// SPDX-License-Identifier: GPL-2.0 #ifdef __clang__ // Clang has a bug on zero-initialization of C structs. #pragma clang diagnostic ignored "-Wmissing-field-initializers" #endif #include #include #include #include #include #include #include #include #include #include #include #include "gettext.h" #include "dive.h" #include "divelog.h" #include "divesite.h" #include "errorhelper.h" #include "parse.h" #include "format.h" #include "subsurface-float.h" #include "subsurface-string.h" #include "subsurface-time.h" #include "trip.h" #include "device.h" #include "membuffer.h" #include "picture.h" #include "qthelper.h" #include "range.h" #include "sample.h" #include "tag.h" #include "version.h" #include "xmlparams.h" int last_xml_version = -1; static xmlDoc *test_xslt_transforms(xmlDoc *doc, const struct xml_params *params); static void divedate(const char *buffer, timestamp_t *when, struct parser_state *state) { int d, m, y; int hh, mm, ss; hh = 0; mm = 0; ss = 0; if (sscanf(buffer, "%d.%d.%d %d:%d:%d", &d, &m, &y, &hh, &mm, &ss) >= 3) { /* This is ok, and we got at least the date */ } else if (sscanf(buffer, "%d-%d-%d %d:%d:%d", &y, &m, &d, &hh, &mm, &ss) >= 3) { /* This is also ok */ } else { report_info("Unable to parse date '%s'", buffer); return; } state->cur_tm.tm_year = y; state->cur_tm.tm_mon = m - 1; state->cur_tm.tm_mday = d; state->cur_tm.tm_hour = hh; state->cur_tm.tm_min = mm; state->cur_tm.tm_sec = ss; *when = utc_mktime(&state->cur_tm); } static void divetime(const char *buffer, timestamp_t *when, struct parser_state *state) { int h, m, s = 0; if (sscanf(buffer, "%d:%d:%d", &h, &m, &s) >= 2) { state->cur_tm.tm_hour = h; state->cur_tm.tm_min = m; state->cur_tm.tm_sec = s; *when = utc_mktime(&state->cur_tm); } } /* Libdivecomputer: "2011-03-20 10:22:38" */ static void divedatetime(const char *buffer, timestamp_t *when, struct parser_state *state) { int y, m, d; int hr, min, sec; if (sscanf(buffer, "%d-%d-%d %d:%d:%d", &y, &m, &d, &hr, &min, &sec) == 6) { state->cur_tm.tm_year = y; state->cur_tm.tm_mon = m - 1; state->cur_tm.tm_mday = d; state->cur_tm.tm_hour = hr; state->cur_tm.tm_min = min; state->cur_tm.tm_sec = sec; *when = utc_mktime(&state->cur_tm); } } enum ParseState { FINDSTART, FINDEND }; static void divetags(const char *buffer, tag_list *tags) { int i = 0, start = 0, end = 0; enum ParseState state = FINDEND; int len = buffer ? strlen(buffer) : 0; while (i < len) { if (buffer[i] == ',') { if (state == FINDSTART) { /* Detect empty tags */ } else if (state == FINDEND) { /* Found end of tag */ if (i > 0 && buffer[i - 1] != '\\') { std::string s(buffer + start, i - start); state = FINDSTART; taglist_add_tag(*tags, s.c_str()); } else { state = FINDSTART; } } } else if (buffer[i] == ' ') { /* Handled */ } else { /* Found start of tag */ if (state == FINDSTART) { state = FINDEND; start = i; } else if (state == FINDEND) { end = i; } } i++; } if (state == FINDEND) { if (end < start) end = len - 1; if (len > 0) { std::string s(buffer + start, i - start); taglist_add_tag(*tags, buffer + start); } } } enum number_type { NEITHER, FLOATVAL }; static enum number_type parse_float(const char *buffer, double &res, const char *&endp) { double val; static bool first_time = true; val = ascii_strtod(buffer, &endp); if (endp == buffer) return NEITHER; if (*endp == ',') { if (nearly_equal(val, rint(val))) { /* we really want to send an error if this is a Subsurface native file * as this is likely indication of a bug - but right now we don't have * that information available */ if (first_time) { report_info("Floating point value with decimal comma (%s)?", buffer); first_time = false; } /* Try again in permissive mode*/ val = permissive_strtod(buffer, &endp); } } res = val; return FLOATVAL; } static enum number_type parse_float(const char *buffer, double &res) { const char *end; return parse_float(buffer, res, end); } static void pressure(const char *buffer, pressure_t *pressure, struct parser_state *state) { double mbar = 0.0; double val; switch (parse_float(buffer, val)) { case FLOATVAL: /* Just ignore zero values */ if (!val) break; switch (state->xml_parsing_units.pressure) { case units::PASCALS: mbar = val / 100; break; case units::BAR: /* Assume mbar, but if it's really small, it's bar */ mbar = val; if (fabs(mbar) < 5000) mbar = mbar * 1000; break; case units::PSI: mbar = psi_to_mbar(val); break; } if (fabs(mbar) > 5 && fabs(mbar) < 5000000) { pressure->mbar = lrint(mbar); break; } /* fallthrough */ default: report_info("Strange pressure reading %s", buffer); } } std::string trimspace(const char *s) { while (isspace(*s)) ++s; if (!*s) return std::string(); const char *end = s + strlen(s); while (isspace(end[-1])) --end; return std::string(s, end - s); } static void cylinder_use(const char *buffer, enum cylinderuse *cyl_use, struct parser_state *state) { std::string trimmed = trimspace(buffer); if (!trimmed.empty()) { enum cylinderuse use = cylinderuse_from_text(trimmed.c_str()); *cyl_use = use; if (use == OXYGEN) state->o2pressure_sensor = static_cast(state->cur_dive->cylinders.size()) - 1; } } static void salinity(const char *buffer, int *salinity) { double val; switch (parse_float(buffer, val)) { case FLOATVAL: *salinity = lrint(val * 10.0); break; default: report_info("Strange salinity reading %s", buffer); } } static void depth(const char *buffer, depth_t *depth, struct parser_state *state) { double val; switch (parse_float(buffer, val)) { case FLOATVAL: switch (state->xml_parsing_units.length) { case units::METERS: depth->mm = lrint(val * 1000.0); break; case units::FEET: depth->mm = feet_to_mm(val); break; } break; default: report_info("Strange depth reading %s", buffer); } } static void extra_data_start(struct parser_state *state) { state->cur_extra_data.key.clear(); state->cur_extra_data.value.clear(); } static void extra_data_end(struct parser_state *state) { // don't save partial structures - we must have both key and value if (!state->cur_extra_data.key.empty() && !state->cur_extra_data.value.empty()) add_extra_data(get_dc(state), state->cur_extra_data.key.c_str(), state->cur_extra_data.value.c_str()); } static void weight(const char *buffer, weight_t *weight, struct parser_state *state) { double val; switch (parse_float(buffer, val)) { case FLOATVAL: switch (state->xml_parsing_units.weight) { case units::KG: weight->grams = lrint(val * 1000.0); break; case units::LBS: weight->grams = lbs_to_grams(val); break; } break; default: report_info("Strange weight reading %s", buffer); } } static void temperature(const char *buffer, temperature_t *temperature, struct parser_state *state) { double val; switch (parse_float(buffer, val)) { case FLOATVAL: switch (state->xml_parsing_units.temperature) { case units::KELVIN: temperature->mkelvin = lrint(val * 1000.0); break; case units::CELSIUS: temperature->mkelvin = C_to_mkelvin(val); break; case units::FAHRENHEIT: temperature->mkelvin = F_to_mkelvin(val); break; } break; default: report_info("Strange temperature reading %s", buffer); } /* temperatures outside -40C .. +70C should be ignored */ if (temperature->mkelvin < ZERO_C_IN_MKELVIN - 40000 || temperature->mkelvin > ZERO_C_IN_MKELVIN + 70000) temperature->mkelvin = 0; } static void sampletime(const char *buffer, duration_t *time) { int i; int hr, min, sec; i = sscanf(buffer, "%d:%d:%d", &hr, &min, &sec); switch (i) { case 1: min = hr; hr = 0; /* fallthrough */ case 2: sec = min; min = hr; hr = 0; /* fallthrough */ case 3: time->seconds = (hr * 60 + min) * 60 + sec; break; default: time->seconds = 0; report_info("Strange sample time reading %s", buffer); } } static void offsettime(const char *buffer, offset_t *time) { duration_t uoffset; int sign = 1; if (*buffer == '-') { sign = -1; buffer++; } /* yes, this could indeed fail if we have an offset > 34yrs * - too bad */ sampletime(buffer, &uoffset); time->seconds = sign * uoffset.seconds; } static