// SPDX-License-Identifier: GPL-2.0 #include "divecomputer.h" #include "event.h" #include "extradata.h" #include "pref.h" #include "sample.h" #include "structured_list.h" #include "subsurface-string.h" #include #include /* * Good fake dive profiles are hard. * * "depthtime" is the integral of the dive depth over * time ("area" of the dive profile). We want that * area to match the average depth (avg_d*max_t). * * To do that, we generate a 6-point profile: * * (0, 0) * (t1, max_d) * (t2, max_d) * (t3, d) * (t4, d) * (max_t, 0) * * with the same ascent/descent rates between the * different depths. * * NOTE: avg_d, max_d and max_t are given constants. * The rest we can/should play around with to get a * good-looking profile. * * That six-point profile gives a total area of: * * (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) * * And the "same ascent/descent rates" requirement * gives us (time per depth must be same): * * t1 / max_d = (t3-t2) / (max_d-d) * t1 / max_d = (max_t-t4) / d * * We also obviously require: * * 0 <= t1 <= t2 <= t3 <= t4 <= max_t * * Let us call 'd_frac = d / max_d', and we get: * * Total area must match average depth-time: * * (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) = avg_d*max_t * max_d*(max_t-t1-(1-d_frac)*(t4-t3)) = avg_d*max_t * max_t-t1-(1-d_frac)*(t4-t3) = avg_d*max_t/max_d * t1+(1-d_frac)*(t4-t3) = max_t*(1-avg_d/max_d) * * and descent slope must match ascent slopes: * * t1 / max_d = (t3-t2) / (max_d*(1-d_frac)) * t1 = (t3-t2)/(1-d_frac) * * and * * t1 / max_d = (max_t-t4) / (max_d*d_frac) * t1 = (max_t-t4)/d_frac * * In general, we have more free variables than we have constraints, * but we can aim for certain basics, like a good ascent slope. */ static int fill_samples(struct sample *s, int max_d, int avg_d, int max_t, double slope, double d_frac) { double t_frac = max_t * (1 - avg_d / (double)max_d); int t1 = lrint(max_d / slope); int t4 = lrint(max_t - t1 * d_frac); int t3 = lrint(t4 - (t_frac - t1) / (1 - d_frac)); int t2 = lrint(t3 - t1 * (1 - d_frac)); if (t1 < 0 || t1 > t2 || t2 > t3 || t3 > t4 || t4 > max_t) return 0; s[1].time.seconds = t1; s[1].depth.mm = max_d; s[2].time.seconds = t2; s[2].depth.mm = max_d; s[3].time.seconds = t3; s[3].depth.mm = lrint(max_d * d_frac); s[4].time.seconds = t4; s[4].depth.mm = lrint(max_d * d_frac); return 1; } /* we have no average depth; instead of making up a random average depth * we should assume either a PADI rectangular profile (for short and/or * shallow dives) or more reasonably a six point profile with a 3 minute * safety stop at 5m */ static void fill_samples_no_avg(struct sample *s, int max_d, int max_t, double slope) { // shallow or short dives are just trapecoids based on the given slope if (max_d < 10000 || max_t < 600) { s[1].time.seconds = lrint(max_d / slope); s[1].depth.mm = max_d; s[2].time.seconds = max_t - lrint(max_d / slope); s[2].depth.mm = max_d; } else { s[1].time.seconds = lrint(max_d / slope); s[1].depth.mm = max_d; s[2].time.seconds = max_t - lrint(max_d / slope) - 180; s[2].depth.mm = max_d; s[3].time.seconds = max_t - lrint(5000 / slope) - 180; s[3].depth.mm = 5000; s[4].time.seconds = max_t - lrint(5000 / slope); s[4].depth.mm = 5000; } } void fake_dc(struct divecomputer *dc) { alloc_samples(dc, 6); struct sample *fake = dc->sample; int i; dc->samples = 6; /* The dive has no samples, so create a few fake ones */ int max_t = dc->duration.seconds; int max_d = dc->maxdepth.mm; int avg_d = dc->meandepth.mm; memset(fake, 0, 6 * sizeof(struct sample)); fake[5].time.seconds = max_t; for (i = 0; i < 6; i++) { fake[i].bearing.degrees = -1; fake[i].ndl.seconds = -1; } if (!max_t || !max_d) { dc->samples = 0; return; } /* Set last manually entered time to the total dive length */ dc->last_manual_time = dc->duration; /* * We want to fake the profile so that the average * depth ends up correct. However, in the absence of * a reasonable average, let's just make something * up. Note that 'avg_d == max_d' is _not_ a reasonable * average. * We explicitly treat avg_d == 0 differently */ if (avg_d == 0) { /* we try for a sane slope, but bow to the insanity of * the user supplied data */ fill_samples_no_avg(fake, max_d, max_t, MAX(2.0 * max_d / max_t, (double)prefs.ascratelast6m)); if (fake[3].time.seconds == 0) { // just a 4 point profile dc->samples = 4; fake[3].time.seconds = max_t; } return; } if (avg_d < max_d / 10 || avg_d >= max_d) { avg_d = (max_d + 10000) / 3; if (avg_d > max_d) avg_d = max_d * 2 / 3; } if (!avg_d) avg_d = 1; /* * Ok, first we try a basic profile with a specific ascent * rate (5 