// SPDX-License-Identifier: GPL-2.0 /* calculate deco values * based on Bühlmann ZHL-16b * based on an implemention by heinrichs weikamp for the DR5 * the original file was given to Subsurface under the GPLv2 * by Matthias Heinrichs * * The implementation below is a fairly complete rewrite since then * (C) Robert C. Helling 2013 and released under the GPLv2 * * add_segment() - add at the given pressure, breathing gasmix * deco_allowed_depth() - ceiling based on lead tissue, surface pressure, 3m increments or smooth * set_gf() - set Buehlmann gradient factors * set_vpmb_conservatism() - set VPM-B conservatism value * clear_deco() * cache_deco_state() * restore_deco_state() * dump_tissues() */ #include #include #include #include "deco.h" #include "ssrf.h" #include "dive.h" #include "gas.h" #include "subsurface-string.h" #include "errorhelper.h" #include "planner.h" #include "qthelper.h" #define cube(x) (x * x * x) // Subsurface until v4.6.2 appeared to produce marginally less conservative plans than our benchmarks. // This factor was used to correct this. Since a fix for the saturation and desaturation rates // was introduced in v4.6.3 this can be set to a value of 1.0 which means no correction. #define subsurface_conservatism_factor 1.0 //! Option structure for Buehlmann decompression. struct buehlmann_config { double satmult; //! safety at inert gas accumulation as percentage of effect (more than 100). double desatmult; //! safety at inert gas depletion as percentage of effect (less than 100). int last_deco_stop_in_mtr; //! depth of last_deco_stop. double gf_high; //! gradient factor high (at surface). double gf_low; //! gradient factor low (at bottom/start of deco calculation). double gf_low_position_min; //! gf_low_position below surface_min_shallow. }; struct buehlmann_config buehlmann_config = { .satmult = 1.0, .desatmult = 1.0, .last_deco_stop_in_mtr = 0, .gf_high = 0.75, .gf_low = 0.35, .gf_low_position_min = 1.0, }; //! Option structure for VPM-B decompression. struct vpmb_config { double crit_radius_N2; //! Critical radius of N2 nucleon (microns). double crit_radius_He; //! Critical radius of He nucleon (microns). double crit_volume_lambda; //! Constant corresponding to critical gas volume (bar * min). double gradient_of_imperm; //! Gradient after which bubbles become impermeable (bar). double surface_tension_gamma; //! Nucleons surface tension constant (N / bar = m2). double skin_compression_gammaC; //! Skin compression gammaC (N / bar = m2). double regeneration_time; //! Time needed for the bubble to regenerate to the start radius (min). double other_gases_pressure; //! Always present pressure of other gasses in tissues (bar). short conservatism; //! VPM-B conservatism level (0-4) }; static struct vpmb_config vpmb_config = { .crit_radius_N2 = 0.55, .crit_radius_He = 0.45, .crit_volume_lambda = 199.58, .gradient_of_imperm = 8.30865, // = 8.2 atm .surface_tension_gamma = 0.18137175, // = 0.0179 N/msw .skin_compression_gammaC = 2.6040525, // = 0.257 N/msw .regeneration_time = 20160.0, .other_gases_pressure = 0.1359888, .conservatism = 3 }; static const double buehlmann_N2_a[] = { 1.1696, 1.0, 0.8618, 0.7562, 0.62, 0.5043, 0.441, 0.4, 0.375, 0.35, 0.3295, 0.3065, 0.2835, 0.261, 0.248, 0.2327 }; static const double buehlmann_N2_b[] = { 0.5578, 0.6514, 0.7222, 0.7825, 0.8126, 0.8434, 0.8693, 0.8910, 0.9092, 0.9222, 0.9319, 0.9403, 0.9477, 0.9544, 0.9602, 0.9653 }; const double buehlmann_N2_t_halflife[] = { 5.0, 8.0, 12.5, 18.5, 27.0, 38.3, 54.3, 77.0, 109.0, 146.0, 187.0, 239.0, 305.0, 390.0, 498.0, 635.0 }; // 1 - exp(-1 / (halflife * 60) * ln(2)) static const double buehlmann_N2_factor_expositon_one_second[] = { 2.30782347297664E-003, 1.44301447809736E-003, 9.23769302935806E-004, 6.24261986779007E-004, 4.27777107246730E-004, 3.01585140931371E-004, 2.12729727268379E-004, 1.50020603047807E-004, 1.05980191127841E-004, 7.91232600646508E-005, 6.17759153688224E-005, 4.83354552742732E-005, 3.78761777920511E-005, 2.96212356654113E-005, 2.31974277413727E-005, 1.81926738960225E-005 }; static const double buehlmann_He_a[] = { 1.6189, 1.383, 1.1919, 1.0458, 0.922, 0.8205, 0.7305, 0.6502, 0.595, 0.5545, 0.5333, 0.5189, 0.5181, 0.5176, 0.5172, 0.5119 }; static const double buehlmann_He_b[] = { 0.4770, 0.5747, 0.6527, 0.7223, 0.7582, 0.7957, 0.8279, 0.8553, 0.8757, 0.8903, 0.8997, 0.9073, 0.9122, 0.9171, 0.9217, 0.9267 }; static const double buehlmann_He_t_halflife[] = { 1.88, 3.02, 4.72, 6.99, 10.21, 14.48, 20.53, 29.11, 41.20, 55.19, 70.69, 90.34, 115.29, 147.42, 188.24, 240.03 }; static const double buehlmann_He_factor_expositon_one_second[] = { 6.12608039419837E-003, 3.81800836683133E-003, 2.44456078654209E-003, 1.65134647076792E-003, 1.13084424730725E-003, 7.97503165599123E-004, 5.62552521860549E-004, 3.96776399429366E-004, 2.80360036664540E-004, 2.09299583354805E-004, 1.63410794820518E-004, 1.27869320250551E-004, 1.00198406028040E-004, 7.83611475491108E-005, 6.13689891868496E-005, 4.81280465299827E-005 }; static const double vpmb_conservatism_lvls[] = { 1.0, 1.05, 1.12, 1.22, 1.35 }; /* Inspired gas loading equations depend on the partial pressure of inert gas in the alveolar. * P_alv = (P_amb - P_H2O + (1 - Rq) / Rq * P_CO2) * f * where: * P_alv alveolar partial pressure of inert gas * P_amb ambient pressure * P_H2O water vapour partial pressure = ~0.0627 bar * P_CO2 carbon dioxide partial pressure = ~0.0534 bar * Rq respiratory quotient (O2 consumption / CO2 production) * f fraction of inert gas * * In our calculations, we simplify this to use an effective water vapour pressure * WV = P_H20 - (1 - Rq) / Rq * P_CO2 * * Buhlmann ignored the contribution of CO2 (i.e. Rq = 1.0), whereas Schreiner adopted Rq = 0.8. * WV_Buhlmann = PP_H2O = 0.0627 bar * WV_Schreiner = 0.0627 - (1 - 0.8) / Rq * 0.0534 = 0.0493 bar * Buhlmann calculations use the Buhlmann value, VPM-B calculations use the Schreiner value. */ #define WV_PRESSURE 0.0627 // water vapor pressure in bar, based on respiratory quotient Rq = 1.0 (Buhlmann value) #define WV_PRESSURE_SCHREINER 0.0493 // water vapor pressure in bar, based on respiratory quotient Rq = 0.8 (Schreiner value) #define DECO_STOPS_MULTIPLIER_MM 3000.0 #define NITROGEN_FRACTION 0.79 #define TISSUE_ARRAY_SZ sizeof(ds->tissue_n2_sat) static double get_crit_radius_He() { if (vpmb_config.conservatism <= 4) return vpmb_config.crit_radius_He * vpmb_conservatism_lvls[vpmb_config.conservatism] * subsurface_conservatism_factor; return vpmb_config.crit_radius_He; } static double get_crit_radius_N2() { if (vpmb_config.conservatism <= 4) return vpmb_config.crit_radius_N2 * vpmb_conservatism_lvls[vpmb_config.conservatism] * subsurface_conservatism_factor; return vpmb_config.crit_radius_N2; } // Solve another cubic equation, this time // x^3 - B x - C == 0 // Use trigonometric formula for negative discriminants (see Wikipedia for details) static double solve_cubic2(double B, double C) { double discriminant = 27 * C * C - 4 * cube(B); if (discriminant < 0.0) { return 2.0 * sqrt(B / 3.0) * cos(acos(3.0 * C * sqrt(3.0 / B) / (2.0 * B)) / 3.0); } double denominator = pow(9 * C + sqrt(3 * discriminant), 1 / 3.0); return pow(2.0 / 3.0, 1.0 / 3.0) * B / denominator + denominator / pow(18.0, 1.0 / 3.0); } // This is a simplified formula avoiding radii. It uses the fact that Boyle's law says // pV = (G + P_amb) / G^3 is constant to solve for the new gradient G. static double update_gradient(struct deco_state *ds, double next_stop_pressure, double first_gradient) { double B = cube(first_gradient) / (ds->first_ceiling_pressure.mbar / 1000.0 + first_gradient); double C = next_stop_pressure * B; double new_gradient = solve_cubic2(B, C); if (new_gradient < 0.0) report_error("Negative gradient encountered!"); return new_gradient; } static double vpmb_tolerated_ambient_pressure(struct deco_state *ds, double reference_pressure, int ci) { double n2_gradient, he_gradient, total_gradient; if (reference_pressure >= ds->first_ceiling_pressure.mbar / 1000.0 || !ds->first_ceiling_pressure.mbar) { n2_gradient = ds->bottom_n2_gradient[ci]; he_gradient = ds->bottom_he_gradient[ci]; } else { n2_gradient = update_gradient(ds, reference_pressure, ds->bottom_n2_gradient[ci]); he_gradient = update_gradient(ds, reference_pressure, ds->bottom_he_gradient[ci]); } total_gradient = ((n2_gradient * ds->tissue_n2_sat[ci]) + (he_gradient * ds->tissue_he_sat[ci])) / (ds->tissue_n2_sat[ci] + ds->tissue_he_sat[ci]); return ds->tissue_n2_sat[ci] + ds->tissue_he_sat[ci] + vpmb_config.other_gases_pressure - total_gradient; } double tissue_tolerance_calc(struct deco_state *ds, const struct dive *dive, double pressure) { int ci = -1; double ret_tolerance_limit_ambient_pressure = 0.0; double gf_high = buehlmann_config.gf_high; double gf_low = buehlmann_config.gf_low; double surface = get_surface_pressure_in_mbar(dive, true) / 1000.0; double lowest_ceiling = 0.0; double tissue_lowest_ceiling[16]; for (ci = 0; ci < 16; ci++) { ds->buehlmann_inertgas_a[ci] = ((buehlmann_N2_a[ci] * ds->tissue_n2_sat[ci]) + (buehlmann_He_a[ci] * ds->tissue_he_sat[ci])) / ds->tissue_inertgas_saturation[ci]; ds->buehlmann_inertgas_b[ci] = ((buehlmann_N2_b[ci] * ds->tissue_n2_sat[ci]) + (buehlmann_He_b[ci] * ds->tissue_he_sat[ci])) / ds->tissue_inertgas_saturation[ci]; } if (decoMode() != VPMB) { for (ci = 0; ci < 16; ci++) { /* tolerated = (tissue_inertgas_saturation - buehlmann_inertgas_a) * buehlmann_inertgas_b; */ tissue_lowest_ceiling[ci] = (ds->buehlmann_inertgas_b[ci] * ds->tissue_inertgas_saturation[ci] - gf_low * ds->buehlmann_inertgas_a[ci] * ds->buehlmann_inertgas_b[ci]) / ((1.0 - ds->buehlmann_inertgas_b[ci]) * gf_low + ds->buehlmann_inertgas_b[ci]); if (tissue_lowest_ceiling[ci] > lowest_ceiling) lowest_ceiling = tissue_lowest_ceiling[ci]; if (lowest_ceiling > ds->gf_low_pressure_this_dive) ds->gf_low_pressure_this_dive = lowest_ceiling; } for (ci = 0; ci < 16; ci++) { double tolerated; if ((surface / ds->buehlmann_inertgas_b[ci] + ds->buehlmann_inertgas_a[ci] - surface) * gf_high + surface < (ds->gf_low_pressure_this_dive / ds->buehlmann_inertgas_b[ci] + ds->buehlmann_inertgas_a[ci] - ds->gf_low_pressure_this_dive) * gf_low + ds->gf_low_pressure_this_dive) tolerated = (-ds->buehlmann_inertgas_a[ci] * ds->buehlmann_inertgas_b[ci] * (gf_high * ds->gf_low_pressure_this_dive - gf_low * surface) - (1.0 - ds->buehlmann_inertgas_b[ci]) * (gf_high - gf_low) * ds->gf_low_pressure_this_dive * surface + ds->buehlmann_inertgas_b[ci] * (ds->gf_low_pressure_this_dive - surface) * ds->tissue_inertgas_saturation[ci]) / (-ds->buehlmann_inertgas_a[ci] * ds->buehlmann_inertgas_b[ci] * (gf_high - gf_low) + (1.0 - ds->buehlmann_inertgas_b[ci]) * (gf_low * ds->gf_low_pressure_this_dive - gf_high * surface) + ds->buehlmann_inertgas_b[ci] * (ds->gf_low_pressure_this_dive - surface)); else tolerated = ret_tolerance_limit_ambient_pressure; ds->tolerated_by_tissue[ci] = tolerated; if (tolerated >= ret_tolerance_limit_ambient_pressure) { ds->ci_pointing_to_guiding_tissue = ci; ret_tolerance_limit_ambient_pressure = tolerated; } } } else { // VPM-B ceiling double reference_pressure; ret_tolerance_limit_ambient_pressure = pressure; // The Boyle compensated gradient depends on ambient pressure. For the ceiling, this should set the ambient pressure. do { reference_pressure = ret_tolerance_limit_ambient_pressure; ret_tolerance_limit_ambient_pressure = 0.0; for (ci = 0; ci < 16; ci++) { double tolerated = vpmb_tolerated_ambient_pressure(ds, reference_pressure, ci); if (tolerated >= ret_tolerance_limit_ambient_pressure) { ds->ci_pointing_to_guiding_tissue = ci; ret_tolerance_limit_ambient_pressure = tolerated; } ds->tolerated_by_tissue[ci] = tolerated; } // We are doing ok if the gradient was computed within ten centimeters of the ceiling. } while (fabs(ret_tolerance_limit_ambient_pressure - reference_pressure) > 0.01); } return ret_tolerance_limit_ambient_pressure; } /* * Return Buehlmann factor for a particular period and tissue index. */ static double factor(int period_in_seconds, int ci, enum gas_component gas) { if (period_in_seconds == 1) { if (gas == N2) return buehlmann_N2_factor_expositon_one_second[ci]; else return buehlmann_He_factor_expositon_one_second[ci]; } // ln(2)/60 = 1.155245301e-02 if (gas == N2) return 1.0 - exp(-period_in_seconds * 1.155245301e-02 / buehlmann_N2_t_halflife[ci]); else return 1.0 - exp(-period_in_seconds * 1.155245301e-02 / buehlmann_He_t_halflife[ci]); } static double calc_surface_phase(double surface_pressure, double he_pressure, double n2_pressure, double he_time_constant, double n2_time_constant) { double inspired_n2 = (surface_pressure - ((in_planner() && (decoMode() == VPMB)) ? WV_PRESSURE_SCHREINER : WV_PRESSURE)) * NITROGEN_FRACTION; if (n2_pressure > inspired_n2) return (he_pressure / he_time_constant + (n2_pressure - inspired_n2) / n2_time_constant) / (he_pressure + n2_pressure - inspired_n2); if (he_pressure + n2_pressure >= inspired_n2){ double gradient_decay_time = 1.0 / (n2_time_constant - he_time_constant) * log ((inspired_n2 - n2_pressure) / he_pressure); double gradients_integral = he_pressure / he_time_constant * (1.0 - exp(-he_time_constant * gradient_decay_time)) + (n2_pressure - inspired_n2) / n2_time_constant * (1.0 - exp(-n2_time_constant * gradient_decay_time)); return gradients_integral / (he_pressure + n2_pressure - inspired_n2); } return 0; } void vpmb_start_gradient(struct deco_state *ds) { int ci; for (ci = 0; ci < 16; ++ci) { ds->initial_n2_gradient[ci] = ds->bottom_n2_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / ds->n2_regen_radius[ci]); ds->initial_he_gradient[ci] = ds->bottom_he_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / ds->he_regen_radius[ci]); } } void vpmb_next_gradient(struct deco_state *ds, double deco_time, double surface_pressure) { int ci; double n2_b, n2_c; double he_b, he_c; double desat_time; deco_time /= 60.0; for (ci = 0; ci < 16; ++ci) { desat_time = deco_time + calc_surface_phase(surface_pressure, ds->tissue_he_sat[ci], ds->tissue_n2_sat[ci], log(2.0) / buehlmann_He_t_halflife[ci], log(2.0) / buehlmann_N2_t_halflife[ci]); n2_b = ds->initial_n2_gradient[ci] + (vpmb_config.crit_volume_lambda * vpmb_config.surface_tension_gamma) / (vpmb_config.skin_compression_gammaC * desat_time); he_b = ds->initial_he_gradient[ci] + (vpmb_config.crit_volume_lambda * vpmb_config.surface_tension_gamma) / (vpmb_config.skin_compression_gammaC * desat_time); n2_c = vpmb_config.surface_tension_gamma * vpmb_config.surface_tension_gamma * vpmb_config.crit_volume_lambda * ds->max_n2_crushing_pressure[ci]; n2_c = n2_c / (vpmb_config.skin_compression_gammaC * vpmb_config.skin_compression_gammaC * desat_time); he_c = vpmb_config.surface_tension_gamma * vpmb_config.surface_tension_gamma * vpmb_config.crit_volume_lambda * ds->max_he_crushing_pressure[ci]; he_c = he_c / (vpmb_config.skin_compression_gammaC * vpmb_config.skin_compression_gammaC * desat_time); ds->bottom_n2_gradient[ci] = 0.5 * ( n2_b + sqrt(n2_b * n2_b - 4.0 * n2_c)); ds->bottom_he_gradient[ci] = 0.5 * ( he_b + sqrt(he_b * he_b - 4.0 * he_c)); } } // A*r^3 - B*r^2 - C == 0 // Solved with the help of mathematica static double solve_cubic(double A, double B, double C) { double BA = B/A; double CA = C/A; double discriminant = CA * (4 * cube(BA) + 27 * CA); // Let's make sure we have a real solution: if (discriminant < 0.0) { // This should better not happen report_error("Complex solution for inner pressure encountered!\n A=%f\tB=%f\tC=%f\n", A, B, C); return 0.0; } double denominator = pow(cube(BA) + 1.5 * (9 * CA + sqrt(3.0) * sqrt(discriminant)), 1/3.0); return (BA + BA * BA / denominator + denominator) / 3.0; } void nuclear_regeneration(struct deco_state *ds, double time) { time /= 60.0; int ci; double crushing_radius_N2, crushing_radius_He; for (ci = 0; ci < 16; ++ci) { //rm crushing_radius_N2 = 1.0 / (ds->max_n2_crushing_pressure[ci] / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / get_crit_radius_N2()); crushing_radius_He = 1.0 / (ds->max_he_crushing_pressure[ci] / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / get_crit_radius_He()); //rs ds->n2_regen_radius[ci] = crushing_radius_N2 + (get_crit_radius_N2() - crushing_radius_N2) * (1.0 - exp (-time / vpmb_config.regeneration_time)); ds->he_regen_radius[ci] = crushing_radius_He + (get_crit_radius_He() - crushing_radius_He) * (1.0 - exp (-time / vpmb_config.regeneration_time)); } } // Calculates the nucleons inner pressure during the impermeable period static double calc_inner_pressure(double crit_radius, double onset_tension, double current_ambient_pressure) { double onset_radius = 1.0 / (vpmb_config.gradient_of_imperm / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / crit_radius); double A = current_ambient_pressure - vpmb_config.gradient_of_imperm + (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) / onset_radius; double B = 2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma); double C = onset_tension * pow(onset_radius, 3); double current_radius = solve_cubic(A, B, C); return onset_tension * onset_radius * onset_radius * onset_radius / (current_radius * current_radius * current_radius); } // Calculates the crushing pressure in the given moment. Updates crushing_onset_tension and critical radius if needed void calc_crushing_pressure(struct deco_state *ds, double pressure) { int ci; double gradient; double gas_tension; double n2_crushing_pressure, he_crushing_pressure; double n2_inner_pressure, he_inner_pressure; for (ci = 0; ci < 16; ++ci) { gas_tension = ds->tissue_n2_sat[ci] + ds->tissue_he_sat[ci] + vpmb_config.other_gases_pressure; gradient = pressure - gas_tension; if (gradient <= vpmb_config.gradient_of_imperm) { // permeable situation n2_crushing_pressure = he_crushing_pressure = gradient; ds->crushing_onset_tension[ci] = gas_tension; } else { // impermeable if (ds->max_ambient_pressure >= pressure) return; n2_inner_pressure = calc_inner_pressure(get_crit_radius_N2(), ds->crushing_onset_tension[ci], pressure); he_inner_pressure = calc_inner_pressure(get_crit_radius_He(), ds->crushing_onset_tension[ci], pressure); n2_crushing_pressure = pressure - n2_inner_pressure; he_crushing_pressure = pressure - he_inner_pressure; } ds->max_n2_crushing_pressure[ci] = MAX(ds->max_n2_crushing_pressure[ci], n2_crushing_pressure); ds->max_he_crushing_pressure[ci] = MAX(ds->max_he_crushing_pressure[ci], he_crushing_pressure); } ds->max_ambient_pressure = MAX(pressure, ds->max_ambient_pressure); } /* add period_in_seconds at the given pressure and gas to the deco calculation */ void add_segment(struct deco_state *ds, double pressure, struct gasmix gasmix, int period_in_seconds, int ccpo2, enum divemode_t divemode, int sac) { UNUSED(sac); int ci; struct gas_pressures pressures; bool icd = false; fill_pressures(&pressures, pressure - ((in_planner() && (decoMode() == VPMB)) ? WV_PRESSURE_SCHREINER : WV_PRESSURE), gasmix, (double) ccpo2 / 1000.0, divemode); for (ci = 0; ci < 16; ci++) { double pn2_oversat = pressures.n2 - ds->tissue_n2_sat[ci]; double phe_oversat = pressures.he - ds->tissue_he_sat[ci]; double n2_f = factor(period_in_seconds, ci, N2); double he_f = factor(period_in_seconds, ci, HE); double n2_satmult = pn2_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult; double he_satmult = phe_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult; // Report ICD if N2 is more on-gasing than He off-gasing in leading tissue if (ci == ds->ci_pointing_to_guiding_tissue && pn2_oversat > 0.0 && phe_oversat < 0.0 && pn2_oversat * n2_satmult * n2_f + phe_oversat * he_satmult * he_f > 0) icd = true; ds->tissue_n2_sat[ci] += n2_satmult * pn2_oversat * n2_f; ds->tissue_he_sat[ci] += he_satmult * phe_oversat * he_f; ds->tissue_inertgas_saturation[ci] = ds->tissue_n2_sat[ci] + ds->tissue_he_sat[ci]; } if (decoMode() == VPMB) calc_crushing_pressure(ds, pressure); ds->icd_warning = icd; return; } #if DECO_CALC_DEBUG void dump_tissues(struct deco_state *ds) { int ci; printf("N2 tissues:"); for (ci = 0; ci < 16; ci++) printf(" %6.3e", ds->tissue_n2_sat[ci]); printf("\nHe tissues:"); for (ci = 0; ci < 16; ci++) printf(" %6.3e", ds->tissue_he_sat[ci]); printf("\n"); } #endif void clear_vpmb_state(struct deco_state *ds) { int ci; for (ci = 0; ci < 16; ci++) { ds->max_n2_crushing_pressure[ci] = 0.0; ds->max_he_crushing_pressure[ci] = 0.0; } ds->max_ambient_pressure = 0; ds->first_ceiling_pressure.mbar = 0; ds->max_bottom_ceiling_pressure.mbar = 0; } void clear_deco(struct deco_state *ds, double surface_pressure) { int ci; memset(ds, 0, sizeof(*ds)); clear_vpmb_state(ds); for (ci = 0; ci < 16; ci++) { ds->tissue_n2_sat[ci] = (surface_pressure - ((in_planner() && (decoMode() == VPMB)) ? WV_PRESSURE_SCHREINER : WV_PRESSURE)) * N2_IN_AIR / 1000; ds->tissue_he_sat[ci] = 0.0; ds->max_n2_crushing_pressure[ci] = 0.0; ds->max_he_crushing_pressure[ci] = 0.0; ds->n2_regen_radius[ci] = get_crit_radius_N2(); ds->he_regen_radius[ci] = get_crit_radius_He(); } ds->gf_low_pressure_this_dive = surface_pressure + buehlmann_config.gf_low_position_min; ds->max_ambient_pressure = 0.0; ds->ci_pointing_to_guiding_tissue = -1; } void cache_deco_state(struct deco_state *src, struct deco_state **cached_datap) { struct deco_state *data = *cached_datap; if (!data) { data = malloc(sizeof(struct deco_state)); *cached_datap = data; } *data = *src; } void restore_deco_state(struct deco_state *data, struct deco_state *target, bool keep_vpmb_state) { if (keep_vpmb_state) { int ci; for (ci = 0; ci < 