void duration(const char *buffer, duration_t *time) { /* DivingLog 5.08 (and maybe other versions) appear to sometimes * store the dive time as 44.00 instead of 44:00; * This attempts to parse this in a fairly robust way */ if (!strchr(buffer, ':') && strchr(buffer, '.')) { std::string mybuffer(buffer); char *dot = strchr(mybuffer.data(), '.'); *dot = ':'; sampletime(mybuffer.data(), time); } else { sampletime(buffer, time); } } static void percent(const char *buffer, fraction_t *fraction) { double val; const char *end; switch (parse_float(buffer, val, end)) { case FLOATVAL: /* Turn fractions into percent unless explicit.. */ if (val <= 1.0) { while (isspace(*end)) end++; if (*end != '%') val *= 100; } /* Then turn percent into our integer permille format */ if (val >= 0 && val <= 100.0) { fraction->permille = lrint(val * 10); break; } default: report_info(translate("gettextFromC", "Strange percentage reading %s"), buffer); break; } } static void gasmix(const char *buffer, fraction_t *fraction, struct parser_state *state) { /* libdivecomputer does negative percentages. */ if (*buffer == '-') return; percent(buffer, fraction); } static void gasmix_nitrogen(const char *, struct gasmix *) { /* Ignore n2 percentages. There's no value in them. */ } static void cylindersize(const char *buffer, volume_t *volume) { double val; switch (parse_float(buffer, val)) { case FLOATVAL: volume->mliter = lrint(val * 1000.0); break; default: report_info("Strange volume reading %s", buffer); break; } } // We don't use gauge as a mode, and pscr doesn't exist as a libdc divemode static const char *libdc_divemode_text[] = { "oc", "cc", "pscr", "freedive", "gauge"}; /* Extract the dive computer type from the xml text buffer */ static void get_dc_type(const char *buffer, enum divemode_t *dct) { std::string trimmed = trimspace(buffer); if (!trimmed.empty()) { for (int i = 0; i < NUM_DIVEMODE; i++) { if (trimmed == divemode_text[i]) { *dct = (divemode_t)i; break; } else if (trimmed == libdc_divemode_text[i]) { *dct = (divemode_t)i; break; } } } } /* For divemode_text[] (defined in dive.h) determine the index of * the string contained in the xml divemode attribute and passed * in buffer, below. Typical xml input would be: * */ static void event_divemode(const char *buffer, int *value) { std::string trimmed = trimspace(buffer); for (int i = 0; i < NUM_DIVEMODE; i++) { if (trimmed == divemode_text[i]) { *value = i; break; } } } /* Compare a pattern with a name, whereby the name may end in '\0' or '.'. */ static int match_name(const char *pattern, const char *name) { while (*pattern == *name && *pattern) { pattern++; name++; } return *pattern == '\0' && (*name == '\0' || *name == '.'); } typedef void (*matchfn_t)(const char *buffer, void *); static int match(const char *pattern, const char *name, matchfn_t fn, char *buf, void *data) { if (!match_name(pattern, name)) return 0; fn(buf, data); return 1; } typedef void (*matchfn_state_t)(const char *buffer, void *, struct parser_state *state); static int match_state(const char *pattern, const char *name, matchfn_state_t fn, char *buf, void *data, struct parser_state *state) { if (!match_name(pattern, name)) return 0; fn(buf, data, state); return 1; } #define MATCH(pattern, fn, dest) ({ \ /* Silly type compatibility test */ \ if (0) (fn)("test", dest); \ match(pattern, name, (matchfn_t) (fn), buf, dest); }) #define MATCH_STATE(pattern, fn, dest) ({ \ /* Silly type compatibility test */ \ if (0) (fn)("test", dest, state); \ match_state(pattern, name, (matchfn_state_t) (fn), buf, dest, state); }) static void get_index(const char *buffer, int *i) { *i = atoi(buffer); } static void get_bool(const char *buffer, bool *i) { *i = atoi(buffer); } static void get_uint8(const char *buffer, uint8_t *i) { *i = atoi(buffer); } static void get_uint16(const char *buffer, uint16_t *i) { *i = atoi(buffer); } static void get_bearing(const char *buffer, bearing_t *bearing) { bearing->degrees = atoi(buffer); } static void get_rating(const char *buffer, int *i) { int j = atoi(buffer); if (j >= 0 && j <= 5) { *i = j; } } static void double_to_o2pressure(const char *buffer, o2pressure_t *i) { i->mbar = lrint(ascii_strtod(buffer, NULL) * 1000.0); } static void hex_value(const char *buffer, uint32_t *i) { *i = strtoul(buffer, NULL, 16); } static void dive_site(const char *buffer, struct dive *d, struct parser_state *state) { uint32_t uuid; hex_value(buffer, &uuid); state->log->sites.get_by_uuid(uuid)->add_dive(d); } static void get_notrip(const char *buffer, bool *notrip) { *notrip = !strcmp(buffer, "NOTRIP"); } /* * Divinglog is crazy. The temperatures are in celsius. EXCEPT * for the sample temperatures, that are in Fahrenheit. * WTF? * * Oh, and I think Diving Log *internally* probably kept them * in celsius, because I'm seeing entries like * * 32.0 * * in there. Which is freezing, aka 0 degC. I bet the "0" is * what Diving Log uses for "no temperature". * * So throw away crap like that. * * It gets worse. Sometimes the sample temperatures are in * Celsius, which apparently happens if you are in a SI * locale. So we now do: * * - temperatures < 32.0 == Celsius * - temperature == 32.0 -> garbage, it's a missing temperature (zero converted from C to F) * - temperatures > 32.0 == Fahrenheit */ static void fahrenheit(const char *buffer, temperature_t *temperature) { double val; switch (parse_float(buffer, val)) { case FLOATVAL: if (nearly_equal(val, 32.0)) break; if (val < 32.0) temperature->mkelvin = C_to_mkelvin(val); else temperature->mkelvin = F_to_mkelvin(val); break; default: report_info("Crazy Diving Log temperature reading %s", buffer); } } /* * Did I mention how bat-shit crazy divinglog is? The sample * pressures are in PSI. But the tank working pressure is in * bar. WTF^2? * * Crazy stuff like this is why subsurface has everything in * these inconvenient typed structures, and you have to say * "pressure->mbar" to get the actual value. Exactly so that * you can never have unit confusion. * * It gets worse: sometimes apparently the pressures are in * bar, sometimes in psi. Dirk suspects that this may be a * DivingLog Uemis importer bug, and that they are always * supposed to be in bar, but that the importer got the * sample importing wrong. * * Sadly, there's no way to really tell. So I think we just * have to have some arbitrary cut-off point where we assume * that smaller values mean bar.. Not good. */ static void psi_or_bar(const char *buffer, pressure_t *pressure) { double val; switch (parse_float(buffer, val)) { case FLOATVAL: if (val > 400) pressure->mbar = psi_to_mbar(val); else pressure->mbar = lrint(val * 1000); break; default: report_info("Crazy Diving Log PSI reading %s", buffer); } } static int divinglog_fill_sample(struct sample *sample, const char *name, char *buf, struct parser_state *state) { return MATCH("time.p", sampletime, &sample->time) || MATCH_STATE("depth.p", depth, &sample->depth) || MATCH("temp.p", fahrenheit, &sample->temperature) || MATCH("press1.p", psi_or_bar, &sample->pressure[0]) || 0; } static void uddf_gasswitch(const char *buffer, struct sample *sample, struct parser_state *state) { int idx = atoi(buffer); int seconds = sample->time.seconds; struct divecomputer *dc = get_dc(state); add_gas_switch_event(state->cur_dive.get(), dc, seconds, idx); } static int uddf_fill_sample(struct sample *sample, const char *name, char *buf, struct parser_state *state) { return MATCH("divetime", sampletime, &sample->time) || MATCH_STATE("depth", depth, &sample->depth) || MATCH_STATE("temperature", temperature, &sample->temperature) || MATCH_STATE("tankpressure", pressure, &sample->pressure[0]) || MATCH_STATE("ref.switchmix", uddf_gasswitch, sample) || 0; } static void eventtime(const char *buffer, duration_t *duration, struct parser_state *state) { sampletime(buffer, duration); if (state->cur_sample) duration->seconds += state->cur_sample->time.seconds; } static void try_to_match_autogroup(const char *name, char *buf, struct parser_state *state) { bool autogroup; start_match("autogroup", name, buf); if (MATCH("state.autogroup", get_bool, &autogroup)) { state->log->autogroup = autogroup; return; } nonmatch("autogroup", name, buf); } static void get_cylinderindex(const char *buffer, int16_t *i, struct parser_state *state) { *i = atoi(buffer); if (state->lastcylinderindex != *i) { add_gas_switch_event(state->cur_dive.get(), get_dc(state), state->cur_sample->time.seconds, *i); state->lastcylinderindex = *i; } } static void get_sensor(const char *buffer, int16_t *i) { *i = atoi(buffer); } static void parse_libdc_deco(const char *buffer, struct sample *s) { if (strcmp(buffer, "deco") == 0) { s->in_deco = true; } else if (strcmp(buffer, "ndl") == 0) { s->in_deco = false; // The time wasn't stoptime, it was ndl s->ndl = s->stoptime; s->stoptime.seconds = 0; } } static void try_to_fill_dc_settings(const char *name, char *buf, struct parser_state *state) { start_match("divecomputerid", name, buf); if (MATCH("model.divecomputerid", utf8_string_std, &state->cur_settings.dc.model)) return; if (MATCH("deviceid.divecomputerid", hex_value, &state->cur_settings.dc.deviceid)) return; if (MATCH("nickname.divecomputerid", utf8_string_std, &state->cur_settings.dc.nickname)) return; if (MATCH("serial.divecomputerid", utf8_string_std, &state->cur_settings.dc.serial_nr)) return; if (MATCH("firmware.divecomputerid", utf8_string_std, &state->cur_settings.dc.firmware)) return; nonmatch("divecomputerid", name, buf); } static void try_to_fill_fingerprint(const char *name, char *buf, struct parser_state *state) { start_match("fingerprint", name, buf); if (MATCH("model.fingerprint", hex_value, &state->cur_settings.fingerprint.model)) return; if (MATCH("serial.fingerprint", hex_value, &state->cur_settings.fingerprint.serial)) return; if (MATCH("deviceid.fingerprint", hex_value, &state->cur_settings.fingerprint.fdeviceid)) return; if (MATCH("diveid.fingerprint", hex_value, &state->cur_settings.fingerprint.fdiveid)) return; if (MATCH("data.fingerprint", utf8_string_std, &state->cur_settings.fingerprint.data)) return; nonmatch("fingerprint", name, buf); } static void try_to_fill_event(const char *name, char *buf, struct parser_state *state) { start_match("event", name, buf); if (MATCH("event", utf8_string_std, &state->cur_event.name)) return; if (MATCH("name", utf8_string_std, &state->cur_event.name)) return; if (MATCH_STATE("time", eventtime, &state->cur_event.time)) return; if (MATCH("type", get_index, &state->cur_event.type)) return; if (MATCH("flags", get_index, &state->cur_event.flags)) return; if (MATCH("value", get_index, &state->cur_event.value)) return; if (MATCH("divemode", event_divemode, &state->cur_event.value)) return; if (MATCH("cylinder", get_index, &state->cur_event.gas.index)) { /* We add one to indicate that we got an actual cylinder index value */ state->cur_event.gas.index++; return; } if (MATCH("o2", percent, &state->cur_event.gas.mix.o2)) return; if (MATCH("he", percent, &state->cur_event.gas.mix.he)) return; nonmatch("event", name, buf); } static int match_dc_data_fields(struct divecomputer *dc, const char *name, char *buf, struct parser_state *state) { if (MATCH_STATE("maxdepth", depth, &dc->maxdepth)) return 1; if (MATCH_STATE("meandepth", depth, &dc->meandepth)) return 1; if (MATCH_STATE("max.depth", depth, &dc->maxdepth)) return 1; if (MATCH_STATE("mean.depth", depth, &dc->meandepth)) return 1; if (MATCH("duration", duration, &dc->duration)) return 1; if (MATCH("divetime", duration, &dc->duration)) return 1; if (MATCH("divetimesec", duration, &dc->duration)) return 1; if (MATCH("last-manual-time", duration, &dc->last_manual_time)) return 1; if (MATCH("surfacetime", duration, &dc->surfacetime)) return 1; if (MATCH_STATE("airtemp", temperature, &dc->airtemp)) return 1; if (MATCH_STATE("watertemp", temperature, &dc->watertemp)) return 1; if (MATCH_STATE("air.temperature", temperature, &dc->airtemp)) return 1; if (MATCH_STATE("water.temperature", temperature, &dc->watertemp)) return 1; if (MATCH_STATE("pressure.surface", pressure, &dc->surface_pressure)) return 1; if (MATCH("salinity.water", salinity, &dc->salinity)) return 1; if (MATCH("key.extradata", utf8_string_std, &state->cur_extra_data.key)) return 1; if (MATCH("value.extradata", utf8_string_std, &state->cur_extra_data.value)) return 1; if (MATCH("divemode", get_dc_type, &dc->divemode)) return 1; if (MATCH("salinity", salinity, &dc->salinity)) return 1; if (MATCH_STATE("atmospheric", pressure, &dc->surface_pressure)) return 1; return 0; } /* We're in the top-level dive xml. Try to convert whatever value to a dive value */ static void try_to_fill_dc(struct divecomputer *dc, const char *name, char *buf, struct parser_state *state) { unsigned int deviceid; start_match("divecomputer", name, buf); if (MATCH_STATE("date", divedate, &dc->when)) return; if (MATCH_STATE("time", divetime, &dc->when)) return; if (MATCH("model", utf8_string_std, &dc->model)) return; if (MATCH("deviceid", hex_value, &deviceid)) return; if (MATCH("diveid", hex_value, &dc->diveid)) return; if (MATCH("dctype", get_dc_type, &dc->divemode)) return; if (MATCH("no_o2sensors", get_uint8, &dc->no_o2sensors)) return; if (match_dc_data_fields(dc, name, buf, state)) return; nonmatch("divecomputer", name, buf); } /* We're in samples - try to convert the random xml value to something useful */ static void try_to_fill_sample(struct sample *sample, const char *name, char *buf, struct parser_state *state) { int in_deco; pressure_t p; start_match("sample", name, buf); if (MATCH_STATE("pressure.sample", pressure, &sample->pressure[0])) return; if (MATCH_STATE("cylpress.sample", pressure, &sample->pressure[0])) return; if (MATCH_STATE("pdiluent.sample", pressure, &sample->pressure[0])) return; if (MATCH_STATE("o2pressure.sample", pressure, &sample->pressure[1])) return; /* Christ, this is ugly */ if (MATCH_STATE("pressure0.sample", pressure, &p)) { add_sample_pressure(sample, 0, p.mbar); return; } if (MATCH_STATE("pressure1.sample", pressure, &p)) { add_sample_pressure(sample, 1, p.mbar); return; } if (MATCH_STATE("pressure2.sample", pressure, &p)) { add_sample_pressure(sample, 2, p.mbar); return; } if (MATCH_STATE("pressure3.sample", pressure, &p)) { add_sample_pressure(sample, 3, p.mbar); return; } if (MATCH_STATE("pressure4.sample", pressure, &p)) { add_sample_pressure(sample, 4, p.mbar); return; } if (MATCH_STATE("cylinderindex.sample", get_cylinderindex, &sample->sensor[0])) return; if (MATCH("sensor.sample", get_sensor, &sample->sensor[0])) return; if (MATCH_STATE("depth.sample", depth, &sample->depth)) return; if (MATCH_STATE("temp.sample", temperature, &sample->temperature)) return; if (MATCH_STATE("temperature.sample", temperature, &sample->temperature)) return; if (MATCH("sampletime.sample", sampletime, &sample->time)) return; if (MATCH("time.sample", sampletime, &sample->time)) return; if (MATCH("ndl.sample", sampletime, &sample->ndl)) return; if (MATCH("tts.sample", sampletime, &sample->tts)) return; if (MATCH("in_deco.sample", get_index, &in_deco)) { sample->in_deco = (in_deco == 1); return; } if (MATCH("stoptime.sample", sampletime, &sample->stoptime)) return; if (MATCH_STATE("stopdepth.sample", depth, &sample->stopdepth)) return; if (MATCH("cns.sample", get_uint16, &sample->cns)) return; if (MATCH("rbt.sample", sampletime, &sample->rbt)) return; if (MATCH("sensor1.sample", double_to_o2pressure, &sample->o2sensor[0])) // CCR O2 sensor data return; if (MATCH("sensor2.sample", double_to_o2pressure, &sample->o2sensor[1])) return; if (MATCH("sensor3.sample", double_to_o2pressure, &sample->o2sensor[2])) return; if (MATCH("sensor4.sample", double_to_o2pressure, &sample->o2sensor[3])) return; if (MATCH("sensor5.sample", double_to_o2pressure, &sample->o2sensor[4])) return; if (MATCH("sensor6.sample", double_to_o2pressure, &sample->o2sensor[5])) // up to 6 CCR sensors return; if (MATCH("po2.sample", double_to_o2pressure, &sample->setpoint)) return; if (MATCH("heartbeat", get_uint8, &sample->heartbeat)) return; if (MATCH("bearing", get_bearing, &sample->bearing)) return; if (MATCH("setpoint.sample", double_to_o2pressure, &sample->setpoint)) return; if (MATCH("ppo2.sample", double_to_o2pressure, &sample->o2sensor[state->next_o2_sensor])) { state->next_o2_sensor++; return; } if (MATCH("deco.sample", parse_libdc_deco, sample)) return; if (MATCH("time.deco", sampletime, &sample->stoptime)) return; if (MATCH_STATE("depth.deco", depth, &sample->stopdepth)) return; switch (state->import_source) { case parser_state::DIVINGLOG: if (divinglog_fill_sample(sample, name, buf, state)) return; break; case parser_state::UDDF: if (uddf_fill_sample(sample, name, buf, state)) return; break; default: break; } nonmatch("sample", name, buf); } static void divinglog_place(const char *place, struct dive *d, struct parser_state *state) { struct dive_site *ds; std::string buffer = format_string_std( "%s%s%s%s%s", place, !state->city.empty() ? ", " : "", !state->city.empty() ? state->city.c_str() : "", !state->country.empty() ? ", " : "", !state->country.empty() ? state->country.c_str() : ""); ds = state->log->sites.get_by_name(buffer); if (!ds) ds = state->log->sites.create(buffer); ds->add_dive(d); // TODO: capture the country / city info in the taxonomy instead state->city.clear(); state->country.clear(); } static int divinglog_dive_match(struct dive *dive, const char *name, char *buf, struct parser_state *state) { /* For cylinder related fields, we might have to create a cylinder first. */ cylinder_t cyl; if (MATCH("tanktype", utf8_string_std, &cyl.type.description)) { dive->get_or_create_cylinder(0)->type.description = std::move(cyl.type.description); return 1; } if (MATCH("tanksize", cylindersize, &cyl.type.size)) { dive->get_or_create_cylinder(0)->type.size = cyl.type.size; return 1; } if (MATCH_STATE("presw", pressure, &cyl.type.workingpressure)) { dive->get_or_create_cylinder(0)->type.workingpressure = cyl.type.workingpressure; return 1; } if (MATCH_STATE("press", pressure, &cyl.start)) { dive->get_or_create_cylinder(0)->start = cyl.start; return 1; } if (MATCH_STATE("prese", pressure, &cyl.end)) { dive->get_or_create_cylinder(0)->end = cyl.end; return 1; } return MATCH_STATE("divedate", divedate, &dive->when) || MATCH_STATE("entrytime", divetime, &dive->when) || MATCH("divetime", duration, &dive->dcs[0].duration) || MATCH_STATE("depth", depth, &dive->dcs[0].maxdepth) || MATCH_STATE("depthavg", depth, &dive->dcs[0].meandepth) || MATCH("comments", utf8_string_std, &dive->notes) || MATCH("names.buddy", utf8_string_std, &dive->buddy) || MATCH("name.country", utf8_string_std, &state->country) || MATCH("name.city", utf8_string_std, &state->city) || MATCH_STATE("name.place", divinglog_place, dive) || 0; } /* * Uddf specifies ISO 8601 time format. * * There are many variations on that. This handles the useful cases. */ static void uddf_datetime(const char *buffer, timestamp_t *when, struct parser_state *state) { char c; int y, m, d, hh, mm, ss; struct tm tm = { 0 }; int i; i = sscanf(buffer, "%d-%d-%d%c%d:%d:%d", &y, &m, &d, &c, &hh, &mm, &ss); if (i == 7) goto success; ss = 0; if (i == 6) goto success; i = sscanf(buffer, "%04d%02d%02d%c%02d%02d%02d", &y, &m, &d, &c, &hh, &mm, &ss); if (i == 7) goto success; ss = 0; if (i == 6) goto success; bad_date: report_info("Bad date time %s", buffer); return; success: if (c != 'T' && c != ' ') goto bad_date; tm.tm_year = y; tm.tm_mon = m - 1; tm.tm_mday = d; tm.tm_hour = hh; tm.tm_min = mm; tm.tm_sec = ss; *when = utc_mktime(&tm); } #define uddf_datedata(name, offset) \ static void uddf_##name(const char *buffer, timestamp_t *when, struct parser_state *state) \ { \ state->cur_tm.tm_##name = atoi(buffer) + offset; \ *when = utc_mktime(&state->cur_tm); \ } uddf_datedata(year, 0) uddf_datedata(mon, -1) uddf_datedata(mday, 0) uddf_datedata(hour, 0) uddf_datedata(min, 0) static int uddf_dive_match(struct dive *dive, const char *name, char *buf, struct parser_state *state) { return MATCH_STATE("datetime", uddf_datetime, &dive->when) || MATCH("diveduration", duration, &dive->dcs[0].duration) || MATCH_STATE("greatestdepth", depth, &dive->dcs[0].maxdepth) || MATCH_STATE("year.date", uddf_year, &dive->when) || MATCH_STATE("month.date", uddf_mon, &dive->when) || MATCH_STATE("day.date", uddf_mday, &dive->when) || MATCH_STATE("hour.time", uddf_hour, &dive->when) || MATCH_STATE("minute.time", uddf_min, &dive->when) || 0; } /* * This parses "floating point" into micro-degrees. * We don't do exponentials etc, if somebody does * GPS locations in that format, they are insane. */ static degrees_t parse_degrees(const char *buf, const char **end) { int sign = 1, decimals = 6, value = 0; degrees_t ret; while (isspace(*buf)) buf++; switch (*buf) { case '-': sign = -1; /* fallthrough */ case '+': buf++; } while (isdigit(*buf)) { value = 10 * value + *buf - '0'; buf++; } /* Get the first six decimals if they exist */ if (*buf == '.') buf++; do { value *= 10; if (isdigit(*buf)) { value += *buf - '0'; buf++; } } while (--decimals); /* Rounding */ switch (*buf) { case '5' ... '9': value++; } while (isdigit(*buf)) buf++; *end = buf; ret.udeg = value * sign; return ret; } static void gps_lat(const char *buffer, struct dive *dive, struct parser_state *state) { const char *end; location_t location = { }; struct dive_site *ds = dive->dive_site; location.lat = parse_degrees(buffer, &end); if (!ds) { state->log->sites.create(std::string(), location)->add_dive(dive); } else { if (ds->location.lat.udeg && ds->location.lat.udeg != location.lat.udeg) report_info("Oops, changing the latitude of existing dive site id %8x name %s; not good", ds->uuid, ds->name.empty() ? "(unknown)" : ds->name.c_str()); ds->location.lat = location.lat; } } static void gps_long(const char *buffer, struct dive *dive, struct parser_state *state) { const char *end; location_t location = { }; struct dive_site *ds = dive->dive_site; location.lon = parse_degrees(buffer, &end); if (!ds) { state->log->sites.create(std::string(), location)->add_dive(dive); } else { if (ds->location.lon.udeg && ds->location.lon.udeg != location.lon.udeg) report_info("Oops, changing the longitude of existing dive site id %8x name %s; not good", ds->uuid, ds->name.empty() ? "(unknown)" : ds->name.c_str()); ds->location.lon = location.lon; } } /* We allow either spaces or a comma between the decimal degrees */ void parse_location(const char *buffer, location_t *loc) { const char *end; loc->lat = parse_degrees(buffer, &end); if (*end == ',') end++; loc->lon = parse_degrees(end, &end); } static void gps_location(const char *buffer, struct dive_site *ds) { parse_location(buffer, &ds->location); } static void gps_in_dive(const char *buffer, struct dive *dive, struct parser_state *state) { struct dive_site *ds = dive->dive_site; location_t location; parse_location(buffer, &location); if (!ds) { // check if we have a dive site within 20 meters of that gps fix ds = state->log->sites.get_by_gps_proximity(location, 20); if (ds) { // found a site nearby; in case it turns out this one had a different name let's // remember the original coordinates so we can create the correct dive site later state->cur_location = location; } else { ds = state->log->sites.create(std::string(), location); } ds->add_dive(dive); } else { if (ds->has_gps_location() && has_location(&location) && ds->location != location) { // Houston, we have a problem report_info("dive site uuid in dive, but gps location (%10.6f/%10.6f) different from dive location (%10.6f/%10.6f)", ds->location.lat.udeg / 1000000.0, ds->location.lon.udeg / 1000000.0, location.lat.udeg / 