// SPDX-License-Identifier: GPL-2.0 #include "divecomputer.h" #include "errorhelper.h" #include "event.h" #include "extradata.h" #include "pref.h" #include "sample.h" #include "subsurface-string.h" #include #include #include divecomputer::divecomputer() = default; divecomputer::~divecomputer() = default; divecomputer::divecomputer(const divecomputer &) = default; divecomputer::divecomputer(divecomputer &&) = default; divecomputer &divecomputer::operator=(const divecomputer &) = default; /* * Good fake dive profiles are hard. * * "depthtime" is the integral of the dive depth over * time ("area" of the dive profile). We want that * area to match the average depth (avg_d*max_t). * * To do that, we generate a 6-point profile: * * (0, 0) * (t1, max_d) * (t2, max_d) * (t3, d) * (t4, d) * (max_t, 0) * * with the same ascent/descent rates between the * different depths. * * NOTE: avg_d, max_d and max_t are given constants. * The rest we can/should play around with to get a * good-looking profile. * * That six-point profile gives a total area of: * * (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) * * And the "same ascent/descent rates" requirement * gives us (time per depth must be same): * * t1 / max_d = (t3-t2) / (max_d-d) * t1 / max_d = (max_t-t4) / d * * We also obviously require: * * 0 <= t1 <= t2 <= t3 <= t4 <= max_t * * Let us call 'd_frac = d / max_d', and we get: * * Total area must match average depth-time: * * (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) = avg_d*max_t * max_d*(max_t-t1-(1-d_frac)*(t4-t3)) = avg_d*max_t * max_t-t1-(1-d_frac)*(t4-t3) = avg_d*max_t/max_d * t1+(1-d_frac)*(t4-t3) = max_t*(1-avg_d/max_d) * * and descent slope must match ascent slopes: * * t1 / max_d = (t3-t2) / (max_d*(1-d_frac)) * t1 = (t3-t2)/(1-d_frac) * * and * * t1 / max_d = (max_t-t4) / (max_d*d_frac) * t1 = (max_t-t4)/d_frac * * In general, we have more free variables than we have constraints, * but we can aim for certain basics, like a good ascent slope. */ static int fill_samples(std::vector &s, int max_d, int avg_d, int max_t, double slope, double d_frac) { double t_frac = max_t * (1 - avg_d / (double)max_d); int t1 = lrint(max_d / slope); int t4 = lrint(max_t - t1 * d_frac); int t3 = lrint(t4 - (t_frac - t1) / (1 - d_frac)); int t2 = lrint(t3 - t1 * (1 - d_frac)); if (t1 < 0 || t1 > t2 || t2 > t3 || t3 > t4 || t4 > max_t) return 0; s[1].time.seconds = t1; s[1].depth.mm = max_d; s[2].time.seconds = t2; s[2].depth.mm = max_d; s[3].time.seconds = t3; s[3].depth.mm = lrint(max_d * d_frac); s[4].time.seconds = t4; s[4].depth.mm = lrint(max_d * d_frac); return 1; } /* we have no average depth; instead of making up a random average depth * we should assume either a PADI rectangular profile (for short and/or * shallow dives) or more reasonably a six point profile with a 3 minute * safety stop at 5m */ static void fill_samples_no_avg(std::vector &s, int max_d, int max_t, double slope) { // shallow or short dives are just trapecoids based on the given slope if (max_d < 10000 || max_t < 600) { s[1].time.seconds = lrint(max_d / slope); s[1].depth.mm = max_d; s[2].time.seconds = max_t - lrint(max_d / slope); s[2].depth.mm = max_d; } else { s[1].time.seconds = lrint(max_d / slope); s[1].depth.mm = max_d; s[2].time.seconds = max_t - lrint(max_d / slope) - 180; s[2].depth.mm = max_d; s[3].time.seconds = max_t - lrint(5000 / slope) - 180; s[3].depth.mm = 5000; s[4].time.seconds = max_t - lrint(5000 / slope); s[4].depth.mm = 5000; } } void fake_dc(struct divecomputer *dc) { /* The dive has no samples, so create a few fake ones */ int max_t = dc->duration.seconds; int max_d = dc->maxdepth.mm; int avg_d = dc->meandepth.mm; if (!max_t || !max_d) { dc->samples.clear(); return; } std::vector &fake = dc->samples; fake.resize(6); fake[5].time.seconds = max_t; for (int i = 0; i < 6; i++) { fake[i].bearing.degrees = -1; fake[i].ndl.seconds = -1; } /* Set last manually entered time to the total dive length */ dc->last_manual_time = dc->duration; /* * We want to fake the profile so that the average * depth ends up correct. However, in the absence of * a reasonable average, let's just make something * up. Note that 'avg_d == max_d' is _not_ a reasonable * average. * We explicitly treat avg_d == 0 differently */ if (avg_d == 0) { /* we try for a sane slope, but bow to the insanity of * the user supplied data */ fill_samples_no_avg(fake, max_d, max_t, std::max(2.0 * max_d / max_t, (double)prefs.ascratelast6m)); if (fake[3].time.seconds == 0) { // just a 4 point profile dc->samples.resize(4); fake[3].time.seconds = max_t; } return; } if (avg_d < max_d / 10 || avg_d >= max_d) { avg_d = (max_d + 10000) / 3; if (avg_d > max_d) avg_d = max_d * 2 / 3; } if (!avg_d) avg_d = 1; /* * Ok, first we try a basic profile with a specific ascent * rate (5 meters per minute) and d_frac (1/3). */ if (fill_samples(fake, max_d, avg_d, max_t, (double)prefs.ascratelast6m, 0.33)) return; /* * Ok, assume that didn't work because we cannot make the * average come out right because it was a quick deep dive * followed by a much shallower region */ if (fill_samples(fake, max_d, avg_d, max_t, 