// SPDX-License-Identifier: GPL-2.0 /* dive.cpp */ /* maintains the internal dive list structure */ #include #include #include #include #include #include "dive.h" #include "gettext.h" #include "subsurface-string.h" #include "libdivecomputer.h" #include "device.h" #include "divelist.h" #include "divelog.h" #include "divesite.h" #include "errorhelper.h" #include "event.h" #include "extradata.h" #include "format.h" #include "interpolate.h" #include "qthelper.h" #include "membuffer.h" #include "picture.h" #include "range.h" #include "sample.h" #include "tag.h" #include "trip.h" #include "structured_list.h" #include "fulltext.h" // For user visible text but still not translated const char *divemode_text_ui[] = { QT_TRANSLATE_NOOP("gettextFromC", "Open circuit"), QT_TRANSLATE_NOOP("gettextFromC", "CCR"), QT_TRANSLATE_NOOP("gettextFromC", "pSCR"), QT_TRANSLATE_NOOP("gettextFromC", "Freedive") }; // For writing/reading files. const char *divemode_text[] = {"OC", "CCR", "PSCR", "Freedive"}; static double calculate_depth_to_mbarf(int depth, pressure_t surface_pressure, int salinity); // It's the "manually added" divecomputer. // Even for dives without divecomputer, we allocate a divecomputer structure. dive::dive() : dcs(1) { id = dive_getUniqID(); } dive::dive(const dive &) = default; dive::dive(dive &&) = default; dive &dive::operator=(const dive &) = default; dive::~dive() = default; /* * The legacy format for sample pressures has a single pressure * for each sample that can have any sensor, plus a possible * "o2pressure" that is fixed to the Oxygen sensor for a CCR dive. * * For more complex pressure data, we have to use explicit * cylinder indices for each sample. * * This function returns a negative number for "no legacy mode", * or a non-negative number that indicates the o2 sensor index. */ int legacy_format_o2pressures(const struct dive *dive, const struct divecomputer *dc) { int o2sensor; o2sensor = (dc->divemode == CCR) ? get_cylinder_idx_by_use(dive, OXYGEN) : -1; for (const auto &s: dc->samples) { int seen_pressure = 0, idx; for (idx = 0; idx < MAX_SENSORS; idx++) { int sensor = s.sensor[idx]; pressure_t p = s.pressure[idx]; if (!p.mbar) continue; if (sensor == o2sensor) continue; if (seen_pressure) return -1; seen_pressure = 1; } } /* * Use legacy mode: if we have no O2 sensor we return a * positive sensor index that is guaranmteed to not match * any sensor (we encode it as 8 bits). */ return o2sensor < 0 ? 256 : o2sensor; } /* warning: does not test idx for validity */ struct event create_gas_switch_event(struct dive *dive, struct divecomputer *dc, int seconds, int idx) { /* The gas switch event format is insane for historical reasons */ struct gasmix mix = get_cylinder(dive, idx)->gasmix; int o2 = get_o2(mix); int he = get_he(mix); o2 = (o2 + 5) / 10; he = (he + 5) / 10; int value = o2 + (he << 16); struct event ev(seconds, he ? SAMPLE_EVENT_GASCHANGE2 : SAMPLE_EVENT_GASCHANGE, 0, value, "gaschange"); ev.gas.index = idx; ev.gas.mix = mix; return ev; } void add_gas_switch_event(struct dive *dive, struct divecomputer *dc, int seconds, int idx) { /* sanity check so we don't crash */ /* FIXME: The planner uses a dummy cylinder one past the official number of cylinders * in the table to mark no-cylinder surface interavals. This is horrendous. Fix ASAP. */ //if (idx < 0 || idx >= dive->cylinders.size()) { if (idx < 0 || static_cast(idx) >= dive->cylinders.size() + 1) { report_error("Unknown cylinder index: %d", idx); return; } struct event ev = create_gas_switch_event(dive, dc, seconds, idx); add_event_to_dc(dc, std::move(ev)); } struct gasmix get_gasmix_from_event(const struct dive *dive, const struct event &ev) { if (ev.is_gaschange()) { int index = ev.gas.index; // FIXME: The planner uses one past cylinder-count to signify "surface air". Remove in due course. if (index >= 0 && static_cast(index) < dive->cylinders.size() + 1) return get_cylinder(dive, index)->gasmix; return ev.gas.mix; } return gasmix_air; } // we need this to be uniq. oh, and it has no meaning whatsoever // - that's why we have the silly initial number and increment by 3 :-) int dive_getUniqID() { static int maxId = 83529; maxId += 3; return maxId; } static void dc_cylinder_renumber(struct dive &dive, struct divecomputer &dc, const int mapping[]); /* copy dive computer list and renumber the cylinders */ static void copy_dc_renumber(struct dive &d, const struct dive &s, const int cylinders_map[]) { for (const divecomputer &dc: s.dcs) { d.dcs.push_back(dc); dc_cylinder_renumber(d, d.dcs.back(), cylinders_map); } } /* copy_dive makes duplicates of many components of a dive; * in order not to leak memory, we need to free those. * copy_dive doesn't play with the divetrip and forward/backward pointers * so we can ignore those */ void clear_dive(struct dive *d) { if (!d) return; fulltext_unregister(d); *d = dive(); } /* make a true copy that is independent of the source dive; * all data structures are duplicated, so the copy can be modified without * any impact on the source */ void copy_dive(const struct dive *s, struct dive *d) { /* simply copy things over, but then clear fulltext cache and dive cache. */ *d = *s; invalidate_dive_cache(d); } /* make a clone of the source dive and clean out the source dive; * this allows us to create a dive on the stack and then * add it to the divelist. */ struct std::unique_ptr move_dive(struct dive *s) { auto d = std::make_unique(); std::swap(*s, *d); return d; } #define CONDITIONAL_COPY_STRING(_component) \ if (what._component) \ d->_component = s->_component // copy elements, depending on bits in what that are set void selective_copy_dive(const struct dive *s, struct dive *d, struct dive_components what, bool clear) { if (clear) clear_dive(d); CONDITIONAL_COPY_STRING(notes); CONDITIONAL_COPY_STRING(diveguide); CONDITIONAL_COPY_STRING(buddy); CONDITIONAL_COPY_STRING(suit); if (what.rating) d->rating = s->rating; if (what.visibility) d->visibility = s->visibility; if (what.divesite) { unregister_dive_from_dive_site(d); s->dive_site->add_dive(d); } if (what.tags) d->tags = s->tags; if (what.cylinders) copy_cylinder_types(s, d); if (what.weights) d->weightsystems = s->weightsystems; if (what.number) d->number = s->number; if (what.when) d->when = s->when; } #undef CONDITIONAL_COPY_STRING /* copies all events from the given dive computer before a given time this is used when editing a dive in the planner to preserve the events of the old dive */ void copy_events_until(const struct dive *sd, struct dive *dd, int dcNr, int time) { if (!sd || !dd) return; const struct divecomputer *s = &sd->dcs[0]; struct divecomputer *d = get_dive_dc(dd, dcNr); if (!s || !d) return; for (const auto &ev: s->events) { // Don't add events the planner knows about if (ev.time.seconds < time && !ev.is_gaschange() && !ev.is_divemodechange()) add_event(d, ev.time.seconds, ev.type, ev.flags, ev.value, ev.name); } } void copy_used_cylinders(const struct dive *s, struct dive *d, bool used_only) { if (!s || !d) return; d->cylinders.clear(); for (auto [i, cyl]: enumerated_range(s->cylinders)) { if (!used_only || is_cylinder_used(s, i) || get_cylinder(s, i)->cylinder_use == NOT_USED) d->cylinders.push_back(cyl); } } /* * So when we re-calculate maxdepth and meandepth, we will * not override the old numbers if they are close to the * new ones. * * Why? Because a dive computer may well actually track the * max. depth and mean depth at finer granularity than the * samples it stores. So it's possible that the max and mean * have been reported more correctly originally. * * Only if the values calculated from the samples are clearly * different do we override the normal depth values. * * This considers 1m to be "clearly different". That's * a totally random number. */ static void update_depth(depth_t *depth, int new_depth) { if (new_depth) { int old = depth->mm; if (abs(old - new_depth) > 1000) depth->mm = new_depth; } } static void update_temperature(temperature_t *temperature, int new_temp) { if (new_temp) { int old = temperature->mkelvin; if (abs(old - new_temp) > 1000) temperature->mkelvin = new_temp; } } /* Which cylinders had gas used? */ #define SOME_GAS 5000 static bool cylinder_used(const cylinder_t &cyl) { int start_mbar, end_mbar; start_mbar = cyl.start.mbar ?: cyl.sample_start.mbar; end_mbar = cyl.end.mbar ?: cyl.sample_end.mbar; // More than 5 bar used? This matches statistics.cpp // heuristics return start_mbar > end_mbar + SOME_GAS; } /* Get list of used cylinders. Returns the number of used cylinders. */ static int get_cylinder_used(const struct dive *dive, bool used[]) { int num = 0; for (auto [i, cyl]: enumerated_range(dive->cylinders)) { used[i] = cylinder_used(cyl); if (used[i]) num++; } return num; } /* Are there any used cylinders which we do not know usage about? */ static bool has_unknown_used_cylinders(const struct dive *dive, const struct divecomputer *dc, const bool used_cylinders[], int num) { int idx; auto used_and_unknown = std::make_unique(dive->cylinders.size()); std::copy(used_cylinders, used_cylinders + dive->cylinders.size(), used_and_unknown.get()); /* We know about using the O2 cylinder in a CCR dive */ if (dc->divemode == CCR) { int o2_cyl = get_cylinder_idx_by_use(dive, OXYGEN); if (o2_cyl >= 0 && used_and_unknown[o2_cyl]) { used_and_unknown[o2_cyl] = false; num--; } } /* We know about the explicit first cylinder (or first) */ idx = explicit_first_cylinder(dive, dc); if (idx >= 0 && used_and_unknown[idx]) { used_and_unknown[idx] = false; num--; } /* And we have possible switches to other gases */ event_loop loop("gaschange"); const struct event *ev; while ((ev = loop.next(*dc)) != nullptr && num > 0) { idx = get_cylinder_index(dive, *ev); if (idx >= 0 && used_and_unknown[idx]) { used_and_unknown[idx] = false; num--; } } return num > 0; } void per_cylinder_mean_depth(const struct dive *dive, struct divecomputer *dc, int *mean, int *duration) { int32_t lasttime = 0; int lastdepth = 0; int idx = 0; int num_used_cylinders; if (dive->cylinders.empty()) return; for (size_t i = 0; i < dive->cylinders.size(); i++) mean[i] = duration[i] = 0; if (!dc) return; /* * There is no point in doing per-cylinder information * if we don't actually know about the usage of all the * used cylinders. */ auto used_cylinders = std::make_unique(dive->cylinders.size()); num_used_cylinders = get_cylinder_used(dive, used_cylinders.get()); if (has_unknown_used_cylinders(dive, dc, used_cylinders.get(), num_used_cylinders)) { /* * If we had more than one used cylinder, but * do not know usage of them, we simply cannot * account mean depth to them. */ if (num_used_cylinders > 1) return; /* * For a single cylinder, use the overall mean * and duration */ for (size_t i = 0; i < dive->cylinders.size(); i++) { if (used_cylinders[i]) { mean[i] = dc->meandepth.mm; duration[i] = dc->duration.seconds; } } return; } if (dc->samples.empty()) fake_dc(dc); event_loop loop("gaschange"); const struct event *ev = loop.next(*dc); std::vector depthtime(dive->cylinders.size(), 0); for (auto it = dc->samples.begin(); it != dc->samples.end(); ++it) { int32_t time = it->time.seconds; int depth = it->depth.mm; /* Make sure to move the event past 'lasttime' */ while (ev && lasttime >= ev->time.seconds) { idx = get_cylinder_index(dive, *ev); ev = loop.next(*dc); } /* Do we need to fake a midway sample at an event? */ if (ev && it != dc->samples.begin() && time > ev->time.seconds) { int newtime = ev->time.seconds; int newdepth = interpolate(lastdepth, depth, newtime - lasttime, time - lasttime); time = newtime; depth = newdepth; --it; } /* We ignore segments at the surface */ if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) { duration[idx] += time - lasttime; depthtime[idx] += (time - lasttime) * (depth + lastdepth) / 2; } lastdepth = depth; lasttime = time; } for (size_t i = 0; i < dive->cylinders.size(); i++) { if (duration[i]) mean[i] = (depthtime[i] + duration[i] / 2) / duration[i]; } } static void update_min_max_temperatures(struct dive *dive, temperature_t temperature) { if (temperature.mkelvin) { if (!dive->maxtemp.mkelvin || temperature.mkelvin > dive->maxtemp.mkelvin) dive->maxtemp = temperature; if (!dive->mintemp.mkelvin || temperature.mkelvin < dive->mintemp.mkelvin) dive->mintemp = temperature; } } /* * If the cylinder tank pressures are within half a bar * (about 8 PSI) of the sample pressures, we consider it * to be a rounding error, and throw them away as redundant. */ static int same_rounded_pressure(pressure_t a, pressure_t b) { return abs(a.mbar - b.mbar) <= 500; } /* Some dive computers (Cobalt) don't start the dive with cylinder 0 but explicitly * tell us what the first gas is with a gas change event in the first sample. * Sneakily we'll use a return value of 0 (or FALSE) when there is no explicit * first cylinder - in which case cylinder 0 is indeed the first cylinder. * We likewise return 0 if the event concerns a cylinder that doesn't exist. * If the dive has no cylinders, -1 is returned. */ int explicit_first_cylinder(const struct dive *dive, const struct divecomputer *dc) { int res = 0; if (dive->cylinders.empty()) return -1; if (dc) { const struct event *ev = get_first_event(*dc, "gaschange"); if (ev && ((!dc->samples.empty() && ev->time.seconds == dc->samples[0].time.seconds) || ev->time.seconds <= 1)) res = get_cylinder_index(dive, *ev); else if (dc->divemode == CCR) res = std::max(get_cylinder_idx_by_use(dive, DILUENT), res); } return static_cast(res) < dive->cylinders.size() ? res : 0; } /* this gets called when the dive mode has changed (so OC vs. CC) * there are two places we might have setpoints... events or in the samples */ void update_setpoint_events(const struct dive *dive, struct divecomputer *dc) { int new_setpoint = 0; if (dc->divemode == CCR) new_setpoint = prefs.defaultsetpoint; if (dc->divemode == OC && (dc->model == "Shearwater Predator" || dc->model == "Shearwater Petrel" || dc->model == "Shearwater Nerd")) { // make sure there's no setpoint in the samples // this is an irreversible change - so switching a dive to OC // by mistake when it's actually CCR is _bad_ // So we make sure, this comes from a Predator or Petrel and we only remove // pO2 values we would have computed anyway. event_loop loop("gaschange"); const struct event *ev = loop.next(*dc); struct gasmix gasmix = get_gasmix_from_event(dive, *ev); const struct event *next = loop.next(*dc); for (auto &sample: dc->samples) { if (next && sample.time.seconds >= next->time.seconds) { ev = next; gasmix = get_gasmix_from_event(dive, *ev); next = loop.next(*dc); } gas_pressures pressures = fill_pressures(lrint(calculate_depth_to_mbarf(sample.depth.mm, dc->surface_pressure, 0)), gasmix ,0, dc->divemode); if (abs(sample.setpoint.mbar - (int)(1000 * pressures.o2)) <= 50) sample.setpoint.mbar = 0; } } // an "SP change" event at t=0 is currently our marker for OC vs CCR // this will need to change to a saner setup, but for now we can just // check if such an event is there and adjust it, or add that event struct event *ev = get_first_event(*dc, "SP change"); if (ev && ev->time.seconds == 0) { ev->value = new_setpoint; } else { if (!add_event(dc, 0, SAMPLE_EVENT_PO2, 0, new_setpoint, "SP change")) report_info("Could not add setpoint change event"); } } /* * See if the size/workingpressure looks like some standard cylinder * size, eg "AL80". * * NOTE! We don't take compressibility into account when naming * cylinders. That makes a certain amount of sense, since the * cylinder name is independent from the gasmix, and different * gasmixes have different compressibility. */ static void match_standard_cylinder(cylinder_type_t &type) { /* Do we already have a cylinder description? */ if (!type.description.empty()) return; double bar = type.workingpressure.mbar / 1000.0; double cuft = ml_to_cuft(type.size.mliter); cuft *= bar_to_atm(bar); int psi = lrint(to_PSI(type.workingpressure)); const char *fmt; switch (psi) { case 2300 ... 2500: /* 2400 psi: LP tank */ fmt = "LP%d"; break; case 2600 ... 2700: /* 2640 psi: LP+10% */ fmt = "LP%d"; break; case 2900 ... 3100: /* 3000 psi: ALx tank */ fmt = "AL%d"; break; case 3400 ... 3500: /* 3442 psi: HP tank */ fmt = "HP%d"; break; case 3700 ... 3850: /* HP+10% */ fmt = "HP%d+"; break; default: return; } type.description = format_string_std(fmt, (int)lrint(cuft)); } /* * There are two ways to give cylinder size information: * - total amount of gas in cuft (depends on working pressure and physical size) * - physical size * * where "physical size" is the one that actually matters and is sane. * * We internally use physical size only. But we save the workingpressure * so that we can do the conversion if required. */ static void sanitize_cylinder_type(cylinder_type_t &type) { /* If we have no working pressure, it had *better* be just a physical size! */ if (!type.workingpressure.mbar) return; /* No size either? Nothing to go on */ if (!type.size.mliter) return; /* Ok, we have both size and pressure: try to match a description */ match_standard_cylinder(type); } static void sanitize_cylinder_info(struct dive *dive) { for (auto &cyl :dive->cylinders) { sanitize_gasmix(cyl.gasmix); sanitize_cylinder_type(cyl.type); } } /* some events should never be thrown away */ static bool is_potentially_redundant(const struct event &event) { if (event.name == "gaschange") return false; if (event.name == "bookmark") return false; if (event.name == "heading") return false; return true; } pressure_t calculate_surface_pressure(const struct dive *dive) { pressure_t res; int sum = 0, nr = 0; bool logged = dive->is_logged(); for (auto &dc: dive->dcs) { if ((logged || !is_dc_planner(&dc)) && dc.surface_pressure.mbar) { sum += dc.surface_pressure.mbar; nr++; } } res.mbar = nr ? (sum + nr / 2) / nr : 0; return res; } static void fixup_surface_pressure(struct dive *dive) { dive->surface_pressure = calculate_surface_pressure(dive); } /* if the surface pressure in the dive data is redundant to the calculated * value (i.e., it was added by running fixup on the dive) return 0, * otherwise return the surface pressure given in the dive */ pressure_t un_fixup_surface_pressure(const struct dive *d) { pressure_t res = d->surface_pressure; if (res.mbar && res.mbar == calculate_surface_pressure(d).mbar) res.mbar = 0; return res; } static void fixup_water_salinity(struct dive *dive) { int sum = 0, nr = 0; bool logged = dive->is_logged(); for (auto &dc: dive->dcs) { if ((logged || !is_dc_planner(&dc)) && dc.salinity) { if (dc.salinity < 500) dc.salinity += FRESHWATER_SALINITY; sum += dc.salinity; nr++; } } if (nr) dive->salinity = (sum + nr / 2) / nr; } int get_dive_salinity(const struct dive *dive) { return dive->user_salinity ? dive->user_salinity : dive->salinity; } static void fixup_meandepth(struct dive *dive) { int sum = 0, nr = 0; bool logged = dive->is_logged(); for (auto &dc: dive->dcs) { if ((logged || !is_dc_planner(&dc)) && dc.meandepth.mm) { sum += dc.meandepth.mm; nr++; } } if (nr) dive->meandepth.mm = (sum + nr / 2) / nr; } static void fixup_duration(struct dive *dive) { duration_t duration = { }; bool logged = dive->is_logged(); for (auto &dc: dive->dcs) { if (logged || !is_dc_planner(&dc)) duration.seconds = std::max(duration.seconds, dc.duration.seconds); } dive->duration.seconds = duration.seconds; } static void fixup_watertemp(struct dive *dive) { if (!dive->watertemp.mkelvin) dive->watertemp = dive->dc_watertemp(); } static void fixup_airtemp(struct dive *dive) { if (!dive->airtemp.mkelvin) dive->airtemp = dive->dc_airtemp(); } /* if the air temperature in the dive data is redundant to the one in its * first divecomputer (i.e., it was added by running fixup on the dive) * return 0, otherwise return the air temperature given in the dive */ static temperature_t un_fixup_airtemp(const struct dive &a) { return a.airtemp.mkelvin == a.dc_airtemp().mkelvin ? temperature_t() : a.airtemp; } /* * events are stored as a linked list, so the concept of * "consecutive, identical events" is somewhat hard to * implement correctly (especially given that on some dive * computers events are asynchronous, so they can come in * between what would be the non-constant sample rate). * * So what we do is that we throw away clearly redundant * events that are fewer than 61 seconds apart (assuming there * is no dive computer with a sample rate of more than 60 * seconds... that would be pretty pointless to plot the * profile with) */ static void fixup_dc_events(struct divecomputer &dc) { std::vector to_delete; for (auto [idx, event]: enumerated_range(dc.events)) { if (!is_potentially_redundant(event)) continue; for (int idx2 = idx - 1; idx2 > 0; --idx2) { const auto &prev = dc.events[idx2]; if (prev.name == event.name && prev.flags == event.flags && event.time.seconds - prev.time.seconds < 61) to_delete.push_back(idx); } } // Delete from back to not invalidate indexes for (auto it = to_delete.rbegin(); it != to_delete.rend(); ++it) dc.events.erase(dc.events.begin() + *it); } static int interpolate_depth(struct divecomputer &dc, int idx, int lastdepth, int lasttime, int now) { int nextdepth = lastdepth; int nexttime = now; for (auto it = dc.samples.begin() + idx; it != dc.samples.end(); ++it) { if (it->depth.mm < 0) continue; nextdepth = it->depth.mm; nexttime = it->time.seconds; break; } return interpolate(lastdepth, nextdepth, now-lasttime, nexttime-lasttime); } static void fixup_dc_depths(struct dive *dive, struct divecomputer &dc) { int maxdepth = dc.maxdepth.mm; int lasttime = 0, lastdepth = 0; for (const auto [idx, sample]: enumerated_range(dc.samples)) { int time = sample.time.seconds; int depth = sample.depth.mm; if (depth < 0 && idx + 2 < static_cast(dc.samples.size())) { depth = interpolate_depth(dc, idx, lastdepth, lasttime, time); sample.depth.mm = depth; } if (depth > SURFACE_THRESHOLD) { if (depth > maxdepth) maxdepth = depth; } lastdepth = depth; lasttime = time; if (sample.cns > dive->maxcns) dive->maxcns = sample.cns; } update_depth(&dc.maxdepth, maxdepth); if (!dive->is_logged() || !is_dc_planner(&dc)) if (maxdepth > dive->maxdepth.mm) dive->maxdepth.mm = maxdepth; } static void fixup_dc_ndl(struct divecomputer &dc) { for (auto &sample: dc.samples) { if (sample.ndl.seconds != 0) break; if (sample.ndl.seconds == 0) sample.ndl.seconds = -1; } } static void fixup_dc_temp(struct dive *dive, struct divecomputer &dc) { int mintemp = 0, lasttemp = 0; for (auto &sample: dc.samples) { int temp = sample.temperature.mkelvin; if (temp) { /* * If we have consecutive identical * temperature readings, throw away * the redundant ones. */ if (lasttemp == temp) sample.temperature.mkelvin = 0; else lasttemp = temp; if (!mintemp || temp < mintemp) mintemp = temp; } update_min_max_temperatures(dive, sample.temperature); } update_temperature(&dc.watertemp, mintemp); update_min_max_temperatures(dive, dc.watertemp); } /* Remove redundant pressure information */ static void simplify_dc_pressures(struct divecomputer &dc) { int lastindex[2] = { -1, -1 }; int lastpressure[2] = { 0 }; for (auto &sample: dc.samples) { int j; for (j = 0; j < MAX_SENSORS; j++) { int pressure = sample.pressure[j].mbar; int index = sample.sensor[j]; if (index == lastindex[j]) { /* Remove duplicate redundant pressure information */ if (pressure == lastpressure[j]) sample.pressure[j].mbar = 0; } lastindex[j] = index; lastpressure[j] = pressure; } } } /* Do we need a sensor -> cylinder mapping? */ static void fixup_start_pressure(struct dive *dive, int idx, pressure_t p) { if (idx >= 0 && static_cast(idx) < dive->cylinders.size()) { cylinder_t &cyl = dive->cylinders[idx]; if (p.mbar && !cyl.sample_start.mbar) cyl.sample_start = p; } } static void fixup_end_pressure(struct dive *dive, int idx, pressure_t p) { if (idx >= 0 && static_cast(idx) < dive->cylinders.size()) { cylinder_t &cyl = dive->cylinders[idx]; if (p.mbar && !cyl.sample_end.mbar) cyl.sample_end = p; } } /* * Check the cylinder pressure sample information and fill in the * overall cylinder pressures from those. * * We ignore surface samples for tank pressure information. * * At the beginning of the dive, let the cylinder cool down * if the diver starts off at the surface. And at the end * of the dive, there may be surface pressures where the * diver has already turned off the air supply (especially * for computers like the Uemis Zurich that end up saving * quite a bit of samples after the dive has ended). */ static void fixup_dive_pressures(struct dive *dive, struct divecomputer &dc) { /* Walk the samples from the beginning to find starting pressures.. */ for (auto &sample: dc.samples) { if (sample.depth.mm < SURFACE_THRESHOLD) continue; for (int idx = 0; idx < MAX_SENSORS; idx++) fixup_start_pressure(dive, sample.sensor[idx], sample.pressure[idx]); } /* ..and from the end for ending pressures */ for (auto it = dc.samples.rbegin(); it != dc.samples.rend(); ++it) { if (it->depth.mm < SURFACE_THRESHOLD) continue; for (int idx = 0; idx < MAX_SENSORS; idx++) fixup_end_pressure(dive, it->sensor[idx], it->pressure[idx]); } simplify_dc_pressures(dc); } /* * Match a gas change event against the cylinders we have */ static bool validate_gaschange(struct dive *dive, struct event &event) { int index; int o2, he, value; /* We'll get rid of the per-event gasmix, but for now sanitize it */ if (gasmix_is_air(event.gas.mix)) event.gas.mix.o2.permille = 0; /* Do we already have a cylinder index for this gasmix? */ if (event.gas.index >= 0) return true; index = find_best_gasmix_match(event.gas.mix, dive->cylinders); if (index < 0 || static_cast(index) >= dive->cylinders.size()) return false; /* Fix up the event to have the right information */ event.gas.index = index; event.gas.mix = dive->cylinders[index].gasmix; /* Convert to odd libdivecomputer format */ o2 = get_o2(event.gas.mix); he = get_he(event.gas.mix); o2 = (o2 + 5) / 10; he = (he + 5) / 10; value = o2 + (he << 16); event.value = value; if (he) event.type = SAMPLE_EVENT_GASCHANGE2; return true; } /* Clean up event, return true if event is ok, false if it should be dropped as bogus */ static bool validate_event(struct dive *dive, struct event &event) { if (event.is_gaschange()) return validate_gaschange(dive, event); return true; } static void fixup_dc_gasswitch(struct dive *dive, struct divecomputer &dc) { // erase-remove idiom auto &events = dc.events; events.erase(std::remove_if(events.begin(), events.end(), [dive](auto &ev) { return !validate_event(dive, ev); }), events.end()); } static void fixup_no_o2sensors(struct divecomputer &dc) { // Its only relevant to look for sensor values on CCR and PSCR dives without any no_o2sensors recorded. if (dc.no_o2sensors != 0 || !(dc.divemode == CCR || dc.divemode == PSCR)) return; for (const auto &sample: dc.samples) { int nsensor = 0; // How many o2 sensors can we find in this sample? for (int j = 0; j < MAX_O2_SENSORS; j++) if (sample.o2sensor[j].mbar) nsensor++; // If we fond more than the previous found max, record it. if (nsensor > dc.no_o2sensors) dc.no_o2sensors = nsensor; // Already found the maximum posible amount. if (nsensor == MAX_O2_SENSORS) return; } } static void fixup_dc_sample_sensors(struct dive *dive, struct divecomputer &dc) { unsigned long sensor_mask = 0; for (auto &sample: dc.samples) { for (int j = 0; j < MAX_SENSORS; j++) { int sensor = sample.sensor[j]; // No invalid sensor ID's, please if (sensor < 0 || sensor > MAX_SENSORS) { sample.sensor[j] = NO_SENSOR; sample.pressure[j].mbar = 0; continue; } // Don't bother tracking sensors with no data if (!sample.pressure[j].mbar) { sample.sensor[j] = NO_SENSOR; continue; } // Remember the set of sensors we had sensor_mask |= 1ul << sensor; } } // Ignore the sensors we have cylinders for sensor_mask >>= dive->cylinders.size(); // Do we need to add empty cylinders? while (sensor_mask) { add_empty_cylinder(&dive->cylinders); sensor_mask >>= 1; } } static void fixup_dive_dc(struct dive *dive, struct divecomputer &dc) { /* Fixup duration and mean depth */ fixup_dc_duration(dc); /* Fix up sample depth data */ fixup_dc_depths(dive, dc); /* Fix up first sample ndl data */ fixup_dc_ndl(dc); /* Fix up dive temperatures based on dive computer samples */ fixup_dc_temp(dive, dc); /* Fix up gas switch events */ fixup_dc_gasswitch(dive, dc); /* Fix up cylinder ids in pressure sensors */ fixup_dc_sample_sensors(dive, dc); /* Fix up cylinder pressures based on DC info */ fixup_dive_pressures(dive, dc); fixup_dc_events(dc); /* Fixup CCR / PSCR dives with o2sensor values, but without no_o2sensors */ fixup_no_o2sensors(dc); /* If there are no samples, generate a fake profile based on depth and time */ if (dc.samples.empty()) fake_dc(&dc); } struct dive *fixup_dive(struct dive *dive) { sanitize_cylinder_info(dive); dive->maxcns = dive->cns; /* * Use the dive's temperatures for minimum and maximum in case * we do not have temperatures recorded by DC. */ update_min_max_temperatures(dive, dive->watertemp); for (auto &dc: dive->dcs) fixup_dive_dc(dive, dc); fixup_water_salinity(dive); if (!dive->surface_pressure.mbar) fixup_surface_pressure(dive); fixup_meandepth(dive); fixup_duration(dive); fixup_watertemp(dive); fixup_airtemp(dive); for (auto &cyl: dive->cylinders) { add_cylinder_description(cyl.type); if (same_rounded_pressure(cyl.sample_start, cyl.start)) cyl.start.mbar = 0; if (same_rounded_pressure(cyl.sample_end, cyl.end)) cyl.end.mbar = 0; } update_cylinder_related_info(dive); for (auto &ws: dive->weightsystems) add_weightsystem_description(ws); /* we should always have a uniq ID as that gets assigned during dive creation, * but we want to make sure... */ if (!dive->id) dive->id = dive_getUniqID(); return dive; } /* Don't pick a zero for MERGE_MIN() */ #define MERGE_MAX(res, a, b, n) res->n = std::max(a->n, b->n) #define MERGE_MIN(res, a, b, n) res->n = (a->n) ? (b->n) ? std::min(a->n, b->n) : (a->n) : (b->n) #define MERGE_TXT(res, a, b, n, sep) res->n = merge_text(a->n, b->n, sep) #define MERGE_NONZERO(res, a, b, n) (res)->n = (a)->n ? (a)->n : (b)->n /* * This is like append_sample(), but if the distance from the last sample * is excessive, we add two surface samples in between. * * This is so that if you merge two non-overlapping dives, we make sure * that the time in between the dives is at the surface, not some "last * sample that happened to be at a depth of 1.2m". */ static void merge_one_sample(const struct sample &sample, struct divecomputer &dc) { if (!dc.samples.empty()) { const struct sample &prev = dc.samples.back(); int last_time = prev.time.seconds; int last_depth = prev.depth.mm; /* * Only do surface events if the samples are more than * a minute apart, and shallower than 5m */ if (sample.time.seconds > last_time + 60 && last_depth < 5000) { struct sample surface; /* Init a few values from prev sample to avoid useless info in XML */ surface.bearing.degrees = prev.bearing.degrees; surface.ndl.seconds = prev.ndl.seconds; surface.time.seconds = last_time + 20; append_sample(surface, &dc); surface.time.seconds = sample.time.seconds - 20; append_sample(surface, &dc); } } append_sample(sample, &dc); } static void renumber_last_sample(struct divecomputer &dc, const int mapping[]); static void sample_renumber(struct sample &s, const struct sample *next, const int mapping[]); /* * Merge samples. Dive 'a' is "offset" seconds before Dive 'b' */ static void merge_samples(struct divecomputer &res, const struct divecomputer &a, const struct divecomputer &b, const int *cylinders_map_a, const int *cylinders_map_b, int offset) { auto as = a.samples.begin(); auto bs = b.samples.begin(); auto a_end = a.samples.end(); auto b_end = b.samples.end(); /* * We want a positive sample offset, so that sample * times are always positive. So if the samples for * 'b' are before the samples for 'a' (so the offset * is negative), we switch a and b around, and use * the reverse offset. */ if (offset < 0) { offset = -offset; std::swap(as, bs); std::swap(a_end, b_end); std::swap(cylinders_map_a, cylinders_map_b); } for (;;) { int at = as != a_end ? as->time.seconds : -1; int bt = bs != b_end ? bs->time.seconds + offset : -1; /* No samples? All done! */ if (at < 0 && bt < 0) return; /* Only samples from a? */ if (bt < 0) { add_sample_a: merge_one_sample(*as, res); renumber_last_sample(res, cylinders_map_a); as++; continue; } /* Only samples from b? */ if (at < 0) { add_sample_b: merge_one_sample(*bs, res); renumber_last_sample(res, cylinders_map_b); bs++; continue; } if (at < bt) goto add_sample_a; if (at > bt) goto add_sample_b; /* same-time sample: add a merged sample. Take the non-zero ones */ struct sample sample = *bs; sample_renumber(sample, nullptr, cylinders_map_b); if (as->depth.mm) sample.depth = as->depth; if (as->temperature.mkelvin) sample.temperature = as->temperature; for (int j = 0; j < MAX_SENSORS; ++j) { int sensor_id; sensor_id = cylinders_map_a[as->sensor[j]]; if (sensor_id < 0) continue; if (as->pressure[j].mbar) sample.pressure[j] = as->pressure[j]; if (as->sensor[j]) sample.sensor[j] = sensor_id; } if (as->cns) sample.cns = as->cns; if (as->setpoint.mbar) sample.setpoint = as->setpoint; if (as->ndl.seconds) sample.ndl = as->ndl; if (as->stoptime.seconds) sample.stoptime = as->stoptime; if (as->stopdepth.mm) sample.stopdepth = as->stopdepth; if (as->in_deco) sample.in_deco = true; merge_one_sample(sample, res); as++; bs++; } } static bool operator==(const struct extra_data &e1, const struct extra_data &e2) { return std::tie(e1.key, e1.value) == std::tie(e2.key, e2.value); } /* * Merge extra_data. * * The extra data from 'a' has already been copied into 'res'. So * we really should just copy over the data from 'b' too. * * This is not hugely efficient (with the whole "check this for * every value you merge" it's O(n**2)) but it's not like we * have very many extra_data entries per dive computer anyway. */ static void merge_extra_data(struct divecomputer &res, const struct divecomputer &a, const struct divecomputer &b) { for (auto &ed: b.extra_data) { if (range_contains(a.extra_data, ed)) continue; res.extra_data.push_back(ed); } } static std::string merge_text(const std::string &a, const std::string &b, const char *sep) { if (a.empty()) return b; if (b.empty()) return a; if (a == b) return a; return a + sep + b; } #define SORT(a, b) \ if (a != b) \ return a < b ? -1 : 1 #define SORT_FIELD(a, b, field) SORT(a.field, b.field) static int sort_event(const struct event &a, const struct event &b, int time_a, int time_b) { SORT(time_a, time_b); SORT_FIELD(a, b, type); SORT_FIELD(a, b, flags); SORT_FIELD(a, b, value); return a.name.compare(b.name); } static int same_gas(const struct event *a, const struct event *b) { if (a->type == b->type && a->flags == b->flags && a->value == b->value && a->name == b->name && same_gasmix(a->gas.mix, b->gas.mix)) { return true; } return false; } static void event_renumber(struct event &ev, const int mapping[]); static void add_initial_gaschange(struct dive &dive, struct divecomputer &dc, int offset, int idx); static void merge_events(struct dive &d, struct divecomputer &res, const struct divecomputer &src1_in, const struct divecomputer &src2_in, const int *cylinders_map1, const int *cylinders_map2, int offset) { const struct event *last_gas = NULL; /* Always use positive offsets */ auto src1 = &src1_in; auto src2 = &src2_in; if (offset < 0) { offset = -offset; std::swap(src1, src2); std::swap(cylinders_map1, cylinders_map2); // The pointers, not the contents are swapped. } auto a = src1->events.begin(); auto b = src2->events.begin(); while (a != src1->events.end() || b != src2->events.end()) { int s = 0; const struct event *pick; const int *cylinders_map; int event_offset; if (b == src2->events.end()) goto pick_a; if (a == src1->events.end()) goto pick_b; s = sort_event(*a, *b, a->time.seconds, b->time.seconds + offset); /* Identical events? Just skip one of them (we skip a) */ if (!s) { ++a; continue; } /* Otherwise, pick the one that sorts first */ if (s < 0) { pick_a: pick = &*a; ++a; event_offset = 0; cylinders_map = cylinders_map1; } else { pick_b: pick = &*b; ++b; event_offset = offset; cylinders_map = cylinders_map2; } /* * If that's a gas-change that matches the previous * gas change, we'll just skip it */ if (pick->is_gaschange()) { if (last_gas && same_gas(pick, last_gas)) continue; last_gas = pick; } /* Add it to the target list */ res.events.push_back(*pick); res.events.back().time.seconds += event_offset; event_renumber(res.events.back(), cylinders_map); } /* If the initial cylinder of a divecomputer was remapped, add a gas change event to that cylinder */ if (cylinders_map1[0] > 0) add_initial_gaschange(d, res, 0, cylinders_map1[0]); if (cylinders_map2[0] > 0) add_initial_gaschange(d, res, offset, cylinders_map2[0]); } /* get_cylinder_idx_by_use(): Find the index of the first cylinder with a particular CCR use type. * The index returned corresponds to that of the first cylinder with a cylinder_use that * equals the appropriate enum value [oxygen, diluent, bailout] given by cylinder_use_type. * A negative number returned indicates that a match could not be found. * Call parameters: dive = the dive being processed * cylinder_use_type = an enum, one of {oxygen, diluent, bailout} */ int get_cylinder_idx_by_use(const struct dive *dive, enum cylinderuse cylinder_use_type) { auto it = std::find_if(dive->cylinders.begin(), dive->cylinders.end(), [cylinder_use_type] (auto &cyl) { return cyl.cylinder_use == cylinder_use_type; }); return it != dive->cylinders.end() ? it - dive->cylinders.begin() : -1; } /* Force an initial gaschange event to the (old) gas #0 */ static void add_initial_gaschange(struct dive &dive, struct divecomputer &dc, int offset, int idx) { /* if there is a gaschange event up to 30 sec after the initial event, * refrain from adding the initial event */ event_loop loop("gaschange"); while(auto ev = loop.next(dc)) { if (ev->time.seconds > offset + 30) break; else if (ev->time.seconds > offset) return; } /* Old starting gas mix */ add_gas_switch_event(&dive, &dc, offset, idx); } static void sample_renumber(struct sample &s, const struct sample *prev, const int mapping[]) { for (int j = 0; j < MAX_SENSORS; j++) { int sensor = -1; if (s.sensor[j] != NO_SENSOR) sensor = mapping[s.sensor[j]]; if (sensor == -1) { // Remove sensor and gas pressure info if (!prev) { s.sensor[j] = 0; s.pressure[j].mbar = 0; } else { s.sensor[j] = prev->sensor[j]; s.pressure[j].mbar = prev->pressure[j].mbar; } } else { s.sensor[j] = sensor; } } } static void renumber_last_sample(struct divecomputer &dc, const int mapping[]) { if (dc.samples.empty()) return; sample *prev = dc.samples.size() > 1 ? &dc.samples[dc.samples.size() - 2] : nullptr; sample_renumber(dc.samples.back(), prev, mapping); } static void event_renumber(struct event &ev, const int mapping[]) { if (!ev.is_gaschange()) return; if (ev.gas.index < 0) return; ev.gas.index = mapping[ev.gas.index]; } static void dc_cylinder_renumber(struct dive &dive, struct divecomputer &dc, const int mapping[]) { /* Remap or delete the sensor indices */ for (auto [i, sample]: enumerated_range(dc.samples)) sample_renumber(sample, i > 0 ? &dc.samples[i-1] : nullptr, mapping); /* Remap the gas change indices */ for (auto &ev: dc.events) event_renumber(ev, mapping); /* If the initial cylinder of a dive was remapped, add a gas change event to that cylinder */ if (mapping[0] > 0) add_initial_gaschange(dive, dc, 0, mapping[0]); } /* * If the cylinder indices change (due to merging dives or deleting * cylinders in the middle), we need to change the indices in the * dive computer data for this dive. * * Also note that we assume that the initial cylinder is cylinder 0, * so if that got renamed, we need to create a fake gas change event */ void cylinder_renumber(struct dive &dive, int mapping[]) { for (auto &dc: dive.dcs) dc_cylinder_renumber(dive, dc, mapping); } int same_gasmix_cylinder(const cylinder_t &cyl, int cylid, const struct dive *dive, bool check_unused) { struct gasmix mygas = cyl.gasmix; for (auto [i, cyl]: enumerated_range(dive->cylinders)) { if (i == cylid) continue; struct gasmix gas2 = cyl.gasmix; if (gasmix_distance(mygas, gas2) == 0 && (is_cylinder_used(dive, i) || check_unused)) return i; } return -1; } static int pdiff(pressure_t a, pressure_t b) { return a.mbar && b.mbar && a.mbar != b.mbar; } static int different_manual_pressures(const cylinder_t *a, const cylinder_t *b) { return pdiff(a->start, b->start) || pdiff(a->end, b->end); } /* * Can we find an exact match for a cylinder in another dive? * Take the "already matched" map into account, so that we * don't match multiple similar cylinders to one target. * * To match, the cylinders have to have the same gasmix and the * same cylinder use (ie OC/Diluent/Oxygen), and if pressures * have been added manually they need to match. */ static int match_cylinder(const cylinder_t *cyl, const struct dive &dive, const bool try_match[]) { for (auto [i, target]: enumerated_range(dive.cylinders)) { if (!try_match[i]) continue; if (!same_gasmix(cyl->gasmix, target.gasmix)) continue; if (cyl->cylinder_use != target.cylinder_use) continue; if (different_manual_pressures(cyl, &target)) continue; /* open question: Should we check sizes too? */ return i; } return -1; } /* * Function used to merge manually set start or end pressures. This * is used to merge cylinders when merging dives. We store up to two * values for start _and_ end pressures: one derived from samples and * one entered manually, whereby the latter takes precedence. It may * happen that the user merges two dives where one has a manual, * the other only a sample-derived pressure. In such a case we want to * supplement the non-existing manual value by a sample derived one. * Otherwise, the merged dive would end up with incomplete pressure * information. * The last argument to the function specifies whether the larger * or smaller value of the two dives should be returned. Obviously, * for the starting pressure we want the larger and for the ending * pressure the smaller value. */ static pressure_t merge_pressures(pressure_t a, pressure_t sample_a, pressure_t b, pressure_t sample_b, bool take_min) { if (!a.mbar && !b.mbar) return a; if (!a.mbar) a = sample_a; if (!b.mbar) b = sample_b; if (!a.mbar) a = b; if (!b.mbar) b = a; if (take_min) return a.mbar < b.mbar? a : b; return a.mbar > b.mbar? a : b; } /* * We matched things up so that they have the same gasmix and * use, but we might want to fill in any missing cylinder details * in 'a' if we