// SPDX-License-Identifier: GPL-2.0 /* statistics.cpp * * core logic for the Info & Stats page */ #include "statistics.h" #include "dive.h" #include "divelog.h" #include "event.h" #include "gettext.h" #include "range.h" #include "sample.h" #include "subsurface-time.h" #include "trip.h" #include "units.h" #include #include #include static void process_temperatures(const struct dive &dp, stats_t &stats) { temperature_t min_temp, mean_temp, max_temp; max_temp.mkelvin = dp.maxtemp.mkelvin; if (max_temp.mkelvin && (!stats.max_temp.mkelvin || max_temp.mkelvin > stats.max_temp.mkelvin)) stats.max_temp.mkelvin = max_temp.mkelvin; min_temp.mkelvin = dp.mintemp.mkelvin; if (min_temp.mkelvin && (!stats.min_temp.mkelvin || min_temp.mkelvin < stats.min_temp.mkelvin)) stats.min_temp.mkelvin = min_temp.mkelvin; if (min_temp.mkelvin || max_temp.mkelvin) { mean_temp.mkelvin = min_temp.mkelvin; if (mean_temp.mkelvin) mean_temp.mkelvin = (mean_temp.mkelvin + max_temp.mkelvin) / 2; else mean_temp.mkelvin = max_temp.mkelvin; stats.combined_temp.mkelvin += mean_temp.mkelvin; stats.combined_count++; } } static void process_dive(const struct dive &dive, stats_t &stats) { int old_tadt, sac_time = 0; int32_t duration = dive.duration.seconds; old_tadt = stats.total_average_depth_time.seconds; stats.total_time.seconds += duration; if (duration > stats.longest_time.seconds) stats.longest_time.seconds = duration; if (stats.shortest_time.seconds == 0 || duration < stats.shortest_time.seconds) stats.shortest_time.seconds = duration; if (dive.maxdepth.mm > stats.max_depth.mm) stats.max_depth.mm = dive.maxdepth.mm; if (stats.min_depth.mm == 0 || dive.maxdepth.mm < stats.min_depth.mm) stats.min_depth.mm = dive.maxdepth.mm; stats.combined_max_depth.mm += dive.maxdepth.mm; process_temperatures(dive, stats); /* Maybe we should drop zero-duration dives */ if (!duration) return; if (dive.meandepth.mm) { stats.total_average_depth_time.seconds += duration; stats.avg_depth.mm = lrint((1.0 * old_tadt * stats.avg_depth.mm + duration * dive.meandepth.mm) / stats.total_average_depth_time.seconds); } if (dive.sac > 100) { /* less than .1 l/min is bogus, even with a pSCR */ sac_time = stats.total_sac_time.seconds + duration; stats.avg_sac.mliter = lrint((1.0 * stats.total_sac_time.seconds * stats.avg_sac.mliter + duration * dive.sac) / sac_time); if (dive.sac > stats.max_sac.mliter) stats.max_sac.mliter = dive.sac; if (stats.min_sac.mliter == 0 || dive.sac < stats.min_sac.mliter) stats.min_sac.mliter = dive.sac; stats.total_sac_time.seconds = sac_time; } } /* * Calculate a summary of the statistics and put in the stats_summary * structure provided in the first parameter. * Before first use, it should be initialized with init_stats_summary(). * After use, memory must be released with free_stats_summary(). */ stats_summary calculate_stats_summary(bool selected_only) { struct tm tm; int current_year = -1; int current_month = 0; int prev_month = 0, prev_year = 0; dive_trip *trip_ptr = nullptr; stats_summary out; /* stats_by_trip[0] is all the dives combined */ out.stats_by_trip.emplace_back(); /* Setting the is_trip to true to show the location as first * field in the statistics window */ out.stats_by_type.resize(NUM_DIVEMODE + 1); out.stats_by_type[0].location = translate("gettextFromC", "All (by type stats)"); out.stats_by_type[0].is_trip = true; out.stats_by_type[1].location = translate("gettextFromC", divemode_text_ui[OC]); out.stats_by_type[1].is_trip = true; out.stats_by_type[2].location = translate("gettextFromC", divemode_text_ui[CCR]); out.stats_by_type[2].is_trip = true; out.stats_by_type[3].location = translate("gettextFromC", divemode_text_ui[PSCR]); out.stats_by_type[3].is_trip = true; out.stats_by_type[4].location = translate("gettextFromC", divemode_text_ui[FREEDIVE]); out.stats_by_type[4].is_trip = true; out.stats_by_depth.resize((STATS_MAX_DEPTH / STATS_DEPTH_BUCKET) + 1); out.stats_by_depth[0].location = translate("gettextFromC", "All (by max depth stats)"); out.stats_by_depth[0].is_trip = true; out.stats_by_temp.resize((STATS_MAX_TEMP / STATS_TEMP_BUCKET) + 1); out.stats_by_temp[0].location = translate("gettextFromC", "All (by min. temp stats)"); out.stats_by_temp[0].is_trip = true; /* this relies on the fact that the dives in the dive_table * are in chronological order */ for (auto &dp: divelog.dives) { if (selected_only && !dp->selected) continue; if (dp->invalid) continue; //process_dive(dp, &stats); /* yearly statistics */ utc_mkdate(dp->when, &tm); if (current_year != tm.tm_year || out.stats_yearly.empty()) { current_year = tm.tm_year; out.stats_yearly.emplace_back(); out.stats_yearly.back().is_year = true; } process_dive(*dp, out.stats_yearly.back()); out.stats_yearly.back().selection_size++; out.stats_yearly.back().period = current_year; /* stats_by_type[0] is all the dives combined */ out.stats_by_type[0].selection_size++; process_dive(*dp, out.stats_by_type[0]); process_dive(*dp, out.stats_by_type[dp->dcs[0].divemode + 1]); out.stats_by_type[dp->dcs[0].divemode + 1].selection_size++; /* stats_by_depth[0] is all the dives combined */ out.stats_by_depth[0].selection_size++; process_dive(*dp, out.stats_by_depth[0]); int d_idx = dp->maxdepth.mm / (STATS_DEPTH_BUCKET * 1000); d_idx = std::clamp(d_idx, 0, STATS_MAX_DEPTH / STATS_DEPTH_BUCKET); process_dive(*dp, out.stats_by_depth[d_idx + 1]); out.stats_by_depth[d_idx + 1].selection_size++; /* stats_by_temp[0] is all the dives combined */ out.stats_by_temp[0].selection_size++; process_dive(*dp, out.stats_by_temp[0]); int t_idx = ((int)mkelvin_to_C(dp->mintemp.mkelvin)) / STATS_TEMP_BUCKET; t_idx = std::clamp(t_idx, 0, STATS_MAX_TEMP / STATS_TEMP_BUCKET); process_dive(*dp, out.stats_by_temp[t_idx + 1]); out.stats_by_temp[t_idx + 1].selection_size++; if (dp->divetrip != NULL) { if (trip_ptr != dp->divetrip) { trip_ptr = dp->divetrip; out.stats_by_trip.emplace_back(); } /* stats_by_trip[0] is all the dives combined */ /* TODO: yet, this doesn't seem to consider dives outside of trips !? */ out.stats_by_trip[0].selection_size++; process_dive(*dp, out.stats_by_trip[0]); out.stats_by_trip[0].is_trip = true; out.stats_by_trip[0].location = translate("gettextFromC", "All (by trip stats)"); process_dive(*dp, out.stats_by_trip.back()); out.stats_by_trip.back().selection_size++; out.stats_by_trip.back().is_trip = true; out.stats_by_trip.back().location = dp->divetrip->location; } /* monthly statistics */ if (current_month == 0 || out.stats_monthly.empty()) { current_month = tm.tm_mon + 1; out.stats_monthly.emplace_back(); } else { if (current_month != tm.tm_mon + 1) current_month = tm.tm_mon + 1; if (prev_month != current_month || prev_year != current_year) out.stats_monthly.emplace_back(); } process_dive(*dp, out.stats_monthly.back()); out.stats_monthly.back().selection_size++; out.stats_monthly.back().period = current_month; prev_month = current_month; prev_year = current_year; } /* add labels for depth ranges up to maximum depth seen */ if (out.stats_by_depth[0].selection_size) { int d_idx = out.stats_by_depth[0].max_depth.mm; if (d_idx > STATS_MAX_DEPTH * 1000) d_idx = STATS_MAX_DEPTH * 1000; for (int r = 0; r * (STATS_DEPTH_BUCKET * 1000) < d_idx; ++r) out.stats_by_depth[r+1].is_trip = true; } /* add labels for depth ranges up to maximum temperature seen */ if (out.stats_by_temp[0].selection_size) { int t_idx = (int)mkelvin_to_C(out.stats_by_temp[0].max_temp.mkelvin); if (t_idx > STATS_MAX_TEMP) t_idx = STATS_MAX_TEMP; for (int r = 0; r * STATS_TEMP_BUCKET < t_idx; ++r) out.stats_by_temp[r+1].is_trip = true; } return out; } stats_summary::stats_summary() = default; stats_summary::~stats_summary() = default; /* make sure we skip the selected summary entries */ stats_t calculate_stats_selected() { stats_t stats_selection; unsigned int nr = 0; for (auto &dive: divelog.dives) { if (dive->selected && !dive->invalid) { process_dive(*dive, stats_selection); nr++; } } stats_selection.selection_size = nr; return stats_selection; } #define SOME_GAS 5000 // 5bar drop in cylinder pressure makes cylinder used /* Returns a vector with dive->cylinders.size() entries */ std::vector get_gas_used(struct dive *dive) { std::vector gases(dive->cylinders.size()); for (auto [idx, cyl]: enumerated_range(dive->cylinders)) { pressure_t start, end; start = cyl.start.mbar ? cyl.start : cyl.sample_start; end = cyl.end.mbar ? cyl.end : cyl.sample_end; // TODO: Implement addition/subtraction on units.h types if (end.mbar && start.mbar > end.mbar) gases[idx] = cyl.gas_volume(start) - cyl.gas_volume(end); else gases[idx] = 0_l; } return gases; } /* Quite crude reverse-blender-function, but it produces an approx result. * Returns an (O2, He) pair. */ static std::pair get_gas_parts(struct gasmix mix, volume_t vol, int o2_in_topup) { if (gasmix_is_air(mix)) return { volume_t() , volume_t() }; volume_t air { .mliter = int_cast(((double)vol.mliter * get_n2(mix)) / (1000 - o2_in_topup)) }; volume_t he { .mliter = int_cast(((double)vol.mliter * get_he(mix)) / 1000.0) }; volume_t o2 = vol - he - air; return std::make_pair(o2, he); } std::pair selected_dives_gas_parts() { volume_t o2_tot, he_tot; for (auto &d: divelog.dives) { if (!d->selected || d->invalid) continue; int j = 0; for (auto &gas: get_gas_used(d.get())) { if (gas.mliter) { auto [o2, he] = get_gas_parts(d->get_cylinder(j)->gasmix, gas, O2_IN_AIR); o2_tot += o2; he_tot += he; } j++; } } return std::make_pair(o2_tot, he_tot); }