10000.0 / 60, 0.10)) return; /* * Uhhuh. That didn't work. We'd need to find a good combination that * satisfies our constraints. Currently, we don't, we just give insane * slopes. */ if (fill_samples(fake, max_d, avg_d, max_t, 10000.0, 0.01)) return; /* Even that didn't work? Give up, there's something wrong */ } divemode_loop::divemode_loop(const struct divecomputer &dc) : dc(dc), last(dc.divemode), loop("modechange") { /* on first invocation, get first event (if any) */ ev = loop.next(dc); } divemode_t divemode_loop::next(int time) { while (ev && ev->time.seconds <= time) { last = static_cast(ev->value); ev = loop.next(dc); } return last; } /* helper function to make it easier to work with our structures * we don't interpolate here, just use the value from the last sample up to that time */ int get_depth_at_time(const struct divecomputer *dc, unsigned int time) { int depth = 0; if (dc) { for (const auto &sample: dc->samples) { if (sample.time.seconds > (int)time) break; depth = sample.depth.mm; } } return depth; } struct sample *prepare_sample(struct divecomputer *dc) { if (dc) { dc->samples.emplace_back(); auto &sample = dc->samples.back(); // Copy the sensor numbers - but not the pressure values // from the previous sample if any. if (dc->samples.size() >= 2) { auto &prev = dc->samples[dc->samples.size() - 2]; for (int idx = 0; idx < MAX_SENSORS; idx++) sample.sensor[idx] = prev.sensor[idx]; } // Init some values with -1 sample.bearing.degrees = -1; sample.ndl.seconds = -1; return &sample; } return NULL; } void append_sample(const struct sample &sample, struct divecomputer *dc) { dc->samples.push_back(sample); } /* * Calculate how long we were actually under water, and the average * depth while under water. * * This ignores any surface time in the middle of the dive. */ void fixup_dc_duration(struct divecomputer &dc) { int duration = 0; int lasttime = 0, lastdepth = 0, depthtime = 0; for (const auto &sample: dc.samples) { int time = sample.time.seconds; int depth = sample.depth.mm; /* Do we *have* a depth? */ if (depth < 0) continue; /* We ignore segments at the surface */ if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) { duration += time - lasttime; depthtime += (time - lasttime) * (depth + lastdepth) / 2; } lastdepth = depth; lasttime = time; } if (duration) { dc.duration.seconds = duration; dc.meandepth.mm = (depthtime + duration / 2) / duration; } } static bool operator<(const event &ev1, const event &ev2) { return std::tie(ev1.time.seconds, ev1.name) < std::tie(ev2.time.seconds, ev2.name); } int add_event_to_dc(struct divecomputer *dc, struct event ev) { // Do a binary search for insertion point auto it = std::lower_bound(dc->events.begin(), dc->events.end(), ev); int idx = it - dc->events.begin(); dc->events.insert(it, ev); return idx; } struct event *add_event(struct divecomputer *dc, unsigned int time, int type, int flags, int value, const std::string &name) { struct event ev(time, type, flags, value, name); int idx = add_event_to_dc(dc, std::move(ev)); return &dc->events[idx]; } /* Remove given event from dive computer. Returns the removed event. */ struct event remove_event_from_dc(struct divecomputer *dc, int idx) { if (idx < 0 || static_cast(idx) > dc->events.size()) { report_info("removing invalid event %d", idx); return event(); } event res = std::move(dc->events[idx]); dc->events.erase(dc->events.begin() + idx); return res; } struct event *get_event(struct divecomputer *dc, int idx) { if (idx < 0 || static_cast(idx) > dc->events.size()) { report_info("accessing invalid event %d", idx); return nullptr; } return &dc->events[idx]; } void add_extra_data(struct divecomputer *dc, const std::string &key, const std::string &value) { if (key == "Serial") { dc->deviceid = calculate_string_hash(value.c_str()); dc->serial = value; } if (key == "FW Version") dc->fw_version = value; dc->extra_data.push_back(extra_data { key, value }); } /* * Match two dive computer entries against each other, and * tell if it's the same dive. Return 0 if "don't know", * positive for "same dive" and negative for "definitely * not the same dive" */ int match_one_dc(const struct divecomputer &a, const struct divecomputer &b) { /* Not same model? Don't know if matching.. */ if (a.model.empty() || b.model.empty()) return 0; if (strcasecmp(a.model.c_str(), b.model.c_str())) return 0; /* Different device ID's? Don't know */ if (a.deviceid != b.deviceid) return 0; /* Do we have dive IDs? */ if (!a.diveid || !b.diveid) return 0; /* * If they have different dive ID's on the same * dive computer, that's a definite "same or not" */ return a.diveid == b.diveid && a.when == b.when ? 1 : -1; } static const char *planner_dc_name = "planned dive"; bool is_dc_planner(const struct divecomputer *dc) { return dc->model == planner_dc_name; } void make_planner_dc(struct divecomputer *dc) { dc->model = planner_dc_name; } const char *manual_dc_name = "manually added dive"; bool is_dc_manually_added_dive(const struct divecomputer *dc) { return dc->model == manual_dc_name; } void make_manually_added_dive_dc(struct divecomputer *dc) { dc->model = manual_dc_name; }