meters per minute) and d_frac (1/3). */ if (fill_samples(fake, max_d, avg_d, max_t, (double)prefs.ascratelast6m, 0.33)) return; /* * Ok, assume that didn't work because we cannot make the * average come out right because it was a quick deep dive * followed by a much shallower region */ if (fill_samples(fake, max_d, avg_d, max_t, 10000.0 / 60, 0.10)) return; /* * Uhhuh. That didn't work. We'd need to find a good combination that * satisfies our constraints. Currently, we don't, we just give insane * slopes. */ if (fill_samples(fake, max_d, avg_d, max_t, 10000.0, 0.01)) return; /* Even that didn't work? Give up, there's something wrong */ } /* Find the divemode at time 'time' (in seconds) into the dive. Sequentially step through the divemode-change events, * saving the dive mode for each event. When the events occur AFTER 'time' seconds, the last stored divemode * is returned. This function is self-tracking, relying on setting the event pointer 'evp' so that, in each iteration * that calls this function, the search does not have to begin at the first event of the dive */ enum divemode_t get_current_divemode(const struct divecomputer *dc, int time, const struct event **evp, enum divemode_t *divemode) { const struct event *ev = *evp; if (dc) { if (*divemode == UNDEF_COMP_TYPE) { *divemode = dc->divemode; ev = get_next_event(dc->events, "modechange"); } } else { ev = NULL; } while (ev && ev->time.seconds < time) { *divemode = (enum divemode_t) ev->value; ev = get_next_event(ev->next, "modechange"); } *evp = ev; return *divemode; } /* helper function to make it easier to work with our structures * we don't interpolate here, just use the value from the last sample up to that time */ int get_depth_at_time(const struct divecomputer *dc, unsigned int time) { int depth = 0; if (dc && dc->sample) for (int i = 0; i < dc->samples; i++) { if (dc->sample[i].time.seconds > time) break; depth = dc->sample[i].depth.mm; } return depth; } /* The first divecomputer is embedded in the dive structure. Free its data but not * the structure itself. For all remainding dcs in the list, free data *and* structures. */ void free_dive_dcs(struct divecomputer *dc) { free_dc_contents(dc); STRUCTURED_LIST_FREE(struct divecomputer, dc->next, free_dc); } /* make room for num samples; if not enough space is available, the sample * array is reallocated and the existing samples are copied. */ void alloc_samples(struct divecomputer *dc, int num) { if (num > dc->alloc_samples) { dc->alloc_samples = (num * 3) / 2 + 10; dc->sample = realloc(dc->sample, dc->alloc_samples * sizeof(struct sample)); if (!dc->sample) dc->samples = dc->alloc_samples = 0; } } void free_samples(struct divecomputer *dc) { if (dc) { free(dc->sample); dc->sample = 0; dc->samples = 0; dc->alloc_samples = 0; } } struct sample *prepare_sample(struct divecomputer *dc) { if (dc) { int nr = dc->samples; struct sample *sample; alloc_samples(dc, nr + 1); if (!dc->sample) return NULL; sample = dc->sample + nr; memset(sample, 0, sizeof(*sample)); // Copy the sensor numbers - but not the pressure values // from the previous sample if any. if (nr) { for (int idx = 0; idx < MAX_SENSORS; idx++) sample->sensor[idx] = sample[-1].sensor[idx]; } // Init some values with -1 sample->bearing.degrees = -1; sample->ndl.seconds = -1; return sample; } return NULL; } void finish_sample(struct divecomputer *dc) { dc->samples++; } struct sample *add_sample(const struct sample *sample, int time, struct divecomputer *dc) { struct sample *p = prepare_sample(dc); if (p) { *p = *sample; p->time.seconds = time; finish_sample(dc); } return p; } /* * Calculate how long we were actually under water, and the average * depth while under water. * * This ignores any surface time in the middle of the dive. */ void fixup_dc_duration(struct divecomputer *dc) { int duration, i; int lasttime, lastdepth, depthtime; duration = 0; lasttime = 0; lastdepth = 0; depthtime = 0; for (i = 0; i < dc->samples; i++) { struct sample *sample = dc->sample + i; int time = sample->time.seconds; int depth = sample->depth.mm; /* We ignore segments at the surface */ if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) { duration += time - lasttime; depthtime += (time - lasttime) * (depth + lastdepth) / 2; } lastdepth = depth; lasttime = time; } if (duration) { dc->duration.seconds = duration; dc->meandepth.mm = (depthtime + duration / 2) / duration; } } /* * What do the dive computers say the water temperature is? * (not in the samples, but as dc property for dcs that support that) */ unsigned int dc_watertemp(const struct divecomputer *dc) { int sum = 0, nr = 0; do { if (dc->watertemp.mkelvin) { sum += dc->watertemp.mkelvin; nr++; } } while ((dc = dc->next) != NULL); if (!nr) return 0; return (sum + nr / 2) / nr; } /* * What do the dive computers say the air temperature is? */ unsigned int dc_airtemp(const struct divecomputer *dc) { int sum = 0, nr = 0; do { if (dc->airtemp.mkelvin) { sum += dc->airtemp.mkelvin; nr++; } } while ((dc = dc->next) != NULL); if (!nr) return 0; return (sum + nr / 2) / nr; } /* copies all events in this dive computer */ void copy_events(const struct divecomputer *s, struct divecomputer *d) { const struct event *ev; struct event **pev; if (!s || !d) return; ev = s->events; pev = &d->events; while (ev != NULL) { struct event *new_ev = clone_event(ev); *pev = new_ev; pev = &new_ev->next; ev = ev->next; } *pev = NULL; } void copy_samples(const struct divecomputer *s, struct divecomputer *d) { /* instead of carefully copying them one by one and calling add_sample * over and over again, let's just copy the whole blob */ if (!s || !d) return; int nr = s->samples; d->samples = nr; d->alloc_samples = nr; // We expect to be able to read the memory in the other end of the pointer // if its a valid pointer, so don't expect malloc() to return NULL for // zero-sized malloc, do it ourselves. d->sample = NULL; if(!nr) return; d->sample = malloc(nr * sizeof(struct sample)); if (d->sample) memcpy(d->sample, s->sample, nr * sizeof(struct sample)); } void add_event_to_dc(struct divecomputer *dc, struct event *ev) { struct event **p; p = &dc->events; /* insert in the sorted list of events */ while (*p && (*p)->time.seconds <= ev->time.seconds) p = &(*p)->next; ev->next = *p; *p = ev; } struct event *add_event(struct divecomputer *dc, unsigned int time, int type, int flags, int value, const char *name) { struct event *ev = create_event(time, type, flags, value, name); if (!ev) return NULL; add_event_to_dc(dc, ev); return ev; } /* Substitutes an event in a divecomputer for another. No reordering is performed! */ void swap_event(struct divecomputer *dc, struct event *from, struct event *to) { for (struct event **ep = &dc->events; *ep; ep = &(*ep)->next) { if (*ep == from) { to->next = from->next; *ep = to; from->next = NULL; // For good measure. break; } } } /* Remove given event from dive computer. Does *not* free the event. */ void remove_event_from_dc(struct divecomputer *dc, struct event *event) { for (struct event **ep = &dc->events; *ep; ep = &(*ep)->next) { if (*ep == event) { *ep = event->next; event->next = NULL; // For good measure. break; } } } void add_extra_data(struct divecomputer *dc, const char *key, const char *value) { struct extra_data **ed = &dc->extra_data; if (!strcasecmp(key, "Serial")) { dc->deviceid = calculate_string_hash(value); dc->serial = strdup(value); } if (!strcmp(key, "FW Version")) { dc->fw_version = strdup(value); } while (*ed) ed = &(*ed)->next; *ed = malloc(sizeof(struct extra_data)); if (*ed) { (*ed)->key = strdup(key); (*ed)->value = strdup(value); (*ed)->next = NULL; } } bool is_dc_planner(const struct divecomputer *dc) { return same_string(dc->model, "planned dive"); } /* * Match two dive computer entries against each other, and * tell if it's the same dive. Return 0 if "don't know", * positive for "same dive" and negative for "definitely * not the same dive" */ int match_one_dc(const struct divecomputer *a, const struct divecomputer *b) { /* Not same model? Don't know if matching.. */ if (!a->model || !b->model) return 0; if (strcasecmp(a->model, b->model)) return 0; /* Different device ID's? Don't know */ if (a->deviceid != b->deviceid) return 0; /* Do we have dive IDs? */ if (!a->diveid || !b->diveid) return 0; /* * If they have different dive ID's on the same * dive computer, that's a definite "same or not" */ return a->diveid == b->diveid && a->when == b->when ? 1 : -1; } static void free_extra_data(struct extra_data *ed) { free((void *)ed->key); free((void *)ed->value); } void free_dc_contents(struct divecomputer *dc) { free(dc->sample); free((void *)dc->model); free((void *)dc->serial); free((void *)dc->fw_version); free_events(dc->events); STRUCTURED_LIST_FREE(struct extra_data, dc->extra_data, free_extra_data); } void free_dc(struct divecomputer *dc) { free_dc_contents(dc); free(dc); } static const char *manual_dc_name = "manually added dive"; bool is_manually_added_dc(const struct divecomputer *dc) { return dc && dc->samples <= 50 && same_string(dc->model, manual_dc_name); } void make_manually_added_dc(struct divecomputer *dc) { free((void *)dc->model); dc->model = strdup(manual_dc_name); }