16; ci++) { data->bottom_n2_gradient[ci] = target->bottom_n2_gradient[ci]; data->bottom_he_gradient[ci] = target->bottom_he_gradient[ci]; data->initial_n2_gradient[ci] = target->initial_n2_gradient[ci]; data->initial_he_gradient[ci] = target->initial_he_gradient[ci]; } data->first_ceiling_pressure = target->first_ceiling_pressure; data->max_bottom_ceiling_pressure = target->max_bottom_ceiling_pressure; } *target = *data; } int deco_allowed_depth(double tissues_tolerance, double surface_pressure, const struct dive *dive, bool smooth) { int depth; double pressure_delta; /* Avoid negative depths */ pressure_delta = tissues_tolerance > surface_pressure ? tissues_tolerance - surface_pressure : 0.0; depth = rel_mbar_to_depth(lrint(pressure_delta * 1000), dive); if (!smooth) depth = lrint(ceil(depth / DECO_STOPS_MULTIPLIER_MM) * DECO_STOPS_MULTIPLIER_MM); if (depth > 0 && depth < buehlmann_config.last_deco_stop_in_mtr * 1000) depth = buehlmann_config.last_deco_stop_in_mtr * 1000; return depth; } void set_gf(short gflow, short gfhigh) { if (gflow != -1) buehlmann_config.gf_low = (double)gflow / 100.0; if (gfhigh != -1) buehlmann_config.gf_high = (double)gfhigh / 100.0; } void set_vpmb_conservatism(short conservatism) { if (conservatism < 0) vpmb_config.conservatism = 0; else if (conservatism > 4) vpmb_config.conservatism = 4; else vpmb_config.conservatism = conservatism; } double get_gf(struct deco_state *ds, double ambpressure_bar, const struct dive *dive) { double surface_pressure_bar = get_surface_pressure_in_mbar(dive, true) / 1000.0; double gf_low = buehlmann_config.gf_low; double gf_high = buehlmann_config.gf_high; double gf; if (ds->gf_low_pressure_this_dive > surface_pressure_bar) gf = MAX((double)gf_low, (ambpressure_bar - surface_pressure_bar) / (ds->gf_low_pressure_this_dive - surface_pressure_bar) * (gf_low - gf_high) + gf_high); else gf = gf_low; return gf; } double regressiona(const struct deco_state *ds) { if (ds->sum1 > 1) { double avxy = ds->sumxy / ds->sum1; double avx = (double)ds->sumx / ds->sum1; double avy = ds->sumy / ds->sum1; double avxx = (double) ds->sumxx / ds->sum1; return (avxy - avx * avy) / (avxx - avx*avx); } else return 0.0; } double regressionb(const struct deco_state *ds) { if (ds->sum1) return ds->sumy / ds->sum1 - ds->sumx * regressiona(ds) / ds->sum1; else return 0.0; } void reset_regression(struct deco_state *ds) { ds->sum1 = 0; ds->sumxx = ds->sumx = 0L; ds->sumy = ds->sumxy = 0.0; } void update_regression(struct deco_state *ds, const struct dive *dive) { if (!ds->plot_depth) return; ds->sum1 += 1; ds->sumx += ds->plot_depth; ds->sumxx += (long)ds->plot_depth * ds->plot_depth; double n2_gradient, he_gradient, total_gradient; n2_gradient = update_gradient(ds, depth_to_bar(ds->plot_depth, dive), ds->bottom_n2_gradient[ds->ci_pointing_to_guiding_tissue]); he_gradient = update_gradient(ds, depth_to_bar(ds->plot_depth, dive), ds->bottom_he_gradient[ds->ci_pointing_to_guiding_tissue]); total_gradient = ((n2_gradient * ds->tissue_n2_sat[ds->ci_pointing_to_guiding_tissue]) + (he_gradient * ds->tissue_he_sat[ds->ci_pointing_to_guiding_tissue])) / (ds->tissue_n2_sat[ds->ci_pointing_to_guiding_tissue] + ds->tissue_he_sat[ds->ci_pointing_to_guiding_tissue]); double buehlmann_gradient = (1.0 / ds->buehlmann_inertgas_b[ds->ci_pointing_to_guiding_tissue] - 1.0) * depth_to_bar(ds->plot_depth, dive) + ds->buehlmann_inertgas_a[ds->ci_pointing_to_guiding_tissue]; double gf = (total_gradient - vpmb_config.other_gases_pressure) / buehlmann_gradient; ds->sumxy += gf * ds->plot_depth; ds->sumy += gf; ds->plot_depth = 0; }