1000000.0, location.lon.udeg / 1000000.0); std::string coords = printGPSCoordsC(&location); ds->notes += '\n'; ds->notes += format_string_std(translate("gettextFromC", "multiple GPS locations for this dive site; also %s\n"), coords.c_str()); } else { ds->location = location; } } } static void gps_picture_location(const char *buffer, struct picture *pic) { parse_location(buffer, &pic->location); } /* We're in the top-level dive xml. Try to convert whatever value to a dive value */ static void try_to_fill_dive(struct dive *dive, const char *name, char *buf, struct parser_state *state) { cylinder_t *cyl = !dive->cylinders.empty() ? &dive->cylinders.back() : NULL; weightsystem_t *ws = !dive->weightsystems.empty() > 0 ? &dive->weightsystems.back() : NULL; pressure_t p; weight_t w; start_match("dive", name, buf); switch (state->import_source) { case parser_state::DIVINGLOG: if (divinglog_dive_match(dive, name, buf, state)) return; break; case parser_state::UDDF: if (uddf_dive_match(dive, name, buf, state)) return; break; default: break; } if (MATCH_STATE("divesiteid", dive_site, dive)) return; if (MATCH("number", get_index, &dive->number)) return; if (MATCH("tags", divetags, &dive->tags)) return; if (MATCH("tripflag", get_notrip, &dive->notrip)) return; if (MATCH_STATE("date", divedate, &dive->when)) return; if (MATCH_STATE("time", divetime, &dive->when)) return; if (MATCH_STATE("datetime", divedatetime, &dive->when)) return; /* * Legacy format note: per-dive depths and duration get saved * in the first dive computer entry */ if (match_dc_data_fields(&dive->dcs[0], name, buf, state)) return; if (MATCH("filename.picture", utf8_string_std, &state->cur_picture.filename)) return; if (MATCH("offset.picture", offsettime, &state->cur_picture.offset)) return; if (MATCH("gps.picture", gps_picture_location, &state->cur_picture)) return; if (std::string hash; MATCH("hash.picture", utf8_string_std, &hash)) { /* Legacy -> ignore. */ return; } if (MATCH_STATE("cylinderstartpressure", pressure, &p)) { dive->get_or_create_cylinder(0)->start = p; return; } if (MATCH_STATE("cylinderendpressure", pressure, &p)) { dive->get_or_create_cylinder(0)->end = p; return; } if (MATCH_STATE("gps", gps_in_dive, dive)) return; if (MATCH_STATE("Place", gps_in_dive, dive)) return; if (MATCH_STATE("latitude", gps_lat, dive)) return; if (MATCH_STATE("sitelat", gps_lat, dive)) return; if (MATCH_STATE("lat", gps_lat, dive)) return; if (MATCH_STATE("longitude", gps_long, dive)) return; if (MATCH_STATE("sitelon", gps_long, dive)) return; if (MATCH_STATE("lon", gps_long, dive)) return; if (MATCH_STATE("location", add_dive_site, dive)) return; if (MATCH_STATE("name.dive", add_dive_site, dive)) return; if (MATCH("suit", utf8_string_std, &dive->suit)) return; if (MATCH("divesuit", utf8_string_std, &dive->suit)) return; if (MATCH("notes", utf8_string_std, &dive->notes)) return; // For historic reasons, we accept dive guide as well as dive master if (MATCH("diveguide", utf8_string_std, &dive->diveguide)) return; if (MATCH("divemaster", utf8_string_std, &dive->diveguide)) return; if (MATCH("buddy", utf8_string_std, &dive->buddy)) return; if (MATCH("watersalinity", salinity, &dive->user_salinity)) return; if (MATCH("rating.dive", get_rating, &dive->rating)) return; if (MATCH("visibility.dive", get_rating, &dive->visibility)) return; if (MATCH("wavesize.dive", get_rating, &dive->wavesize)) return; if (MATCH("current.dive", get_rating, &dive->current)) return; if (MATCH("surge.dive", get_rating, &dive->surge)) return; if (MATCH("chill.dive", get_rating, &dive->chill)) return; if (MATCH_STATE("airpressure.dive", pressure, &dive->surface_pressure)) return; if (ws) { if (MATCH("description.weightsystem", utf8_string_std, &ws->description)) return; if (MATCH_STATE("weight.weightsystem", weight, &ws->weight)) return; } if (MATCH_STATE("weight", weight, &w)) { weightsystem_t ws; ws.weight = w; dive->weightsystems.push_back(std::move(ws)); return; } if (cyl) { if (MATCH("size.cylinder", cylindersize, &cyl->type.size)) return; if (MATCH_STATE("workpressure.cylinder", pressure, &cyl->type.workingpressure)) return; if (MATCH("description.cylinder", utf8_string_std, &cyl->type.description)) return; if (MATCH_STATE("start.cylinder", pressure, &cyl->start)) return; if (MATCH_STATE("end.cylinder", pressure, &cyl->end)) return; if (MATCH_STATE("use.cylinder", cylinder_use, &cyl->cylinder_use)) return; if (MATCH_STATE("depth.cylinder", depth, &cyl->depth)) return; if (MATCH_STATE("o2", gasmix, &cyl->gasmix.o2)) return; if (MATCH_STATE("o2percent", gasmix, &cyl->gasmix.o2)) return; if (MATCH("n2", gasmix_nitrogen, &cyl->gasmix)) return; if (MATCH_STATE("he", gasmix, &cyl->gasmix.he)) return; } if (MATCH_STATE("air.divetemperature", temperature, &dive->airtemp)) return; if (MATCH_STATE("water.divetemperature", temperature, &dive->watertemp)) return; if (MATCH("invalid", get_bool, &dive->invalid)) return; nonmatch("dive", name, buf); } /* We're in the top-level trip xml. Try to convert whatever value to a trip value */ static void try_to_fill_trip(dive_trip *dive_trip, const char *name, char *buf, struct parser_state *state) { start_match("trip", name, buf); if (MATCH("location", utf8_string_std, &dive_trip->location)) return; if (MATCH("notes", utf8_string_std, &dive_trip->notes)) return; nonmatch("trip", name, buf); } /* We're processing a divesite entry - try to fill the components */ static void try_to_fill_dive_site(struct parser_state *state, const char *name, char *buf) { auto &ds = state->cur_dive_site; std::string taxonomy_value; start_match("divesite", name, buf); if (MATCH("uuid", hex_value, &ds->uuid)) return; if (MATCH("name", utf8_string_std, &ds->name)) return; if (MATCH("description", utf8_string_std, &ds->description)) return; if (MATCH("notes", utf8_string_std, &ds->notes)) return; if (MATCH("gps", gps_location, ds.get())) return; if (MATCH("cat.geo", get_index, &state->taxonomy_category)) return; if (MATCH("origin.geo", get_index, &state->taxonomy_origin)) return; if (MATCH("value.geo", utf8_string_std, &taxonomy_value)) { /* The code assumes that "value.geo" comes last, which is against * the expectations of an XML file. Let's at least make sure that * cat and origin have been set! */ if (state->taxonomy_category < 0 || state->taxonomy_origin < 0) { report_error("Warning: taxonomy value without origin or category"); } else { taxonomy_set_category(ds->taxonomy, (taxonomy_category)state->taxonomy_category, taxonomy_value, (taxonomy_origin)state->taxonomy_origin); } state->taxonomy_category = state->taxonomy_origin = -1; return; } nonmatch("divesite", name, buf); } static void try_to_fill_filter(struct filter_preset *filter, const char *name, char *buf) { start_match("filterpreset", name, buf); if (MATCH("name", utf8_string_std, &filter->name)) return; nonmatch("filterpreset", name, buf); } static void try_to_fill_fulltext(const char *name, char *buf, struct parser_state *state) { start_match("fulltext", name, buf); if (MATCH("mode", utf8_string_std, &state->fulltext_string_mode)) return; if (MATCH("fulltext", utf8_string_std, &state->fulltext)) return; nonmatch("fulltext", name, buf); } static void try_to_fill_filter_constraint(const char *name, char *buf, struct parser_state *state) { start_match("fulltext", name, buf); if (MATCH("type", utf8_string_std, &state->filter_constraint_type)) return; if (MATCH("string_mode", utf8_string_std, &state->filter_constraint_string_mode)) return; if (MATCH("range_mode", utf8_string_std, &state->filter_constraint_range_mode)) return; if (MATCH("negate", get_bool, &state->filter_constraint_negate)) return; if (MATCH("constraint", utf8_string_std, &state->filter_constraint)) return; nonmatch("fulltext", name, buf); } static bool entry(const char *name, char *buf, struct parser_state *state) { if (!strncmp(name, "version.program", sizeof("version.program") - 