if we've switched dives and it is now out of range */ if (i >= max) dc_number = i = 0; return get_dive_dc(dive, i); } static void plot_string(struct plot_info *pi, struct plot_data *entry, struct membuffer *b) { int pressurevalue, mod, ead, end, eadd; const char *depth_unit, *pressure_unit, *temp_unit, *vertical_speed_unit; double depthvalue, tempvalue, speedvalue, sacvalue; int decimals, cyl; const char *unit; depthvalue = get_depth_units(entry->depth, NULL, &depth_unit); put_format_loc(b, translate("gettextFromC", "@: %d:%02d\nD: %.1f%s\n"), FRACTION(entry->sec, 60), depthvalue, depth_unit); for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { int mbar = GET_PRESSURE(entry, cyl); if (!mbar) continue; struct gasmix mix = displayed_dive.cylinder[cyl].gasmix; pressurevalue = get_pressure_units(mbar, &pressure_unit); put_format_loc(b, translate("gettextFromC", "P: %d%s (%s)\n"), pressurevalue, pressure_unit, gasname(mix)); } if (entry->temperature) { tempvalue = get_temp_units(entry->temperature, &temp_unit); put_format_loc(b, translate("gettextFromC", "T: %.1f%s\n"), tempvalue, temp_unit); } speedvalue = get_vertical_speed_units(abs(entry->speed), NULL, &vertical_speed_unit); /* Ascending speeds are positive, descending are negative */ if (entry->speed > 0) speedvalue *= -1; put_format_loc(b, translate("gettextFromC", "V: %.1f%s\n"), speedvalue, vertical_speed_unit); sacvalue = get_volume_units(entry->sac, &decimals, &unit); if (entry->sac && prefs.show_sac) put_format_loc(b, translate("gettextFromC", "SAC: %.*f%s/min\n"), decimals, sacvalue, unit); if (entry->cns) put_format_loc(b, translate("gettextFromC", "CNS: %u%%\n"), entry->cns); if (prefs.pp_graphs.po2 && entry->pressures.o2 > 0) { put_format_loc(b, translate("gettextFromC", "pO₂: %.2fbar\n"), entry->pressures.o2); if (entry->scr_OC_pO2.mbar) put_format_loc(b, translate("gettextFromC", "SCR ΔpO₂: %.2fbar\n"), entry->scr_OC_pO2.mbar/1000.0 - entry->pressures.o2); } if (prefs.pp_graphs.pn2 && entry->pressures.n2 > 0) put_format_loc(b, translate("gettextFromC", "pN₂: %.2fbar\n"), entry->pressures.n2); if (prefs.pp_graphs.phe && entry->pressures.he > 0) put_format_loc(b, translate("gettextFromC", "pHe: %.2fbar\n"), entry->pressures.he); if (prefs.mod && entry->mod > 0) { mod = lrint(get_depth_units(lrint(entry->mod), NULL, &depth_unit)); put_format_loc(b, translate("gettextFromC", "MOD: %d%s\n"), mod, depth_unit); } eadd = lrint(get_depth_units(lrint(entry->eadd), NULL, &depth_unit)); if (prefs.ead) { switch (pi->dive_type) { case NITROX: if (entry->ead > 0) { ead = lrint(get_depth_units(lrint(entry->ead), NULL, &depth_unit)); put_format_loc(b, translate("gettextFromC", "EAD: %d%s\nEADD: %d%s / %.1fg/ℓ\n"), ead, depth_unit, eadd, depth_unit, entry->density); break; } case TRIMIX: if (entry->end > 0) { end = lrint(get_depth_units(lrint(entry->end), NULL, &depth_unit)); put_format_loc(b, translate("gettextFromC", "END: %d%s\nEADD: %d%s / %.1fg/ℓ\n"), end, depth_unit, eadd, depth_unit, entry->density); break; } case AIR: if (entry->density > 0) { put_format_loc(b, translate("gettextFromC", "Density: %.1fg/ℓ\n"), entry->density); } case FREEDIVING: /* nothing */ break; } } if (entry->stopdepth) { depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit); if (entry->ndl > 0) { /* this is a safety stop as we still have ndl */ if (entry->stoptime) put_format_loc(b, translate("gettextFromC", "Safety stop: %umin @ %.0f%s\n"), DIV_UP(entry->stoptime, 60), depthvalue, depth_unit); else put_format_loc(b, translate("gettextFromC", "Safety stop: unknown time @ %.0f%s\n"), depthvalue, depth_unit); } else { /* actual deco stop */ if (entry->stoptime) put_format_loc(b, translate("gettextFromC", "Deco: %umin @ %.0f%s\n"), DIV_UP(entry->stoptime, 60), depthvalue, depth_unit); else put_format_loc(b, translate("gettextFromC", "Deco: unknown