had it from 'b'. */ static void merge_one_cylinder(cylinder_t *a, const cylinder_t *b) { if (!a->type.size.mliter) a->type.size.mliter = b->type.size.mliter; if (!a->type.workingpressure.mbar) a->type.workingpressure.mbar = b->type.workingpressure.mbar; if (a->type.description.empty()) a->type.description = b->type.description; /* If either cylinder has manually entered pressures, try to merge them. * Use pressures from divecomputer samples if only one cylinder has such a value. * Yes, this is an actual use case we encountered. * Note that we don't merge the sample-derived pressure values, as this is * perfomed after merging in fixup_dive() */ a->start = merge_pressures(a->start, a->sample_start, b->start, b->sample_start, false); a->end = merge_pressures(a->end, a->sample_end, b->end, b->sample_end, true); /* Really? */ a->gas_used.mliter += b->gas_used.mliter; a->deco_gas_used.mliter += b->deco_gas_used.mliter; a->bestmix_o2 = a->bestmix_o2 && b->bestmix_o2; a->bestmix_he = a->bestmix_he && b->bestmix_he; } static bool cylinder_has_data(const cylinder_t &cyl) { return !cyl.type.size.mliter && !cyl.type.workingpressure.mbar && cyl.type.description.empty() && !cyl.gasmix.o2.permille && !cyl.gasmix.he.permille && !cyl.start.mbar && !cyl.end.mbar && !cyl.sample_start.mbar && !cyl.sample_end.mbar && !cyl.gas_used.mliter && !cyl.deco_gas_used.mliter; } static bool cylinder_in_use(const struct dive *dive, int idx) { if (idx < 0 || static_cast(idx) >= dive->cylinders.size()) return false; /* This tests for gaschange events or pressure changes */ if (is_cylinder_used(dive, idx) || prefs.include_unused_tanks) return true; /* This tests for typenames or gas contents */ return cylinder_has_data(dive->cylinders[idx]); } /* * Merging cylinder information is non-trivial, because the two dive computers * may have different ideas of what the different cylinder indexing is. * * Logic: take all the cylinder information from the preferred dive ('a'), and * then try to match each of the cylinders in the other dive by the gasmix that * is the best match and hasn't been used yet. * * For each dive, a cylinder-renumbering table is returned. */ static void merge_cylinders(struct dive &res, const struct dive &a, const struct dive &b, int mapping_a[], int mapping_b[]) { size_t max_cylinders = a.cylinders.size() + b.cylinders.size(); auto used_in_a = std::make_unique(max_cylinders); auto used_in_b = std::make_unique(max_cylinders); auto try_to_match = std::make_unique(max_cylinders); std::fill(try_to_match.get(), try_to_match.get() + max_cylinders, false); /* First, clear all cylinders in destination */ res.cylinders.clear(); /* Clear all cylinder mappings */ std::fill(mapping_a, mapping_a + a.cylinders.size(), -1); std::fill(mapping_b, mapping_b + b.cylinders.size(), -1); /* Calculate usage map of cylinders, clear matching map */ for (size_t i = 0; i < max_cylinders; i++) { used_in_a[i] = cylinder_in_use(&a, i); used_in_b[i] = cylinder_in_use(&b, i); } /* * For each cylinder in 'a' that is used, copy it to 'res'. * These are also potential matches for 'b' to use. */ for (size_t i = 0; i < max_cylinders; i++) { size_t res_nr = res.cylinders.size(); if (!used_in_a[i]) continue; mapping_a[i] = static_cast(res_nr); try_to_match[res_nr] = true; res.cylinders.push_back(a.cylinders[i]); } /* * For each cylinder in 'b' that is used, try to match it * with an existing cylinder in 'res' from 'a' */ for (size_t i = 0; i < b.cylinders.size(); i++) { int j; if (!used_in_b[i]) continue; j = match_cylinder(get_cylinder(&b, i), res, try_to_match.get()); /* No match? Add it to the result */ if (j < 0) { size_t res_nr = res.cylinders.size(); mapping_b[i] = static_cast(res_nr); res.cylinders.push_back(b.cylinders[i]); continue; } /* Otherwise, merge the result to the one we found */ mapping_b[i] = j; merge_one_cylinder(get_cylinder(&res, j), get_cylinder(&b, i)); /* Don't match the same target more than once */ try_to_match[j] = false; } } /* Check whether a weightsystem table contains a given weightsystem */ static bool has_weightsystem(const weightsystem_table &t, const weightsystem_t &w) { return any_of(t.begin(), t.end(), [&w] (auto &w2) { return same_weightsystem(w, w2); }); } static void merge_equipment(struct dive &res, const struct dive &a, const struct dive &b) { for (auto &ws: a.weightsystems) { if (!has_weightsystem(res.weightsystems, ws)) res.weightsystems.push_back(ws); } for (auto &ws: b.weightsystems) { if (!has_weightsystem(res.weightsystems, ws)) res.weightsystems.push_back(ws); } } static void merge_temperatures(struct dive &res, const struct dive &a, const struct dive &b) { temperature_t airtemp_a = un_fixup_airtemp(a); temperature_t airtemp_b = un_fixup_airtemp(b); res.airtemp = airtemp_a.mkelvin ? airtemp_a : airtemp_b; MERGE_NONZERO(&res, &a, &b, watertemp.mkelvin); } /* * Pick a trip for a dive */ static struct dive_trip *get_preferred_trip(const struct dive *a, const struct dive *b) { dive_trip *atrip, *btrip; /* If only one dive has a trip, choose that */ atrip = a->divetrip; btrip = b->divetrip; if (!atrip) return btrip; if (!btrip) return atrip; /* Both dives have a trip - prefer the non-autogenerated one */ if (atrip->autogen && !btrip->autogen) return btrip; if (!atrip->autogen && btrip->autogen) return atrip; /* Otherwise, look at the trip data and pick the "better" one */ if (atrip->location.empty()) return btrip; if (btrip->location.empty()) return atrip; if (atrip->notes.empty()) return btrip; if (btrip->notes.empty()) return atrip; /* * Ok, so both have location and notes. * Pick the earlier one. */ if (a->when < b->when) return atrip; return btrip; } #if CURRENTLY_NOT_USED /* * Sample 's' is between samples 'a' and 'b'. It is 'offset' seconds before 'b'. * * If 's' and 'a' are at the same time, offset is 0. */ static int compare_sample(const struct sample &s, const struct sample &a, const struct sample &b, int offset) { unsigned int depth = a.depth.mm; int diff; if (offset) { unsigned int interval = b.time.seconds - a.time.seconds; unsigned int depth_a = a.depth.mm; unsigned int depth_b = b.depth.mm; if (offset > interval) return -1; /* pick the average depth, scaled by the offset from 'b' */ depth = (depth_a * offset) + (depth_b * (interval - offset)); depth /= interval; } diff = s.depth.mm - depth; if (diff < 0) diff = -diff; /* cut off at one meter difference */ if (diff > 1000) diff = 1000; return diff * diff; } /* * Calculate a "difference" in samples between the two dives, given * the offset in seconds between them. Use this to find the best * match of samples between two different dive computers. */ static unsigned long sample_difference(struct divecomputer *a, struct divecomputer *b, int offset) { if (a->samples.empty() || b->samples.empty()) return; unsigned long error = 0; int start = -1; if (!asamples || !bsamples) return 0; /* * skip the first sample - this way we know can always look at * as/bs[-1] to look at the samples around it in the loop. */ auto as = a->samples.begin() + 1; auto bs = a->samples.begin() + 1; for (;;) { /* If we run out of samples, punt */ if (as == a->samples.end()) return INT_MAX; if (bs == b->samples.end()) return INT_MAX; int at = as->time.seconds; int bt = bs->time.seconds + offset; /* b hasn't started yet? Ignore it */ if (bt < 0) { ++bs; continue; } int diff; if (at < bt) { diff = compare_sample(*as, *std::prev(bs), *bs, bt - at); ++as; } else if (at > bt) { diff = compare_sample(*bs, *std::prev(as), *as, at - bt); ++bs; } else { diff = compare_sample(*as, *bs, *bs, 0); ++as; ++bs; } /* Invalid comparison point? */ if (diff < 0) continue; if (start < 0) start = at; error += diff; if (at - start > 120) break; } return error; } /* * Dive 'a' is 'offset' seconds before dive 'b' * * This is *not* because the dive computers clocks aren't in sync, * it is because the dive computers may "start" the dive at different * points in the dive, so the sample at time X in dive 'a' is the * same as the sample at time X+offset in dive 'b'. * * For example, some dive computers take longer to "wake up" when * they sense that you are under water (ie Uemis Zurich if it was off * when the dive started). And other dive computers have different * depths that they activate at, etc etc. * * If we cannot find a shared offset, don't try to merge. */ static int find_sample_offset(struct divecomputer *a, struct divecomputer *b) { /* No samples? Merge at any time (0 offset) */ if (a->samples.empty()) return 0; if (b->samples.empty()) return 0; /* * Common special-case: merging a dive that came from * the same dive computer, so the samples are identical. * Check this first, without wasting time trying to find * some minimal offset case. */ int best = 0; unsigned long max = sample_difference(a, b, 0); if (!max) return 0; /* * Otherwise, look if we can find anything better within * a thirty second window.. */ for (int offset = -30; offset <= 30; offset++) { unsigned long diff; int diff = sample_difference(a, b, offset); if (diff > max) continue; best = offset; max = diff; } return best; } #endif /* * Are a and b "similar" values, when given a reasonable lower end expected * difference? * * So for example, we'd expect different dive computers to give different * max. depth readings. You might have them on different arms, and they * have different pressure sensors and possibly different ideas about * water salinity etc. * * So have an expected minimum difference, but also allow a larger relative * error value. */ static int similar(unsigned long a, unsigned long b, unsigned long expected) { if (!a && !b) return 1; if (a && b) { unsigned long min, max, diff; min = a; max = b; if (a > b) { min = b; max = a; } diff = max - min; /* Smaller than expected difference? */ if (diff < expected) return 1; /* Error less than 10% or the maximum */ if (diff * 10 < max) return 1; } return 0; } /* * Match every dive computer against each other to see if * we have a matching dive. * * Return values: * -1 for "is definitely *NOT* the same dive" * 0 for "don't know" * 1 for "is definitely the same dive" */ static int match_dc_dive(const struct dive &a, const struct dive &b) { for (auto &dc1: a.dcs) { for (auto &dc2: b.dcs) { int match = match_one_dc(dc1, dc2); if (match) return match; } } return 0; } /* * Do we want to automatically try to merge two dives that * look like they are the same dive? * * This happens quite commonly because you download a dive * that you already had, or perhaps because you maintained * multiple dive logs and want to load them all together * (possibly one of them was imported from another dive log * application entirely). * * NOTE! We