1) || !strncmp(name, "version.divelog", sizeof("version.divelog") - 1)) { last_xml_version = atoi(buf); report_datafile_version(last_xml_version); } if (state->in_userid) { return true; } if (state->in_settings) { try_to_fill_fingerprint(name, buf, state); try_to_fill_dc_settings(name, buf, state); try_to_match_autogroup(name, buf, state); return true; } if (state->cur_dive_site) { try_to_fill_dive_site(state, name, buf); return true; } if (state->in_filter_constraint) { try_to_fill_filter_constraint(name, buf, state); return true; } if (state->in_fulltext) { try_to_fill_fulltext(name, buf, state); return true; } if (state->cur_filter) { try_to_fill_filter(state->cur_filter.get(), name, buf); return true; } if (state->event_active) { try_to_fill_event(name, buf, state); return true; } if (state->cur_sample) { try_to_fill_sample(state->cur_sample, name, buf, state); return true; } if (state->cur_dc) { try_to_fill_dc(state->cur_dc, name, buf, state); return true; } if (state->cur_dive) { try_to_fill_dive(state->cur_dive.get(), name, buf, state); return true; } if (state->cur_trip) { try_to_fill_trip(state->cur_trip.get(), name, buf, state); return true; } return true; } static const char *nodename(xmlNode *node, char *buf, int len) { int levels = 2; char *p = buf; if (!node || (node->type != XML_CDATA_SECTION_NODE && !node->name)) { return "root"; } if (node->type == XML_CDATA_SECTION_NODE || (node->parent && !strcmp((const char *)node->name, "text"))) node = node->parent; /* Make sure it's always NUL-terminated */ p[--len] = 0; for (;;) { const char *name = (const char *)node->name; char c; while ((c = *name++) != 0) { /* Cheaper 'tolower()' for ASCII */ c = (c >= 'A' && c <= 'Z') ? c - 'A' + 'a' : c; *p++ = c; if (!--len) return buf; } *p = 0; node = node->parent; if (!node || !node->name) return buf; *p++ = '.'; if (!--len) return buf; if (!--levels) return buf; } } #define MAXNAME 32 static bool visit_one_node(xmlNode *node, struct parser_state *state) { xmlChar *content; char buffer[MAXNAME]; const char *name; content = node->content; if (!content || xmlIsBlankNode(node)) return true; name = nodename(node, buffer, sizeof(buffer)); return entry(name, (char *)content, state); } static bool traverse(xmlNode *root, struct parser_state *state); static bool traverse_properties(xmlNode *node, struct parser_state *state) { xmlAttr *p; bool ret = true; for (p = node->properties; p; p = p->next) if ((ret = traverse(p->children, state)) == false) break; return ret; } static bool visit(xmlNode *n, struct parser_state *state) { return visit_one_node(n, state) && traverse_properties(n, state) && traverse(n->children, state); } static void DivingLog_importer(struct parser_state *state) { state->import_source = parser_state::DIVINGLOG; /* * Diving Log units are really strange. * * Temperatures are in C, except in samples, * when they are in Fahrenheit. Depths are in * meters, an dpressure is in PSI in the samples, * but in bar when it comes to working pressure. * * Crazy f*%^ morons. */ state->xml_parsing_units = SI_units; } static void uddf_importer(struct parser_state *state) { state->import_source = parser_state::UDDF; state->xml_parsing_units = SI_units; state->xml_parsing_units.pressure = units::PASCALS; state->xml_parsing_units.temperature = units::KELVIN; } typedef void (*parser_func)(struct parser_state *); /* * I'm sure this could be done as some fancy DTD rules. * It's just not worth the headache. */ static struct nesting { const char *name; parser_func start, end; } nesting[] = { { "fingerprint", fingerprint_settings_start, fingerprint_settings_end }, { "divecomputerid", dc_settings_start, dc_settings_end }, { "settings", settings_start, settings_end }, { "site", dive_site_start, dive_site_end }, { "filterpreset", filter_preset_start, filter_preset_end }, { "fulltext", fulltext_start, fulltext_end }, { "constraint", filter_constraint_start, filter_constraint_end }, { "dive", dive_start, dive_end }, { "Dive", dive_start, dive_end }, { "trip", trip_start, trip_end }, { "sample", sample_start, sample_end }, { "waypoint", sample_start, sample_end }, { "SAMPLE", sample_start, sample_end }, { "reading", sample_start, sample_end }, { "event", event_start, event_end }, { "mix", (parser_func)cylinder_start, (parser_func)cylinder_end }, { "gasmix", (parser_func)cylinder_start, (parser_func)cylinder_end }, { "cylinder", (parser_func)cylinder_start, (parser_func)cylinder_end }, { "weightsystem", ws_start, ws_end }, { "divecomputer", divecomputer_start, divecomputer_end }, { "P", sample_start, sample_end }, { "userid", userid_start, userid_stop}, { "picture", picture_start, picture_end }, { "extradata", extra_data_start, extra_data_end }, /* Import type recognition */ { "Divinglog", DivingLog_importer }, { "uddf", uddf_importer }, { NULL, } }; static bool traverse(xmlNode *root, struct parser_state *state) { xmlNode *n; bool ret = true; for (n = root; n; n = n->next) { struct nesting *rule = nesting; if (!n->name) { if ((ret = visit(n, state)) == false) break; continue; } do { if (!strcmp(rule->name, (const char *)n->name)) break; rule++; } while (rule->name); if (rule->start) rule->start(state); if ((ret = visit(n, state)) == false) break; if (rule->end) rule->end(state); } return ret; } /* Per-file reset */ static void reset_all(struct parser_state *state) { /* * We reset the units for each file. You'd think it was * a per-dive property, but I'm not going to trust people * to do per-dive setup. If the xml does have per-dive * data within one file, we might have to reset it per * dive for that format. */ state->xml_parsing_units = SI_units; state->import_source = parser_state::UNKNOWN; } /* divelog.de sends us xml files that claim to be iso-8859-1 * but once we decode the HTML encoded characters they turn * into UTF-8 instead. So skip the incorrect encoding * declaration and decode the HTML encoded characters */ static const char *preprocess_divelog_de(const char *buffer) { const char *ret = strstr(buffer, ""); if (ret) { xmlParserCtxtPtr ctx; char buf[] = ""; size_t i; for (i = 0; i < strlen(ret); ++i) if (!isascii(ret[i])) return buffer; ctx = xmlCreateMemoryParserCtxt(buf, sizeof(buf)); ret = (char *)xmlStringLenDecodeEntities(ctx, (xmlChar *)ret, strlen(ret), XML_SUBSTITUTE_REF, 0, 0, 0); return ret; } return buffer; } int parse_xml_buffer(const char *url, const char *buffer, int, struct divelog *log, const struct xml_params *params) { xmlDoc *doc; const char *res = preprocess_divelog_de(buffer); int ret = 0; struct parser_state state; state.log = log; state.fingerprints = &fingerprints; // simply use the global table for now doc = xmlReadMemory(res, strlen(res), url, NULL, XML_PARSE_HUGE); if (!doc) doc = xmlReadMemory(res, strlen(res), url, "latin1", XML_PARSE_HUGE); if (res != buffer) free((char *)res); if (!doc) return report_error(translate("gettextFromC", "Failed to parse '%s'"), url); reset_all(&state); dive_start(&state); doc = test_xslt_transforms(doc, params); if (!traverse(xmlDocGetRootElement(doc), &state)) { // we decided to give up on parsing... why? ret = -1; } dive_end(&state); xmlFreeDoc(doc); return ret; } /* * Parse a unsigned 32-bit integer in little-endian mode, * that is seconds since Jan 1, 2000. */ static timestamp_t parse_dlf_timestamp(unsigned char *buffer) { timestamp_t offset; offset = buffer[3]; offset = (offset << 8) + buffer[2]; offset = (offset << 8) + buffer[1]; offset = (offset << 8) + buffer[0]; // Jan 1, 2000 is 946684800 seconds after Jan 1, 1970, which is // the Unix epoch date that "timestamp_t" uses. return offset + 946684800; } int parse_dlf_buffer(unsigned char *buffer, size_t size, struct divelog *log) { using namespace std::string_literals; unsigned char *ptr = buffer; unsigned char event; bool found; unsigned int time = 0; char serial[6]; struct battery_status { uint16_t volt1; uint8_t percent1; uint16_t