/* calculate deco values * based on Bühlmann ZHL-16b * based on an implemention by heinrichs weikamp for the DR5 * the original file was given to Subsurface under the GPLv2 * by Matthias Heinrichs * * The implementation below is a fairly complete rewrite since then * (C) Robert C. Helling 2013 and released under the GPLv2 * * add_segment() - add at the given pressure, breathing gasmix * deco_allowed_depth() - ceiling based on lead tissue, surface pressure, 3m increments or smooth * set_gf() - set Buehlmann gradient factors * clear_deco() * cache_deco_state() * restore_deco_state() * dump_tissues() */ #include #include #include "dive.h" //! Option structure for Buehlmann decompression. struct buehlmann_config { double satmult; //! safety at inert gas accumulation as percentage of effect (more than 100). double desatmult; //! safety at inert gas depletion as percentage of effect (less than 100). unsigned int last_deco_stop_in_mtr; //! depth of last_deco_stop. double gf_high; //! gradient factor high (at surface). double gf_low; //! gradient factor low (at bottom/start of deco calculation). double gf_low_position_min; //! gf_low_position below surface_min_shallow. bool gf_low_at_maxdepth; //! if true, gf_low applies at max depth instead of at deepest ceiling. }; struct buehlmann_config buehlmann_config = { 1.0, 1.01, 0, 0.75, 0.35, 1.0, false }; const double buehlmann_N2_a[] = { 1.1696, 1.0, 0.8618, 0.7562, 0.62, 0.5043, 0.441, 0.4, 0.375, 0.35, 0.3295, 0.3065, 0.2835, 0.261, 0.248, 0.2327 }; const double buehlmann_N2_b[] = { 0.5578, 0.6514, 0.7222, 0.7825, 0.8126, 0.8434, 0.8693, 0.8910, 0.9092, 0.9222, 0.9319, 0.9403, 0.9477, 0.9544, 0.9602, 0.9653 }; const double buehlmann_N2_t_halflife[] = { 5.0, 8.0, 12.5, 18.5, 27.0, 38.3, 54.3, 77.0, 109.0, 146.0, 187.0, 239.0, 305.0, 390.0, 498.0, 635.0 }; const double buehlmann_N2_factor_expositon_one_second[] = { 2.30782347297664E-003, 1.44301447809736E-003, 9.23769302935806E-004, 6.24261986779007E-004, 4.27777107246730E-004, 3.01585140931371E-004, 2.12729727268379E-004, 1.50020603047807E-004, 1.05980191127841E-004, 7.91232600646508E-005, 6.17759153688224E-005, 4.83354552742732E-005, 3.78761777920511E-005, 2.96212356654113E-005, 2.31974277413727E-005, 1.81926738960225E-005 }; const double buehlmann_He_a[] = { 1.6189, 1.383, 1.1919, 1.0458, 0.922, 0.8205, 0.7305, 0.6502, 0.595, 0.5545, 0.5333, 0.5189, 0.5181, 0.5176, 0.5172, 0.5119 }; const double buehlmann_He_b[] = { 0.4770, 0.5747, 0.6527, 0.7223, 0.7582, 0.7957, 0.8279, 0.8553, 0.8757, 0.8903, 0.8997, 0.9073, 0.9122, 0.9171, 0.9217, 0.9267 }; const double buehlmann_He_t_halflife[] = { 1.88, 3.02, 4.72, 6.99, 10.21, 14.48, 20.53, 29.11, 41.20, 55.19, 70.69, 90.34, 115.29, 147.42, 188.24, 240.03 }; const double buehlmann_He_factor_expositon_one_second[] = { 6.12608039419837E-003, 3.81800836683133E-003, 2.44456078654209E-003, 1.65134647076792E-003, 1.13084424730725E-003, 7.97503165599123E-004, 5.62552521860549E-004, 3.96776399429366E-004, 2.80360036664540E-004, 2.09299583354805E-004, 1.63410794820518E-004, 1.27869320250551E-004, 1.00198406028040E-004, 7.83611475491108E-005, 6.13689891868496E-005, 4.81280465299827E-005 }; #define WV_PRESSURE 0.0627 // water vapor pressure in bar #define DECO_STOPS_MULTIPLIER_MM 3000.0 double tissue_n2_sat[16]; double tissue_he_sat[16]; int ci_pointing_to_guiding_tissue; double gf_low_pressure_this_dive; #define TISSUE_ARRAY_SZ sizeof(tissue_n2_sat) double tolerated_by_tissue[16]; static double tissue_tolerance_calc(const struct dive *dive) { int ci = -1; double tissue_inertgas_saturation[16], buehlmann_inertgas_a[16], buehlmann_inertgas_b[16]; double