mainly look at the dive time, but it can differ * between two dives due to a few issues: * * - rounding the dive date to the nearest minute in other dive * applications * * - dive computers with "relative datestamps" (ie the dive * computer doesn't actually record an absolute date at all, * but instead at download-time synchronizes its internal * time with real-time on the downloading computer) * * - using multiple dive computers with different real time on * the same dive * * We do not merge dives that look radically different, and if * the dates are *too* far off the user will have to join two * dives together manually. But this tries to handle the sane * cases. */ static bool likely_same_dive(const struct dive &a, const struct dive &b) { /* don't merge manually added dives with anything */ if (is_dc_manually_added_dive(&a.dcs[0]) || is_dc_manually_added_dive(&b.dcs[0])) return 0; /* * Do some basic sanity testing of the values we * have filled in during 'fixup_dive()' */ if (!similar(a.maxdepth.mm, b.maxdepth.mm, 1000) || (a.meandepth.mm && b.meandepth.mm && !similar(a.meandepth.mm, b.meandepth.mm, 1000)) || !a.duration.seconds || !b.duration.seconds || !similar(a.duration.seconds, b.duration.seconds, 5 * 60)) return 0; /* See if we can get an exact match on the dive computer */ if (match_dc_dive(a, b)) return true; /* * Allow a time difference due to dive computer time * setting etc. Check if they overlap. */ int fuzz = std::max(a.duration.seconds, b.duration.seconds) / 2; fuzz = std::max(fuzz, 60); return (a.when <= b.when + fuzz) && (a.when >= b.when - fuzz); } /* * This could do a lot more merging. Right now it really only * merges almost exact duplicates - something that happens easily * with overlapping dive downloads. * * If new dives are merged into the dive table, dive a is supposed to * be the old dive and dive b is supposed to be the newly imported * dive. If the flag "prefer_downloaded" is set, data of the latter * will take priority over the former. * * Attn: The dive_site parameter of the dive will be set, but the caller * still has to register the dive in the dive site! */ struct std::unique_ptr try_to_merge(const struct dive &a, const struct dive &b, bool prefer_downloaded) { if (!likely_same_dive(a, b)) return {}; auto [res, trip, site] = merge_dives(a, b, 0, prefer_downloaded); res->dive_site = site; /* Caller has to call site->add_dive()! */ return std::move(res); } static bool operator==(const sample &a, const sample &b) { if (a.time.seconds != b.time.seconds) return false; if (a.depth.mm != b.depth.mm) return false; if (a.temperature.mkelvin != b.temperature.mkelvin) return false; if (a.pressure[0].mbar != b.pressure[0].mbar) return false; return a.sensor[0] == b.sensor[0]; } static int same_dc(const struct divecomputer &a, const struct divecomputer &b) { int i; i = match_one_dc(a, b); if (i) return i > 0; if (a.when && b.when && a.when != b.when) return 0; if (a.samples != b.samples) return 0; return a.events == b.events; } static int might_be_same_device(const struct divecomputer &a, const struct divecomputer &b) { /* No dive computer model? That matches anything */ if (a.model.empty() || b.model.empty()) return 1; /* Otherwise at least the model names have to match */ if (strcasecmp(a.model.c_str(), b.model.c_str())) return 0; /* No device ID? Match */ if (!a.deviceid || !b.deviceid) return 1; return a.deviceid == b.deviceid; } static void remove_redundant_dc(struct dive &d, bool prefer_downloaded) { // Note: since the vector doesn't grow and we only erase // elements after the iterator, this is fine. for (auto it = d.dcs.begin(); it != d.dcs.end(); ++it) { // Remove all following DCs that compare as equal. // Use the (infamous) erase-remove idiom. auto it2 = std::remove_if(std::next(it), d.dcs.end(), [d, prefer_downloaded, &it] (const divecomputer &dc) { return same_dc(*it, dc) || (prefer_downloaded && might_be_same_device(*it, dc)); }); d.dcs.erase(it2, d.dcs.end()); prefer_downloaded = false; } } static const struct divecomputer *find_matching_computer(const struct divecomputer &match, const struct dive &d) { for (const auto &dc: d.dcs) { if (might_be_same_device(match, dc)) return &dc; } return nullptr; } static void copy_dive_computer(struct divecomputer &res, const struct divecomputer &a) { res = a; res.samples.clear(); res.events.clear(); } /* * Join dive computers with a specific time offset between * them. * * Use the dive computer ID's (or names, if ID's are missing) * to match them up. If we find a matching dive computer, we * merge them. If not, we just take the data from 'a'. */ static void interleave_dive_computers(struct dive &res, const struct dive &a, const struct dive &b, const int cylinders_map_a[], const int cylinders_map_b[], int offset) { res.dcs.clear(); for (const auto &dc1: a.dcs) { res.dcs.emplace_back(); divecomputer &newdc = res.dcs.back(); copy_dive_computer(newdc, dc1); const divecomputer *match = find_matching_computer(dc1, b); if (match) { merge_events(res, newdc, dc1, *match, cylinders_map_a, cylinders_map_b, offset); merge_samples(newdc, dc1, *match, cylinders_map_a, cylinders_map_b, offset); merge_extra_data(newdc, dc1, *match); /* Use the diveid of the later dive! */ if (offset > 0) newdc.diveid = match->diveid; } else { dc_cylinder_renumber(res, res.dcs.back(), cylinders_map_a); } } } /* * Join dive computer information. * * If we have old-style dive computer information (no model * name etc), we will prefer a new-style one and just throw * away the old. We're assuming it's a re-download. * * Otherwise, we'll just try to keep all the information, * unless the user has specified that they prefer the * downloaded computer, in which case we'll aggressively * try to throw out old information that *might* be from * that one. */ static void join_dive_computers(struct dive &d, const struct dive &a, const struct dive &b, const int cylinders_map_a[], const int cylinders_map_b[], bool prefer_downloaded) { d.dcs.clear(); if (!a.dcs[0].model.empty() && b.dcs[0].model.empty()) { copy_dc_renumber(d, a, cylinders_map_a); return; } if (!b.dcs[0].model.empty() && a.dcs[0].model.empty()) { copy_dc_renumber(d, b, cylinders_map_b); return; } copy_dc_renumber(d, a, cylinders_map_a); copy_dc_renumber(d, b, cylinders_map_b); remove_redundant_dc(d, prefer_downloaded); } static bool has_dc_type(const struct dive &dive, bool dc_is_planner) { return std::any_of(dive.dcs.begin(), dive.dcs.end(), [dc_is_planner] (const divecomputer &dc) { return is_dc_planner(&dc) == dc_is_planner; }); } // Does this dive have a dive computer for which is_dc_planner has value planned bool dive::is_planned() const { return has_dc_type(*this, true); } bool dive::is_logged() const { return has_dc_type(*this, false); } /* * Merging two dives can be subtle, because there's two different ways * of merging: * * (a) two distinctly _different_ dives that have the same dive computer * are merged into one longer dive, because the user asked for it * in the divelist. * * Because this case is with the same dive computer, we *know* the * two must have a different start time, and "offset" is the relative * time difference between the two. * * (b) two different dive computers that we might want to merge into * one single dive with multiple dive computers. * * This is the "try_to_merge()" case, which will have offset == 0, * even if the dive times might be different. * * If new dives are merged into the dive table, dive a is supposed to * be the old dive and dive b is supposed to be the newly imported * dive. If the flag "prefer_downloaded" is set, data of the latter * will take priority over the former. * * The trip the new dive should be associated with (if any) is returned * in the "trip" output parameter. * * The dive site the new dive should be added to (if any) is returned * in the "dive_site" output parameter. */ merge_result merge_dives(const struct dive &a_in, const struct dive &b_in, int offset, bool prefer_downloaded) { merge_result res = { std::make_unique(), nullptr, nullptr }; if (offset) { /* * If "likely_same_dive()" returns true, that means that * it is *not* the same dive computer, and we do not want * to try to turn it into a single longer dive. So we'd * join them as two separate dive computers at zero offset. */ if (likely_same_dive(a_in, b_in)) offset = 0; } const dive *a = &a_in; const dive *b = &b_in; if (is_dc_planner(&a->dcs[0])) std::swap(a, b); res.dive->when = prefer_downloaded ? b->when : a->when; res.dive->selected = a->selected || b->selected; res.trip = get_preferred_trip(a, b); MERGE_TXT(res.dive, a, b, notes, "\n--\n"); MERGE_TXT(res.dive, a, b, buddy, ", "); MERGE_TXT(res.dive, a, b, diveguide, ", "); MERGE_MAX(res.dive, a, b, rating); MERGE_TXT(res.dive, a, b, suit, ", "); MERGE_MAX(res.dive, a, b, number); MERGE_NONZERO(res.dive, a, b, visibility); MERGE_NONZERO(res.dive, a, b, wavesize); MERGE_NONZERO(res.dive, a, b, current); MERGE_NONZERO(res.dive, a, b, surge); MERGE_NONZERO(res.dive, a, b, chill); res.dive->pictures = !a->pictures.empty() ? a->pictures : b->pictures; res.dive->tags = taglist_merge(a->tags, b->tags); /* if we get dives without any gas / cylinder information in an import, make sure * that there is at leatst one entry in the cylinder map for that dive */ auto cylinders_map_a = std::make_unique(std::max(size_t(1), a->cylinders.size())); auto cylinders_map_b = std::make_unique(std::max(size_t(1), b->cylinders.size())); merge_cylinders(*res.dive, *a, *b, cylinders_map_a.get(), cylinders_map_b.get()); merge_equipment(*res.dive, *a, *b); merge_temperatures(*res.dive, *a, *b); if (prefer_downloaded) { /* If we prefer downloaded, do those first, and get rid of "might be same" computers */ join_dive_computers(*res.dive, *b, *a, cylinders_map_b.get(), cylinders_map_a.get(), true); } else if (offset && might_be_same_device(a->dcs[0], b->dcs[0])) { interleave_dive_computers(*res.dive, *a, *b, cylinders_map_a.get(), cylinders_map_b.get(), offset); } else { join_dive_computers(*res.dive, *a, *b, cylinders_map_a.get(), cylinders_map_b.get(), false); } /* The CNS values will be recalculated from the sample in fixup_dive() */ res.dive->cns = res.dive->maxcns = 0; /* we take the first dive site, unless it's empty */ res.site = a->dive_site && !a->dive_site->is_empty() ? a->dive_site : b->dive_site; if (!dive_site_has_gps_location(res.site) && dive_site_has_gps_location(b->dive_site)) { /* we picked the first dive site and that didn't have GPS data, but the new dive has * GPS data (that could be a download from a GPS enabled dive computer). * Keep the dive site, but add the GPS