time @ %.0f%s\n"), depthvalue, depth_unit); } } else if (entry->in_deco) { put_string(b, translate("gettextFromC", "In deco\n")); } else if (entry->ndl >= 0) { put_format_loc(b, translate("gettextFromC", "NDL: %umin\n"), DIV_UP(entry->ndl, 60)); } if (entry->tts) put_format_loc(b, translate("gettextFromC", "TTS: %umin\n"), DIV_UP(entry->tts, 60)); if (entry->stopdepth_calc && entry->stoptime_calc) { depthvalue = get_depth_units(entry->stopdepth_calc, NULL, &depth_unit); put_format_loc(b, translate("gettextFromC", "Deco: %umin @ %.0f%s (calc)\n"), DIV_UP(entry->stoptime_calc, 60), depthvalue, depth_unit); } else if (entry->in_deco_calc) { /* This means that we have no NDL left, * and we have no deco stop, * so if we just accend to the surface slowly * (ascent_mm_per_step / ascent_s_per_step) * everything will be ok. */ put_string(b, translate("gettextFromC", "In deco (calc)\n")); } else if (prefs.calcndltts && entry->ndl_calc != 0) { if(entry->ndl_calc < MAX_PROFILE_DECO) put_format_loc(b, translate("gettextFromC", "NDL: %umin (calc)\n"), DIV_UP(entry->ndl_calc, 60)); else put_string(b, translate("gettextFromC", "NDL: >2h (calc)\n")); } if (entry->tts_calc) { if (entry->tts_calc < MAX_PROFILE_DECO) put_format_loc(b, translate("gettextFromC", "TTS: %umin (calc)\n"), DIV_UP(entry->tts_calc, 60)); else put_string(b, translate("gettextFromC", "TTS: >2h (calc)\n")); } if (entry->rbt) put_format_loc(b, translate("gettextFromC", "RBT: %umin\n"), DIV_UP(entry->rbt, 60)); if (prefs.decoinfo) { if (entry->surface_gf > 0) put_format(b, translate("gettextFromC", "Surface GF %.0f%%\n"), entry->surface_gf); if (entry->ceiling) { depthvalue = get_depth_units(entry->ceiling, NULL, &depth_unit); put_format_loc(b, translate("gettextFromC", "Calculated ceiling %.0f%s\n"), depthvalue, depth_unit); if (prefs.calcalltissues) { int k; for (k = 0; k < 16; k++) { if (entry->ceilings[k]) { depthvalue = get_depth_units(entry->ceilings[k], NULL, &depth_unit); put_format_loc(b, translate("gettextFromC", "Tissue %.0fmin: %.1f%s\n"), buehlmann_N2_t_halflife[k], depthvalue, depth_unit); } } } } } if (entry->icd_warning) put_format(b, "%s", translate("gettextFromC", "ICD in leading tissue\n")); if (entry->heartbeat && prefs.hrgraph) put_format_loc(b, translate("gettextFromC", "heart rate: %d\n"), entry->heartbeat); if (entry->bearing >= 0) put_format_loc(b, translate("gettextFromC", "bearing: %d\n"), entry->bearing); if (entry->running_sum) { depthvalue = get_depth_units(entry->running_sum / entry->sec, NULL, &depth_unit); put_format_loc(b, translate("gettextFromC", "mean depth to here %.1f%s\n"), depthvalue, depth_unit); } strip_mb(b); } struct plot_data *get_plot_details_new(struct plot_info *pi, int time, struct membuffer *mb) { struct plot_data *entry = NULL; int i; /* The two first and the two last plot entries do not have useful data */ for (i = 2; i < pi->nr - 2; i++) { entry = pi->entry + i; if (entry->sec >= time) break; } if (entry) plot_string(pi, entry, mb); return entry; } /* Compare two plot_data entries and writes the results into a string */ void compare_samples(struct plot_data *e1, struct plot_data *e2, char *buf, int bufsize, int sum) { struct plot_data *start, *stop, *data; const char *depth_unit, *pressure_unit, *vertical_speed_unit; char *buf2 = malloc(bufsize); int avg_speed, max_asc_speed, max_desc_speed; int delta_depth, avg_depth, max_depth, min_depth; int bar_used, last_pressure, pressurevalue; int count, last_sec, delta_time; bool crossed_tankchange = false; double depthvalue, speedvalue; if (bufsize > 0) buf[0] = '\0'; if (e1 == NULL || e2 == NULL) { free(buf2); return; } if (e1->sec < e2->sec) { start = e1; stop = e2; } else if (e1->sec > e2->sec) { start = e2; stop = e1; } else { free(buf2); return; } count = 0; avg_speed = 0; max_asc_speed = 0; max_desc_speed = 0; delta_depth = abs(start->depth - stop->depth); delta_time = abs(start->sec - stop->sec); avg_depth = 0; max_depth = 0; min_depth = INT_MAX; bar_used = 0; last_sec = start->sec; last_pressure = GET_PRESSURE(start, 0); data = start; while (data != stop) { data = start + count; if (sum) avg_speed += abs(data->speed) * (data->sec - last_sec); else avg_speed += data->speed * (data->sec - last_sec); avg_depth += data->depth * (data->sec - last_sec); if (data->speed > max_desc_speed) max_desc_speed = data->speed; if (data->speed < max_asc_speed) max_asc_speed = data->speed; if (data->depth < min_depth) min_depth = data->depth; if (data->depth > max_depth) max_depth = data->depth; /* Try to detect gas changes - this hack might work for some side mount scenarios? */ if (GET_PRESSURE(data, 0) < last_pressure + 2000) bar_used += last_pressure - GET_PRESSURE(data, 0); count += 1; last_sec = data->sec; last_pressure = GET_PRESSURE(data, 0); } avg_depth /= stop->sec - start->sec; avg_speed /= stop->sec - start->sec; snprintf_loc(buf, bufsize, translate("gettextFromC", "ΔT:%d:%02dmin"), delta_time / 60, delta_time % 60); memcpy(buf2, buf, bufsize); depthvalue = get_depth_units(delta_depth, NULL, &depth_unit); snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ΔD:%.1f%s"), buf2, depthvalue, depth_unit); memcpy(buf2, buf, bufsize); depthvalue = get_depth_units(min_depth, NULL, &depth_unit); snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ↓D:%.1f%s"), buf2, depthvalue, depth_unit); memcpy(buf2, buf, bufsize); depthvalue = get_depth_units(max_depth, NULL, &depth_unit); snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ↑D:%.1f%s"), buf2, depthvalue, depth_unit); memcpy(buf2, buf, bufsize); depthvalue = get_depth_units(avg_depth, NULL, &depth_unit); snprintf_loc(buf, bufsize, translate("gettextFromC", "%s øD:%.1f%s\n"), buf2, depthvalue, depth_unit); memcpy(buf2, buf, bufsize); speedvalue = get_vertical_speed_units(abs(max_desc_speed), NULL, &vertical_speed_unit); snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ↓V:%.2f%s"), buf2, speedvalue, vertical_speed_unit); memcpy(buf2, buf, bufsize); speedvalue = get_vertical_speed_units(abs(max_asc_speed), NULL, &vertical_speed_unit); snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ↑V:%.2f%s"), buf2, speedvalue, vertical_speed_unit); memcpy(buf2, buf, bufsize); speedvalue = get_vertical_speed_units(abs(avg_speed), NULL, &vertical_speed_unit); snprintf_loc(buf, bufsize, translate("gettextFromC", "%s øV:%.2f%s"), buf2, speedvalue, vertical_speed_unit); memcpy(buf2, buf, bufsize); /* Only print if gas has been used */ if (bar_used) { pressurevalue = get_pressure_units(bar_used, &pressure_unit); memcpy(buf2, buf, bufsize); snprintf_loc(buf, bufsize, translate("gettextFromC", "%s ΔP:%d%s"), buf2, pressurevalue, pressure_unit); cylinder_t *cyl = displayed_dive.cylinder + 0; /* if we didn't cross a tank change and know the cylidner size as well, show SAC rate */ if (!crossed_tankchange && cyl->type.size.mliter) { double volume_value; int volume_precision; const char *volume_unit; struct plot_data *first = start; struct plot_data *last = stop; while (first < stop && GET_PRESSURE(first, 0) == 0) first++; while (last > first && GET_PRESSURE(last, 0) == 0) last--; pressure_t first_pressure = { GET_PRESSURE(first, 0) }; pressure_t stop_pressure = { GET_PRESSURE(last, 0) }; int volume_used = gas_volume(cyl, first_pressure) - gas_volume(cyl, stop_pressure); /* Mean pressure in ATM */ double atm = depth_to_atm(avg_depth, &displayed_dive); /* milliliters per minute */ int sac = lrint(volume_used / atm * 60 / delta_time); memcpy(buf2, buf, bufsize); volume_value = get_volume_units(sac, &volume_precision, &volume_unit); snprintf_loc(buf, bufsize, translate("gettextFromC", "%s SAC:%.*f%s/min"), buf2, volume_precision, volume_value, volume_unit); } } free(buf2); }