ret_tolerance_limit_ambient_pressure = 0.0; double gf_high = buehlmann_config.gf_high; double gf_low = buehlmann_config.gf_low; double surface = get_surface_pressure_in_mbar(dive, true) / 1000.0; double lowest_ceiling = 0.0; double tissue_lowest_ceiling[16]; for (ci = 0; ci < 16; ci++) { tissue_inertgas_saturation[ci] = tissue_n2_sat[ci] + tissue_he_sat[ci]; buehlmann_inertgas_a[ci] = ((buehlmann_N2_a[ci] * tissue_n2_sat[ci]) + (buehlmann_He_a[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation[ci]; buehlmann_inertgas_b[ci] = ((buehlmann_N2_b[ci] * tissue_n2_sat[ci]) + (buehlmann_He_b[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation[ci]; /* tolerated = (tissue_inertgas_saturation - buehlmann_inertgas_a) * buehlmann_inertgas_b; */ tissue_lowest_ceiling[ci] = (buehlmann_inertgas_b[ci] * tissue_inertgas_saturation[ci] - gf_low * buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci]) / ((1.0 - buehlmann_inertgas_b[ci]) * gf_low + buehlmann_inertgas_b[ci]); if (tissue_lowest_ceiling[ci] > lowest_ceiling) lowest_ceiling = tissue_lowest_ceiling[ci]; if (!buehlmann_config.gf_low_at_maxdepth) { if (lowest_ceiling > gf_low_pressure_this_dive) gf_low_pressure_this_dive = lowest_ceiling; } } for (ci = 0; ci <16; ci++) { double tolerated; if ((surface / buehlmann_inertgas_b[ci] + buehlmann_inertgas_a[ci] - surface) * gf_high + surface < (gf_low_pressure_this_dive / buehlmann_inertgas_b[ci] + buehlmann_inertgas_a[ci] - gf_low_pressure_this_dive) * gf_low + gf_low_pressure_this_dive) tolerated = (-buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci] * (gf_high * gf_low_pressure_this_dive - gf_low * surface) - (1.0 - buehlmann_inertgas_b[ci]) * (gf_high - gf_low) * gf_low_pressure_this_dive * surface + buehlmann_inertgas_b[ci] * (gf_low_pressure_this_dive - surface) * tissue_inertgas_saturation[ci]) / (-buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci] * (gf_high - gf_low) + (1.0 - buehlmann_inertgas_b[ci]) * (gf_low * gf_low_pressure_this_dive - gf_high * surface) + buehlmann_inertgas_b[ci] * (gf_low_pressure_this_dive - surface)); else tolerated = ret_tolerance_limit_ambient_pressure; tolerated_by_tissue[ci] = tolerated; if (tolerated >= ret_tolerance_limit_ambient_pressure) { ci_pointing_to_guiding_tissue = ci; ret_tolerance_limit_ambient_pressure = tolerated; } } return ret_tolerance_limit_ambient_pressure; } /* * Return buelman factor for a particular period and tissue index. * * We cache the last factor, since we commonly call this with the * same values... We have a special "fixed cache" for the one second * case, although I wonder if that's even worth it considering the * more general-purpose cache. */ struct factor_cache { int last_period; double last_factor; }; double n2_factor(int period_in_seconds, int ci) { static struct factor_cache cache[16]; if (period_in_seconds == 1) return buehlmann_N2_factor_expositon_one_second[ci]; if (period_in_seconds != cache[ci].last_period) { cache[ci].last_period = period_in_seconds; cache[ci].last_factor = 1 - pow(2.0, -period_in_seconds / (buehlmann_N2_t_halflife[ci] * 60)); } return cache[ci].last_factor; } double he_factor(int period_in_seconds, int ci) { static struct factor_cache cache[16]; if (period_in_seconds == 1) return buehlmann_He_factor_expositon_one_second[ci]; if (period_in_seconds != cache[ci].last_period) { cache[ci].last_period = period_in_seconds; cache[ci].last_factor = 1 - pow(2.0, -period_in_seconds / (buehlmann_He_t_halflife[ci] * 60)); } return cache[ci].last_factor; } /* add period_in_seconds at the given pressure and gas to the deco calculation */ double add_segment(double pressure, const struct gasmix *gasmix, int period_in_seconds, int ccpo2, const struct dive *dive) { int ci; int fo2 = get_o2(gasmix), fhe = get_he(gasmix); double pn2 = (pressure - WV_PRESSURE) * (1000 - fo2 - fhe) / 1000.0; double phe = (pressure - WV_PRESSURE) * fhe / 1000.0; if (buehlmann_config.gf_low_at_maxdepth && pressure > gf_low_pressure_this_dive) gf_low_pressure_this_dive = pressure; if (ccpo2) { /* CC */ double rel_o2_amb, f_dilutent; rel_o2_amb = ccpo2 / pressure / 1000; f_dilutent = (1 - rel_o2_amb) / (1 - fo2 / 1000.0); if (f_dilutent < 0) { /* setpoint is higher than ambient pressure -> pure O2 */ pn2 = 0.0; phe = 0.0; } else if (f_dilutent < 1.0) { pn2 *= f_dilutent; phe *= f_dilutent; } } for (ci = 0; ci < 16; ci++) { double pn2_oversat = pn2 - tissue_n2_sat[ci]; double phe_oversat = phe - tissue_he_sat[ci]; double n2_f = n2_factor(period_in_seconds, ci); double he_f = he_factor(period_in_seconds, ci); double n2_satmult = pn2_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult; double he_satmult = phe_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult; tissue_n2_sat[ci] += n2_satmult * pn2_oversat * n2_f; tissue_he_sat[ci] += he_satmult * phe_oversat * he_f; } return tissue_tolerance_calc(dive); } #ifdef DECO_CALC_DEBUG void dump_tissues() { int ci; printf("N2 tissues:"); for (ci = 0; ci < 16; ci++) printf(" %6.3e", tissue_n2_sat[ci]); printf("\nHe tissues:"); for (ci = 0; ci < 16; ci++) printf(" %6.3e", tissue_he_sat[ci]); printf("\n"); } #endif void clear_deco(double surface_pressure) { int ci; for (ci = 0; ci < 16; ci++) { tissue_n2_sat[ci] = (surface_pressure - WV_PRESSURE) * N2_IN_AIR / 1000; tissue_he_sat[ci] = 0.0; } gf_low_pressure_this_dive = surface_pressure; if (!buehlmann_config.gf_low_at_maxdepth) gf_low_pressure_this_dive += buehlmann_config.gf_low_position_min; } void cache_deco_state(double tissue_tolerance, char **cached_datap) { char *data = *cached_datap; if (!data) { data = malloc(2 * TISSUE_ARRAY_SZ + 2 * sizeof(double) + sizeof(int)); *cached_datap = data; } memcpy(data, tissue_n2_sat, TISSUE_ARRAY_SZ); data += TISSUE_ARRAY_SZ; memcpy(data, tissue_he_sat, TISSUE_ARRAY_SZ); data += TISSUE_ARRAY_SZ; memcpy(data, &gf_low_pressure_this_dive, sizeof(double)); data += sizeof(double); memcpy(data, &tissue_tolerance, sizeof(double)); data += sizeof(double); memcpy(data, &ci_pointing_to_guiding_tissue, sizeof(int)); } double restore_deco_state(char *data) { double tissue_tolerance; memcpy(tissue_n2_sat, data, TISSUE_ARRAY_SZ); data += TISSUE_ARRAY_SZ; memcpy(tissue_he_sat, data, TISSUE_ARRAY_SZ); data += TISSUE_ARRAY_SZ; memcpy(&gf_low_pressure_this_dive, data, sizeof(double)); data += sizeof(double); memcpy(&tissue_tolerance, data, sizeof(double)); data += sizeof(double); memcpy(&ci_pointing_to_guiding_tissue, data, sizeof(int)); return tissue_tolerance; } unsigned int deco_allowed_depth(double tissues_tolerance, double surface_pressure, struct dive *dive, bool smooth) { unsigned int depth; double pressure_delta; /* Avoid negative depths */ pressure_delta = tissues_tolerance > surface_pressure ? tissues_tolerance - surface_pressure : 0.0; depth = rel_mbar_to_depth(pressure_delta * 1000, dive); if (!smooth) depth = ceil(depth / DECO_STOPS_MULTIPLIER_MM) * DECO_STOPS_MULTIPLIER_MM; if (depth > 0 && depth < buehlmann_config.last_deco_stop_in_mtr * 1000) depth = buehlmann_config.last_deco_stop_in_mtr * 1000; return depth; } void set_gf(short gflow, short gfhigh, bool gf_low_at_maxdepth) { if (gflow != -1) buehlmann_config.gf_low = (double)gflow / 100.0; if (gfhigh != -1) buehlmann_config.gf_high = (double)gfhigh / 100.0; buehlmann_config.gf_low_at_maxdepth = gf_low_at_maxdepth; }