data */ res.site->location = b->dive_site->location; } fixup_dive(res.dive.get()); return res; } struct start_end_pressure { pressure_t start; pressure_t end; }; static void force_fixup_dive(struct dive *d) { struct divecomputer *dc = &d->dcs[0]; int old_temp = dc->watertemp.mkelvin; int old_mintemp = d->mintemp.mkelvin; int old_maxtemp = d->maxtemp.mkelvin; duration_t old_duration = d->duration; std::vector old_pressures(d->cylinders.size()); d->maxdepth.mm = 0; dc->maxdepth.mm = 0; d->watertemp.mkelvin = 0; dc->watertemp.mkelvin = 0; d->duration.seconds = 0; d->maxtemp.mkelvin = 0; d->mintemp.mkelvin = 0; for (auto [i, cyl]: enumerated_range(d->cylinders)) { old_pressures[i].start = cyl.start; old_pressures[i].end = cyl.end; cyl.start.mbar = 0; cyl.end.mbar = 0; } fixup_dive(d); if (!d->watertemp.mkelvin) d->watertemp.mkelvin = old_temp; if (!dc->watertemp.mkelvin) dc->watertemp.mkelvin = old_temp; if (!d->maxtemp.mkelvin) d->maxtemp.mkelvin = old_maxtemp; if (!d->mintemp.mkelvin) d->mintemp.mkelvin = old_mintemp; if (!d->duration.seconds) d->duration = old_duration; for (auto [i, cyl]: enumerated_range(d->cylinders)) { if (!cyl.start.mbar) cyl.start = old_pressures[i].start; if (!cyl.end.mbar) cyl.end = old_pressures[i].end; } } /* * Split a dive that has a surface interval from samples 'a' to 'b' * into two dives, but don't add them to the log yet. * Returns the nr of the old dive or <0 on failure. * Moreover, on failure both output dives are set to NULL. * On success, the newly allocated dives are returned in out1 and out2. */ static std::array, 2> split_dive_at(const struct dive &dive, int a, int b) { size_t nr = divelog.dives.get_idx(&dive); /* if we can't find the dive in the dive list, don't bother */ if (nr == std::string::npos) return {}; /* Splitting should leave at least 3 samples per dive */ if (a < 3 || static_cast(b + 4) > dive.dcs[0].samples.size()) return {}; /* We're not trying to be efficient here.. */ auto d1 = std::make_unique(dive); auto d2 = std::make_unique(dive); d1->id = dive_getUniqID(); d2->id = dive_getUniqID(); d1->divetrip = d2->divetrip = nullptr; /* now unselect the first first segment so we don't keep all * dives selected by mistake. But do keep the second one selected * so the algorithm keeps splitting the dive further */ d1->selected = false; struct divecomputer &dc1 = d1->dcs[0]; struct divecomputer &dc2 = d2->dcs[0]; /* * Cut off the samples of d1 at the beginning * of the interval. */ dc1.samples.resize(a); /* And get rid of the 'b' first samples of d2 */ dc2.samples.erase(dc2.samples.begin(), dc2.samples.begin() + b); /* Now the secondary dive computers */ int32_t t = dc2.samples[0].time.seconds; for (auto it1 = d1->dcs.begin() + 1; it1 != d1->dcs.end(); ++it1) { auto it = std::find_if(it1->samples.begin(), it1->samples.end(), [t](auto &sample) { return sample.time.seconds >= t; }); it1->samples.erase(it, it1->samples.end()); } for (auto it2 = d2->dcs.begin() + 1; it2 != d2->dcs.end(); ++it2) { auto it = std::find_if(it2->samples.begin(), it2->samples.end(), [t](auto &sample) { return sample.time.seconds >= t; }); it2->samples.erase(it2->samples.begin(), it); } /* * This is where we cut off events from d1, * and shift everything in d2 */ d2->when += t; auto it1 = d1->dcs.begin(); auto it2 = d2->dcs.begin(); while (it1 != d1->dcs.end() && it2 != d2->dcs.end()) { it2->when += t; for (auto &sample: it2->samples) sample.time.seconds -= t; /* Remove the events past 't' from d1 */ auto it = std::lower_bound(it1->events.begin(), it1->events.end(), t, [] (struct event &ev, int t) { return ev.time.seconds < t; }); it1->events.erase(it, it1->events.end()); /* Remove the events before 't' from d2, and shift the rest */ it = std::lower_bound(it2->events.begin(), it2->events.end(), t, [] (struct event &ev, int t) { return ev.time.seconds < t; }); it2->events.erase(it2->events.begin(), it); for (auto &ev: it2->events) ev.time.seconds -= t; ++it1; ++it2; } force_fixup_dive(d1.get()); force_fixup_dive(d2.get()); /* * Was the dive numbered? If it was the last dive, then we'll * increment the dive number for the tail part that we split off. * Otherwise the tail is unnumbered. */ if (d2->number) { if (divelog.dives.size() == nr + 1) d2->number++; else d2->number = 0; } return { std::move(d1), std::move(d2) }; } /* in freedive mode we split for as little as 10 seconds on the surface, * otherwise we use a minute */ static bool should_split(const struct divecomputer *dc, int t1, int t2) { int threshold = dc->divemode == FREEDIVE ? 10 : 60; return t2 - t1 >= threshold; } /* * Try to split a dive into multiple dives at a surface interval point. * * NOTE! We will split when there is at least one surface event that has * non-surface events on both sides. * * The surface interval points are determined using the first dive computer. * * In other words, this is a (simplified) reversal of the dive merging. */ std::array, 2> split_dive(const struct dive &dive) { const struct divecomputer *dc = &dive.dcs[0]; bool at_surface = true; if (dc->samples.empty()) return {}; auto surface_start = dc->samples.begin(); for (auto it = dc->samples.begin() + 1; it != dc->samples.end(); ++it) { bool surface_sample = it->depth.mm < SURFACE_THRESHOLD; /* * We care about the transition from and to depth 0, * not about the depth staying similar. */ if (at_surface == surface_sample) continue; at_surface = surface_sample; // Did it become surface after having been non-surface? We found the start if (at_surface) { surface_start = it; continue; } // Going down again? We want at least a minute from // the surface start. if (surface_start == dc->samples.begin()) continue; if (!should_split(dc, surface_start->time.seconds, std::prev(it)->time.seconds)) continue; return split_dive_at(dive, surface_start - dc->samples.begin(), it - dc->samples.begin() - 1); } return {}; } std::array, 2> split_dive_at_time(const struct dive &dive, duration_t time) { auto it = std::find_if(dive.dcs[0].samples.begin(), dive.dcs[0].samples.end(), [time](auto &sample) { return sample.time.seconds >= time.seconds; }); if (it == dive.dcs[0].samples.end()) return {}; size_t idx = it - dive.dcs[0].samples.begin(); if (idx < 1) return {}; return split_dive_at(dive, static_cast(idx), static_cast(idx - 1)); } /* * "dc_maxtime()" is how much total time this dive computer * has for this dive. Note that it can differ from "duration" * if there are surface events in the middle. * * Still, we do ignore all but the last surface samples from the * end, because some divecomputers just generate lots of them. */ static inline int dc_totaltime(const struct divecomputer &dc) { int time = dc.duration.seconds; for (auto it = dc.samples.rbegin(); it != dc.samples.rend(); ++it) { time = it->time.seconds; if (it->depth.mm >= SURFACE_THRESHOLD) break; } return time; } /* * The end of a dive is actually not trivial, because "duration" * is not the duration until the end, but the time we spend under * water, which can be very different if there are surface events * during the dive. * * So walk the dive computers, looking for the longest actual * time in the samples (and just default to the dive duration if * there are no samples). */ duration_t dive::totaltime() const { int time = duration.seconds; bool logged = is_logged(); for (auto &dc: dcs) { if (logged || !is_dc_planner(&dc)) { int dc_time = dc_totaltime(dc); if (dc_time > time) time = dc_time; } } return { time }; } timestamp_t dive::endtime() const { return when + totaltime().seconds; } bool time_during_dive_with_offset(const struct dive *dive, timestamp_t when, timestamp_t offset) { timestamp_t start = dive->when; timestamp_t end = dive->endtime(); return start - offset <= when && when <= end + offset; } /* this sets a usually unused copy of the preferences with the units * that were active the last time the dive list was saved to git storage * (this isn't used in XML files); storing the unit preferences in the * data file is usually pointless (that's a setting of the software, * not a property of the data), but it's a great hint of what the user * might expect to see when creating a backend service that visualizes * the dive list without Subsurface running - so this is basically a * functionality for the core library that Subsurface itself doesn't * use but that another consumer of the library (like an HTML exporter) * will need */ void set_informational_units(const char *units) { if (strstr(units, "METRIC")) { git_prefs.unit_system = METRIC; } else if (strstr(units, "IMPERIAL")) { git_prefs.unit_system = IMPERIAL; } else if (strstr(units, "PERSONALIZE")) { git_prefs.unit_system = PERSONALIZE; if (strstr(units, "METERS")) git_prefs.units.length = units::METERS; if (strstr(units, "FEET")) git_prefs.units.length = units::FEET; if (strstr(units, "LITER")) git_prefs.units.volume = units::LITER; if (strstr(units, "CUFT")) git_prefs.units.volume = units::CUFT; if (strstr(units, "BAR")) git_prefs.units.pressure = units::BAR; if (strstr(units, "PSI")) git_prefs.units.pressure = units::PSI; if (strstr(units, "CELSIUS")) git_prefs.units.temperature = units::CELSIUS; if (strstr(units, "FAHRENHEIT")) git_prefs.units.temperature = units::FAHRENHEIT; if (strstr(units, "KG")) git_prefs.units.weight = units::KG; if (strstr(units, "LBS")) git_prefs.units.weight = units::LBS; if (strstr(units, "SECONDS")) git_prefs.units.vertical_speed_time = units::SECONDS; if (strstr(units, "MINUTES")) git_prefs.units.vertical_speed_time = units::MINUTES; } } void set_git_prefs(const char *prefs) { if (strstr(prefs, "TANKBAR")) git_prefs.tankbar = 1; if (strstr(prefs, "SHOW_SETPOINT")) git_prefs.show_ccr_setpoint = 1; if (strstr(prefs, "SHOW_SENSORS")) git_prefs.show_ccr_sensors = 1; if (strstr(prefs, "PO2_GRAPH")) git_prefs.pp_graphs.po2 = 1; } /* clones a dive and moves given dive computer to front */ std::unique_ptr clone_make_first_dc(const struct dive &d, int dc_number) { /* copy the dive */ auto res = std::make_unique(d); /* make a new unique id, since we still can't handle two equal ids */ res->id = dive_getUniqID(); if (dc_number != 0) move_in_range(res->dcs, dc_number, dc_number + 1, 0); return res; } /* Clone a dive and delete given dive computer */ std::unique_ptr clone_delete_divecomputer(const struct dive &d, int dc_number) { /* copy the dive */ auto res = std::make_unique(d); /* make a new unique id, since we still can't handle two equal ids */ res->id = dive_getUniqID(); if (res->dcs.size() <= 1) return res; if (dc_number < 0 || static_cast(dc_number) >= res->dcs.size()) return res; res->dcs.erase(res->dcs.begin() + dc_number); force_fixup_dive(res.get()); return