volt2; uint8_t percent2; }; struct battery_status battery_start = {0, 0, 0, 0}; struct battery_status battery_end = {0, 0, 0, 0}; uint16_t o2_sensor_calibration_values[4] = {0}; cylinder_t *cyl; struct parser_state state; state.log = log; // Check for the correct file magic if (ptr[0] != 'D' || ptr[1] != 'i' || ptr[2] != 'v' || ptr[3] != 'E') return -1; dive_start(&state); divecomputer_start(&state); state.cur_dc->model = "DLF import"; // (ptr[7] << 8) + ptr[6] Is "Serial" snprintf(serial, sizeof(serial), "%d", (ptr[7] << 8) + ptr[6]); state.cur_dc->serial = serial; state.cur_dc->when = parse_dlf_timestamp(ptr + 8); state.cur_dive->when = state.cur_dc->when; state.cur_dc->duration.seconds = ((ptr[14] & 0xFE) << 16) + (ptr[13] << 8) + ptr[12]; // ptr[14] >> 1 is scrubber used in % // 3 bit dive type switch((ptr[15] & 0x38) >> 3) { case 0: // unknown case 1: state.cur_dc->divemode = OC; break; case 2: state.cur_dc->divemode = CCR; break; case 3: state.cur_dc->divemode = CCR; // mCCR break; case 4: state.cur_dc->divemode = FREEDIVE; break; case 5: state.cur_dc->divemode = OC; // Gauge break; case 6: state.cur_dc->divemode = PSCR; // ASCR break; case 7: state.cur_dc->divemode = PSCR; break; } state.cur_dc->maxdepth.mm = ((ptr[21] << 8) + ptr[20]) * 10; state.cur_dc->surface_pressure.mbar = ((ptr[25] << 8) + ptr[24]) / 10; // Declare initial mix as first cylinder cyl = state.cur_dive->get_or_create_cylinder(0); cyl->gasmix.o2.permille = ptr[26] * 10; cyl->gasmix.he.permille = ptr[27] * 10; /* Done with parsing what we know about the dive header */ ptr += 32; // We're going to interpret ppO2 saved as a sensor value in these modes. if (state.cur_dc->divemode == CCR || state.cur_dc->divemode == PSCR) state.cur_dc->no_o2sensors = 1; for (; ptr < buffer + size; ptr += 16) { time = ((ptr[0] >> 4) & 0x0f) + ((ptr[1] << 4) & 0xff0) + ((ptr[2] << 12) & 0x1f000); event = ptr[0] & 0x0f; switch (event) { case 0: /* Regular sample */ sample_start(&state); state.cur_sample->time.seconds = time; state.cur_sample->depth.mm = ((ptr[5] << 8) + ptr[4]) * 10; // Crazy precision on these stored values... // Only store value if we're in CCR/PSCR mode, // because we rather calculate ppo2 our selfs. if (state.cur_dc->divemode == CCR || state.cur_dc->divemode == PSCR) state.cur_sample->o2sensor[0].mbar = ((ptr[7] << 8) + ptr[6]) / 10; // In some test files, ndl / tts / temp is bogus if this bits are 1 // flag bits in ptr[11] & 0xF0 is probably involved to, if ((ptr[2] >> 5) != 1) { // NDL in minutes, 10 bit state.cur_sample->ndl.seconds = (((ptr[9] & 0x03) << 8) + ptr[8]) * 60; // TTS in minutes, 10 bit state.cur_sample->tts.seconds = (((ptr[10] & 0x0F) << 6) + (ptr[9] >> 2)) * 60; // Temperature in 1/10 C, 10 bit signed state.cur_sample->temperature.mkelvin = ((ptr[11] & 0x20) ? -1 : 1) * (((ptr[11] & 0x1F) << 4) + (ptr[10] >> 4)) * 100 + ZERO_C_IN_MKELVIN; } state.cur_sample->stopdepth.mm = ((ptr[13] << 8) + ptr[12]) * 10; if (state.cur_sample->stopdepth.mm) state.cur_sample->in_deco = true; //ptr[14] is helium content, always zero? //ptr[15] is setpoint, what the computer thinks you should aim for? sample_end(&state); break; case 1: /* dive event */ case 2: /* automatic parameter change */ case 3: /* diver error */ case 4: /* internal error */ case 5: /* device activity log */ //Event 18 is a button press. Lets ingore that event. if (ptr[4] == 18) continue; event_start(&state); state.cur_event.time.seconds = time; switch (ptr[4]) { case 1: state.cur_event.name = "Setpoint Manual"s; state.cur_event.value = ptr[6]; sample_start(&state); state.cur_sample->setpoint.mbar = ptr[6] * 10; sample_end(&state); break; case 2: state.cur_event.name = "Setpoint Auto"s; state.cur_event.value = ptr[6]; sample_start(&state); state.cur_sample->setpoint.mbar = ptr[6] * 10; sample_end(&state); switch (ptr[7]) { case 0: state.cur_event.name += " Manual"s; break; case 1: state.cur_event.name += " Auto Start"s; break; case 2: state.cur_event.name += " Auto Hypox"s; break; case 3: state.cur_event.name += " Auto Timeout"s; break; case 4: state.cur_event.name += " Auto Ascent"s; break; case 5: state.cur_event.name += " Auto Stall"s; break; case 6: state.cur_event.name += " Auto SP Low"s; break; default: break; } break; case 3: // obsolete state.cur_event.name = "OC"s; break; case 4: // obsolete state.cur_event.name = "CCR"s; break; case 5: state.cur_event.name = "gaschange"s; state.cur_event.type = SAMPLE_EVENT_GASCHANGE2; state.cur_event.value = ptr[7] << 8 ^ ptr[6]; for (const auto [i, cyl]: enumerated_range(state.cur_dive->cylinders)) { if (cyl.gasmix.o2.permille == ptr[6] * 10 && cyl.gasmix.he.permille == ptr[7] * 10) { found = true; state.cur_event.gas.index = i; break; } } if (!found) { cyl = cylinder_start(&state); cyl->gasmix.o2.permille = ptr[6] * 10; cyl->gasmix.he.permille = ptr[7] * 10; cylinder_end(&state); state.cur_event.gas.index = static_cast(state.cur_dive->cylinders.size()) - 1; } break; case 6: state.cur_event.name = "Start"s; break; case 7: state.cur_event.name = "Too Fast"s; break; case 8: state.cur_event.name = "Above Ceiling"s; break; case 9: state.cur_event.name = "Toxic"s; break; case 10: state.cur_event.name = "Hypox"s; break; case 11: state.cur_event.name = "Critical"s; break; case 12: state.cur_event.name = "Sensor Disabled"s; break; case 13: state.cur_event.name = "Sensor Enabled"s; break; case 14: state.cur_event.name = "O2 Backup"s; break; case 15: state.cur_event.name = "Peer Down"s; break; case 16: state.cur_event.name = "HS Down"s; break; case 17: state.cur_event.name = "Inconsistent"s; break; case 18: // key pressed - It should never get in here // as we ingored it at the parent 'case 5'. break; case 19: // obsolete state.cur_event.name = "SCR"s; break; case 20: state.cur_event.name = "Above Stop"s; break; case 21: state.cur_event.name = "Safety Miss"s; break; case 22: state.cur_event.name = "Fatal"s; break; case 23: state.cur_event.name = "gaschange"s; state.cur_event.type = SAMPLE_EVENT_GASCHANGE2; state.cur_event.value = ptr[7] << 8 ^ ptr[6]; event_end(&state); break; case 24: state.cur_event.name = "gaschange"s; state.cur_event.type = SAMPLE_EVENT_GASCHANGE2; state.cur_event.value = ptr[7] << 8 ^ ptr[6]; event_end(&state); // This is both a mode change and a gas change event // so we encode it as two separate events. event_start(&state); state.cur_event.name = "Change Mode"s; switch (ptr[8]) { case 1: state.cur_event.name += ": OC"s; break; case 2: state.cur_event.name += ": CCR"s; break; case 3: state.cur_event.name += ": mCCR"s; break; case 4: state.cur_event.name += ": Free"s; break; case 5: state.cur_event.name += ": Gauge"s; break; case 6: state.cur_event.name += ": ASCR"s; break; case 7: state.cur_event.name += ": PSCR"s; break; default: break; } event_end(&state); break; case 25: // uint16_t solenoid_bitmap = (ptr[7] << 8) + (ptr[6] << 0); // uint32_t time = (ptr[11] << 24) + (ptr[10] << 16) + (ptr[9] << 8) + (ptr[8] << 0); state.cur_event.name = format_string_std("CCR O2 solenoid %s", ptr[12] ? "opened": "closed"); break; case 26: state.cur_event.name = "User mark"s; break; case 27: state.cur_event.name = format_string_std("%sGF Switch (%d/%d)", ptr[6] ? "Bailout, ": "", ptr[7], ptr[8]); break; case 28: state.cur_event.name = "Peer Up"s; break; case 29: state.cur_event.name = "HS Up"s; break; case 30: state.cur_event.name = format_string_std("CNS %d%%", ptr[6]); break; default: // No values above 30 had any description break; } event_end(&state); break; case 6: /* device configuration */ switch (((ptr[3] & 0x7f) << 3) + ((ptr[2] & 0xe0) >> 5)) { // Buffer to print extra string into // Local variables to temporary decode into struct tm tm; const char *device; const char *deep_stops; case 0: // TEST_CCR_FULL_1 utc_mkdate(parse_dlf_timestamp(ptr + 12), &tm); add_extra_data(state.cur_dc, "TEST_CCR_FULL_1", format_string_std("START=%04u-%02u-%02u %02u:%02u:%02u,TEST=%02X%02X%02X%02X,RESULT=%02X%02X%02X%02X", tm.tm_year, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, ptr[7], ptr[6], ptr[5], ptr[4], ptr[11], ptr[10], ptr[9], ptr[8])); break; case 1: // TEST_CCR_PARTIAL_1 utc_mkdate(parse_dlf_timestamp(ptr + 12), &tm); add_extra_data(state.cur_dc, "TEST_CCR_PARTIAL_1", format_string_std("START=%04u-%02u-%02u %02u:%02u:%02u,TEST=%02X%02X%02X%02X,RESULT=%02X%02X%02X%02X", tm.tm_year, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec, ptr[7], ptr[6], ptr[5], ptr[4], ptr[11], ptr[10], ptr[9], ptr[8])); break; case 2: // CFG_OXYGEN_CALIBRATION utc_mkdate(parse_dlf_timestamp(ptr + 12), &tm); o2_sensor_calibration_values[0] = (ptr[5] << 8) + ptr[4]; o2_sensor_calibration_values[1] = (ptr[7] << 8) + ptr[6]; o2_sensor_calibration_values[2] = (ptr[9] << 8) + ptr[8]; o2_sensor_calibration_values[3] = (ptr[11] << 8) + ptr[10]; add_extra_data(state.cur_dc, "CFG_OXYGEN_CALIBRATION", format_string_std("%04u,%04u,%04u,%04u,TIME=%04u-%02u-%02u %02u:%02u:%02u", o2_sensor_calibration_values[0], o2_sensor_calibration_values[1], o2_sensor_calibration_values[2], o2_sensor_calibration_values[3], tm.tm_year, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec)); break; case 3: // CFG_SERIAL add_extra_data(state.cur_dc, "CFG_SERIAL", format_string_std("PRODUCT=%c%c%c%c,SERIAL=%c%c%c%c%c%c%c%c", ptr[4], ptr[5], ptr[6], ptr[7], ptr[8], ptr[9], ptr[10], ptr[11], ptr[12], ptr[13], ptr[14], ptr[15])); break; case 4: // CFG_CONFIG_DECO switch ((ptr[5] & 0xC0) >> 6) { case 0: deep_stops = "none"; break; case 1: deep_stops = "Pyle"; break; case 2: deep_stops = "Sladek"; break; default: deep_stops = "unknown"; break; } add_extra_data(state.cur_dc, "CFG_CONFIG_DECO part 1", format_string_std("%s,%s,%s,safety stop required=%s,last_stop=%s,deco_algorithm=%s,stop_rounding=%u,deep_stops=%s", (ptr[4] & 0x80) ? "imperial" : "metric", (ptr[4] & 0x40) ? "sea" : "fresh", (ptr[4] & 0x30) ? "stops" : "ceiling", (ptr[4] & 0x10) ? "yes" : "no", (ptr[4] & 0x08) ? "6m" : "3m", (ptr[4] & 0x04) ? "VPM" : "Buhlmann+GF", (ptr[4] & 0x03) ? (ptr[4] & 0x03) * 30 : 1, deep_stops)); add_extra_data(state.cur_dc, "CFG_CONFIG_DECO part 2", format_string_std("deep_stop_len=%u min,gas_switch_len=%u min,gf_low=%u,gf_high=%u,gf_low_bailout=%u,gf_high_bailout=%u,ppO2_low=%4.2f,ppO2_high=%4.2f", (ptr[5] & 0x38) >> 3, ptr[5] & 0x07, ptr[6], ptr[7], ptr[8], ptr[9], ptr[10] / 100.0f, ptr[11] / 100.0f)); add_extra_data(state.cur_dc, "CFG_CONFIG_DECO part 3", format_string_std("alarm_global=%u,alarm_cns=%u,alarm_ppO2=%u,alarm_ceiling=%u,alarm_stop_miss=%u,alarm_decentrate=%u,alarm_ascentrate=%u", (ptr[12] & 0x80) >> 7, (ptr[12] & 0x40) >> 6, (ptr[12] & 0x20) >> 5, (ptr[12] & 0x10) >> 4, (ptr[12] & 0x08) >> 3, (ptr[12] & 0x04) >> 2, (ptr[12] & 0x02) >> 1)); break; case 5: // CFG_VERSION switch (ptr[4]) { case 0: device = "FREEDOM"; break; case 1: device = "LIBERTY_CU"; break; case 2: device = "LIBERTY_HS"; break; default: device = "UNKNOWN"; break; } add_extra_data(state.cur_dc, "CFG_VERSION", format_string_std("DEVICE=%s,HW=%d.%d,FW=%d.%d.%d.%d,FLAGS=%04X", device, ptr[5], ptr[6], ptr[7], ptr[8], ptr[9], (ptr[15] << 24) + (ptr[14] << 16) + (ptr[13] << 8) + (ptr[12]), (ptr[11] << 8) + ptr[10])); break; } break; case 7: /* measure record */ switch (ptr[2] >> 5) { case 1: /* Record starting battery level */ if (!battery_start.volt1 && !battery_start.volt2) { battery_start.volt1 = (ptr[5] << 8) + ptr[4]; battery_start.percent1 = ptr[6]; battery_start.volt2 = (ptr[9] << 8) + ptr[8]; battery_start.percent2 = ptr[10]; } /* Measure Battery, recording the last reading only */ battery_end.volt1 = (ptr[5] << 8) + ptr[4]; battery_end.percent1 = ptr[6]; battery_end.volt2 = (ptr[9] << 8) + ptr[8]; battery_end.percent2 = ptr[10]; break; case 2: /* Measure He */ //report_info("%ds he2 cells(0.01 mV): %d %d", time, (ptr[5] << 8) + ptr[4], (ptr[9] << 8) + ptr[8]); break; case 3: /* Measure Oxygen */ //report_info("%d s: o2 cells(0.01 mV): %d %d %d %d", time, (ptr[5] << 8) + ptr[4], (ptr[7] << 8) + ptr[6], (ptr[9] << 8) + ptr[8], (ptr[11] << 8) + ptr[10]); // [Pa/mV] coeficient O2 // 100 Pa == 1 mbar sample_start(&state); state.cur_sample->time.seconds = time; state.cur_sample->o2sensor[0].mbar = ( ((ptr[5] << 8) + ptr[4]) * o2_sensor_calibration_values[0]) / 10000; state.cur_sample->o2sensor[1].mbar = ( ((ptr[7] << 8) + ptr[6]) * o2_sensor_calibration_values[1]) / 10000; state.cur_sample->o2sensor[2].mbar = ( ((ptr[9] << 8) + ptr[8]) * o2_sensor_calibration_values[2]) / 10000; state.cur_sample->o2sensor[3].mbar = ( ((ptr[11] << 8) + ptr[10]) * o2_sensor_calibration_values[3]) / 10000; sample_end(&state); break; case 4: /* Measure GPS */ state.cur_location.lat.udeg = (int)((ptr[7] << 24) + (ptr[6] << 16) + (ptr[5] << 8) + (ptr[4] << 0)); state.cur_location.lon.udeg = (int)((ptr[11] << 24) + (ptr[10] << 16) + (ptr[9] << 8) + (ptr[8] << 0)); state.log->sites.create("DLF imported"s, state.cur_location)->add_dive(state.cur_dive.get()); break; default: break; } break; case 8: /* Deco event */ break; default: /* Unknown... */ break; } } /* Recording the starting battery status to extra data */ if (battery_start.volt1) { std::string str = format_string_std("%dmV (%d%%)", battery_start.volt1, battery_start.percent1); add_extra_data(state.cur_dc, "Battery 1 (start)", str.c_str()); str = format_string_std("%dmV (%d%%)", battery_start.volt2, battery_start.percent2); add_extra_data(state.cur_dc, "Battery 2 (start)", str.c_str()); } /* Recording the ending battery status to extra data */ if (battery_end.volt1) { std::string str = format_string_std("%dmV (%d%%)", battery_end.volt1, battery_end.percent1); add_extra_data(state.cur_dc, "Battery 1 (end)", str.c_str()); str = format_string_std("%dmV (%d%%)", battery_end.volt2, battery_end.percent2); add_extra_data(state.cur_dc, "Battery 2 (end)", str.c_str()); } divecomputer_end(&state); dive_end(&state); return 0; } void parse_xml_init() { LIBXML_TEST_VERSION } void parse_xml_exit() { xmlCleanupParser(); } static struct xslt_files { const char *root; const char *file; const char *attribute; } xslt_files[] = { { "SUUNTO", "SuuntoSDM.xslt", NULL }, { "Dive", "SuuntoDM4.xslt", "xmlns" }, { "Dive", "shearwater.xslt", "version" }, { "JDiveLog", "jdivelog2subsurface.xslt", NULL }, { "dives", "MacDive.xslt", NULL }, { "DIVELOGSDATA", "divelogs.xslt", NULL }, { "uddf", "uddf.xslt", NULL }, { "UDDF", "uddf.xslt", NULL }, { "profile", "udcf.xslt", NULL }, { "Divinglog", "DivingLog.xslt", NULL }, { "csv", "csv2xml.xslt", NULL }, { "sensuscsv", "sensuscsv.xslt", NULL }, { "SubsurfaceCSV", "subsurfacecsv.xslt", NULL }, { "manualcsv", "manualcsv2xml.xslt", NULL }, { "logbook", "DiveLog.xslt", NULL }, { "AV1", "av1.xslt", NULL }, { "exportTrak", "Mares.xslt", NULL }, { NULL, } }; static xmlDoc *test_xslt_transforms(xmlDoc *doc, const struct xml_params *params) { struct xslt_files *info = xslt_files; xmlDoc *transformed; xsltStylesheetPtr xslt = NULL; xmlNode *root_element = xmlDocGetRootElement(doc); xmlChar *attribute; if (!root_element) return NULL; while (info->root) { if ((strcasecmp((const char *)root_element->name, info->root) == 0)) { if (info->attribute == NULL) break; xmlChar *prop = xmlGetProp(root_element, (const xmlChar *)info->attribute); if (prop != NULL) { xmlFree(prop); break; } } info++; } if (info->root) { attribute = xmlGetProp(xmlFirstElementChild(root_element), (const xmlChar *)"name"); if (attribute) { if (strcasecmp((char *)attribute, "subsurface") == 0) { xmlFree(attribute); return doc; } xmlFree(attribute); } xslt = get_stylesheet(info->file); if (xslt == NULL) { report_error(translate("gettextFromC", "Can't open stylesheet %s"), info->file); return doc; } transformed = xsltApplyStylesheet(xslt, doc, xml_params_get(params)); xmlFreeDoc(doc); xsltFreeStylesheet(xslt); return transformed; } return doc; }