res; } /* * This splits the dive src by dive computer. The first output dive has all * dive computers except num, the second only dive computer num. * The dives will not be associated with a trip. * On error, both output parameters are set to NULL. */ std::array, 2> split_divecomputer(const struct dive &src, int num) { if (num < 0 || src.dcs.size() < 2 || static_cast(num) >= src.dcs.size()) return {}; // Copy the dive with full divecomputer list auto out1 = std::make_unique(src); // Remove all DCs, stash them and copy the dive again. // Then, we have to dives without DCs and a list of DCs. std::vector dcs; std::swap(out1->dcs, dcs); auto out2 = std::make_unique(*out1); // Give the dives new unique ids and remove them from the trip. out1->id = dive_getUniqID(); out2->id = dive_getUniqID(); out1->divetrip = out2->divetrip = NULL; // Now copy the divecomputers out1->dcs.reserve(src.dcs.size() - 1); for (auto [idx, dc]: enumerated_range(dcs)) { auto &dcs = idx == num ? out2->dcs : out1->dcs; dcs.push_back(std::move(dc)); } // Recalculate gas data, etc. fixup_dive(out1.get()); fixup_dive(out2.get()); return { std::move(out1), std::move(out2) }; } //Calculate O2 in best mix fraction_t best_o2(depth_t depth, const struct dive *dive, bool in_planner) { fraction_t fo2; int po2 = in_planner ? prefs.bottompo2 : (int)(prefs.modpO2 * 1000.0); fo2.permille = (po2 * 100 / depth_to_mbar(depth.mm, dive)) * 10; //use integer arithmetic to round down to nearest percent // Don't permit >100% O2 if (fo2.permille > 1000) fo2.permille = 1000; return fo2; } //Calculate He in best mix. O2 is considered narcopic fraction_t best_he(depth_t depth, const struct dive *dive, bool o2narcotic, fraction_t fo2) { fraction_t fhe; int pnarcotic, ambient; pnarcotic = depth_to_mbar(prefs.bestmixend.mm, dive); ambient = depth_to_mbar(depth.mm, dive); if (o2narcotic) { fhe.permille = (100 - 100 * pnarcotic / ambient) * 10; //use integer arithmetic to round up to nearest percent } else { fhe.permille = 1000 - fo2.permille - N2_IN_AIR * pnarcotic / ambient; } if (fhe.permille < 0) fhe.permille = 0; return fhe; } void invalidate_dive_cache(struct dive *dive) { memset(dive->git_id, 0, 20); } bool dive_cache_is_valid(const struct dive *dive) { static const unsigned char null_id[20] = { 0, }; return !!memcmp(dive->git_id, null_id, 20); } int get_surface_pressure_in_mbar(const struct dive *dive, bool non_null) { int mbar = dive->surface_pressure.mbar; if (!mbar && non_null) mbar = SURFACE_PRESSURE; return mbar; } /* This returns the conversion factor that you need to multiply * a (relative) depth in mm to obtain a (relative) pressure in mbar. * As everywhere in Subsurface, the expected unit of a salinity is * g/10l such that sea water has a salinity of 10300 */ static double salinity_to_specific_weight(int salinity) { return salinity * 0.981 / 100000.0; } /* Pa = N/m^2 - so we determine the weight (in N) of the mass of 10m * of water (and use standard salt water at 1.03kg per liter if we don't know salinity) * and add that to the surface pressure (or to 1013 if that's unknown) */ static double calculate_depth_to_mbarf(int depth, pressure_t surface_pressure, int salinity) { double specific_weight; int mbar = surface_pressure.mbar; if (!mbar) mbar = SURFACE_PRESSURE; if (!salinity) salinity = SEAWATER_SALINITY; if (salinity < 500) salinity += FRESHWATER_SALINITY; specific_weight = salinity_to_specific_weight(salinity); return mbar + depth * specific_weight; } int depth_to_mbar(int depth, const struct dive *dive) { return lrint(depth_to_mbarf(depth, dive)); } double depth_to_mbarf(int depth, const struct dive *dive) { // For downloaded and planned dives, use DC's values int salinity = dive->dcs[0].salinity; pressure_t surface_pressure = dive->dcs[0].surface_pressure; if (is_dc_manually_added_dive(&dive->dcs[0])) { // For manual dives, salinity and pressure in another place... surface_pressure = dive->surface_pressure; salinity = dive->user_salinity; } return calculate_depth_to_mbarf(depth, surface_pressure, salinity); } double depth_to_bar(int depth, const struct dive *dive) { return depth_to_mbar(depth, dive) / 1000.0; } double depth_to_atm(int depth, const struct dive *dive) { return mbar_to_atm(depth_to_mbar(depth, dive)); } /* for the inverse calculation we use just the relative pressure * (that's the one that some dive computers like the Uemis Zurich * provide - for the other models that do this libdivecomputer has to * take care of this, but the Uemis we support natively */ int rel_mbar_to_depth(int mbar, const struct dive *dive) { // For downloaded and planned dives, use DC's salinity. Manual dives, use user's salinity int salinity = is_dc_manually_added_dive(&dive->dcs[0]) ? dive->user_salinity : dive->dcs[0].salinity; if (!salinity) salinity = SEAWATER_SALINITY; /* whole mbar gives us cm precision */ double specific_weight = salinity_to_specific_weight(salinity); return (int)lrint(mbar / specific_weight); } int mbar_to_depth(int mbar, const struct dive *dive) { // For downloaded and planned dives, use DC's pressure. Manual dives, use user's pressure pressure_t surface_pressure = is_dc_manually_added_dive(&dive->dcs[0]) ? dive->surface_pressure : dive->dcs[0].surface_pressure; if (!surface_pressure.mbar) surface_pressure.mbar = SURFACE_PRESSURE; return rel_mbar_to_depth(mbar - surface_pressure.mbar, dive); } /* MOD rounded to multiples of roundto mm */ depth_t gas_mod(struct gasmix mix, pressure_t po2_limit, const struct dive *dive, int roundto) { depth_t rounded_depth; double depth = (double) mbar_to_depth(po2_limit.mbar * 1000 / get_o2(mix), dive); rounded_depth.mm = (int)lrint(depth / roundto) * roundto; return rounded_depth; } /* Maximum narcotic depth rounded to multiples of roundto mm */ depth_t gas_mnd(struct gasmix mix, depth_t end, const struct dive *dive, int roundto) { depth_t rounded_depth; pressure_t ppo2n2; ppo2n2.mbar = depth_to_mbar(end.mm, dive); int maxambient = prefs.o2narcotic ? (int)lrint(ppo2n2.mbar / (1 - get_he(mix) / 1000.0)) : get_n2(mix) > 0 ? (int)lrint(ppo2n2.mbar * N2_IN_AIR / get_n2(mix)) : // Actually: Infinity 1000000; rounded_depth.mm = (int)lrint(((double)mbar_to_depth(maxambient, dive)) / roundto) * roundto; return rounded_depth; } struct dive *get_dive(int nr) { if (nr < 0 || static_cast(nr) >= divelog.dives.size()) return nullptr; return divelog.dives[nr].get(); } struct dive_site *get_dive_site_for_dive(const struct dive *dive) { return dive->dive_site; } std::string get_dive_country(const struct dive *dive) { struct dive_site *ds = dive->dive_site; return ds ? taxonomy_get_country(ds->taxonomy) : std::string(); } std::string get_dive_location(const struct dive *dive) { const struct dive_site *ds = dive->dive_site; return ds ? ds->name : std::string(); } unsigned int number_of_computers(const struct dive *dive) { return dive ? static_cast(dive->dcs.size()) : 1; } struct divecomputer *get_dive_dc(struct dive *dive, int nr) { if (!dive || dive->dcs.empty()) return NULL; nr = std::max(0, nr); return &dive->dcs[static_cast(nr) % dive->dcs.size()]; } const struct divecomputer *get_dive_dc(const struct dive *dive, int nr) { return get_dive_dc((struct dive *)dive, nr); } bool dive_site_has_gps_location(const struct dive_site *ds) { return ds && has_location(&ds->location); } int dive_has_gps_location(const struct dive *dive) { if (!dive) return false; return dive_site_has_gps_location(dive->dive_site); } /* Extract GPS location of a dive computer stored in the GPS1 * or GPS2 extra data fields */ static location_t dc_get_gps_location(const struct divecomputer *dc) { location_t res; for (const auto &data: dc->extra_data) { if (data.key == "GPS1") { parse_location(data.value.c_str(), &res); /* If we found a valid GPS1 field exit early since * it has priority over GPS2 */ if (has_location(&res)) break; } else if (data.key == "GPS2") { /* For GPS2 fields continue searching, as we might * still find a GPS1 field */ parse_location(data.value.c_str(), &res); } } return res; } /* Get GPS location for a dive. Highest priority is given to the GPS1 * extra data written by libdivecomputer, as this comes from a real GPS * device. If that doesn't exits, use the currently set dive site. * This function is potentially slow, therefore only call sparingly * and remember the result. */ location_t dive_get_gps_location(const struct dive *d) { for (const struct divecomputer &dc: d->dcs) { location_t res = dc_get_gps_location(&dc); if (has_location(&res)) return res; } /* No libdivecomputer generated GPS data found. * Let's use the location of the current dive site. */ if (d->dive_site) return d->dive_site->location; return location_t(); } gasmix_loop::gasmix_loop(const struct dive &d, const struct divecomputer &dc) : dive(d), dc(dc), last(gasmix_air), loop("gaschange") { /* if there is no cylinder, return air */ if (dive.cylinders.empty()) return; /* on first invocation, get initial gas mix and first event (if any) */ int cyl = explicit_first_cylinder(&dive, &dc); last = get_cylinder(&dive, cyl)->gasmix; ev = loop.next(dc); } gasmix gasmix_loop::next(int time) { /* if there is no cylinder, return air */ if (dive.cylinders.empty()) return last; while (ev && ev->time.seconds <= time) { last = get_gasmix_from_event(&dive, *ev); ev = loop.next(dc); } return last; } /* get the gas at a certain time during the dive */ /* If there is a gasswitch at that time, it returns the new gasmix */ struct gasmix get_gasmix_at_time(const struct dive &d, const struct divecomputer &dc, duration_t time) { return gasmix_loop(d, dc).next(time.seconds); } /* Does that cylinder have any pressure readings? */ bool cylinder_with_sensor_sample(const struct dive *dive, int cylinder_id) { for (const auto &dc: dive->dcs) { for (const auto &sample: dc.samples) { for (int j = 0; j < MAX_SENSORS; ++j) { if (!sample.pressure[j].mbar) continue; if (sample.sensor[j] == cylinder_id) return true; } } } return false; } /* * What do the dive computers say the water temperature is? * (not in the samples, but as dc property for dcs that support that) */ temperature_t dive::dc_watertemp() const { int sum = 0, nr = 0; for (auto &dc: dcs) { if (dc.watertemp.mkelvin) { sum += dc.watertemp.mkelvin; nr++; } } if (!nr) return temperature_t(); return temperature_t{ static_cast((sum + nr / 2) / nr) }; } /* * What do the dive computers say the air temperature is? */ temperature_t dive::dc_airtemp() const { int sum = 0, nr = 0; for (auto &dc: dcs) { if (dc.airtemp.mkelvin) { sum += dc.airtemp.mkelvin; nr++; } } if (!nr) return temperature_t(); return temperature_t{ static_cast((sum + nr / 2) / nr) }; }