// SPDX-License-Identifier: GPL-2.0 /* dive.cpp */ /* maintains the internal dive list structure */ #include #include #include #include #include #include "dive.h" #include "gettext.h" #include "subsurface-string.h" #include "libdivecomputer.h" #include "device.h" #include "divelist.h" #include "divesite.h" #include "equipment.h" #include "errorhelper.h" #include "event.h" #include "extradata.h" #include "format.h" #include "fulltext.h" #include "interpolate.h" #include "qthelper.h" #include "membuffer.h" #include "picture.h" #include "range.h" #include "sample.h" #include "tag.h" #include "trip.h" // For user visible text but still not translated const char *divemode_text_ui[] = { QT_TRANSLATE_NOOP("gettextFromC", "Open circuit"), QT_TRANSLATE_NOOP("gettextFromC", "CCR"), QT_TRANSLATE_NOOP("gettextFromC", "pSCR"), QT_TRANSLATE_NOOP("gettextFromC", "Freedive") }; // For writing/reading files. const char *divemode_text[] = {"OC", "CCR", "PSCR", "Freedive"}; // Even for dives without divecomputer, we allocate a divecomputer structure. // It's the "manually added" divecomputer. dive::dive() : dcs(1) { id = dive_getUniqID(); } dive::dive(const dive &) = default; dive::dive(dive &&) = default; dive &dive::operator=(const dive &) = default; dive::~dive() = default; /* get_cylinder_idx_by_use(): Find the index of the first cylinder with a particular CCR use type. * The index returned corresponds to that of the first cylinder with a cylinder_use that * equals the appropriate enum value [oxygen, diluent, bailout] given by cylinder_use_type. * A negative number returned indicates that a match could not be found. * Call parameters: dive = the dive being processed * cylinder_use_type = an enum, one of {oxygen, diluent, bailout} */ static int get_cylinder_idx_by_use(const struct dive &dive, enum cylinderuse cylinder_use_type) { auto it = std::find_if(dive.cylinders.begin(), dive.cylinders.end(), [cylinder_use_type] (auto &cyl) { return cyl.cylinder_use == cylinder_use_type; }); return it != dive.cylinders.end() ? it - dive.cylinders.begin() : -1; } /* * The legacy format for sample pressures has a single pressure * for each sample that can have any sensor, plus a possible * "o2pressure" that is fixed to the Oxygen sensor for a CCR dive. * * For more complex pressure data, we have to use explicit * cylinder indices for each sample. * * This function returns a negative number for "no legacy mode", * or a non-negative number that indicates the o2 sensor index. */ int legacy_format_o2pressures(const struct dive *dive, const struct divecomputer *dc) { int o2sensor; o2sensor = (dc->divemode == CCR) ? get_cylinder_idx_by_use(*dive, OXYGEN) : -1; for (const auto &s: dc->samples) { int seen_pressure = 0, idx; for (idx = 0; idx < MAX_SENSORS; idx++) { int sensor = s.sensor[idx]; pressure_t p = s.pressure[idx]; if (!p.mbar) continue; if (sensor == o2sensor) continue; if (seen_pressure) return -1; seen_pressure = 1; } } /* * Use legacy mode: if we have no O2 sensor we return a * positive sensor index that is guaranmteed to not match * any sensor (we encode it as 8 bits). */ return o2sensor < 0 ? 256 : o2sensor; } /* access to cylinders is controlled by two functions: * - get_cylinder() returns the cylinder of a dive and supposes that * the cylinder with the given index exists. If it doesn't, an error * message is printed and the "surface air" cylinder returned. * (NOTE: this MUST not be written into!). * - get_or_create_cylinder() creates an empty cylinder if it doesn't exist. * Multiple cylinders might be created if the index is bigger than the * number of existing cylinders */ cylinder_t *dive::get_cylinder(int idx) { return &cylinders[idx]; } const cylinder_t *dive::get_cylinder(int idx) const { return &cylinders[idx]; } /* warning: does not test idx for validity */ struct event create_gas_switch_event(struct dive *dive, struct divecomputer *dc, int seconds, int idx) { /* The gas switch event format is insane for historical reasons */ struct gasmix mix = dive->get_cylinder(idx)->gasmix; int o2 = get_o2(mix); int he = get_he(mix); o2 = (o2 + 5) / 10; he = (he + 5) / 10; int value = o2 + (he << 16); struct event ev(seconds, he ? SAMPLE_EVENT_GASCHANGE2 : SAMPLE_EVENT_GASCHANGE, 0, value, "gaschange"); ev.gas.index = idx; ev.gas.mix = mix; return ev; } void add_gas_switch_event(struct dive *dive, struct divecomputer *dc, int seconds, int idx) { /* sanity check so we don't crash */ /* FIXME: The planner uses a dummy cylinder one past the official number of cylinders * in the table to mark no-cylinder surface interavals. This is horrendous. Fix ASAP. */ //if (idx < 0 || idx >= dive->cylinders.size()) { if (idx < 0 || static_cast(idx) >= dive->cylinders.size() + 1) { report_error("Unknown cylinder index: %d", idx); return; } struct event ev = create_gas_switch_event(dive, dc, seconds, idx); add_event_to_dc(dc, std::move(ev)); } struct gasmix dive::get_gasmix_from_event(const struct event &ev) const { if (ev.is_gaschange()) { int index = ev.gas.index; // FIXME: The planner uses one past cylinder-count to signify "surface air". Remove in due course. if (index >= 0 && static_cast(index) < cylinders.size() + 1) return get_cylinder(index)->gasmix; return ev.gas.mix; } return gasmix_air; } // we need this to be uniq. oh, and it has no meaning whatsoever // - that's why we have the silly initial number and increment by 3 :-) int dive_getUniqID() { static int maxId = 83529; maxId += 3; return maxId; } static void dc_cylinder_renumber(struct dive &dive, struct divecomputer &dc, const int mapping[]); /* copy dive computer list and renumber the cylinders */ static void copy_dc_renumber(struct dive &d, const struct dive &s, const int cylinders_map[]) { for (const divecomputer &dc: s.dcs) { d.dcs.push_back(dc); dc_cylinder_renumber(d, d.dcs.back(), cylinders_map); } } void dive::clear() { *this = dive(); } /* make a true copy that is independent of the source dive; * all data structures are duplicated, so the copy can be modified without * any impact on the source */ void copy_dive(const struct dive *s, struct dive *d) { /* simply copy things over, but then clear the dive cache. */ *d = *s; d->invalidate_cache(); } /* copies all events from the given dive computer before a given time this is used when editing a dive in the planner to preserve the events of the old dive */ void copy_events_until(const struct dive *sd, struct dive *dd, int dcNr, int time) { if (!sd || !dd) return; const struct divecomputer *s = &sd->dcs[0]; struct divecomputer *d = dd->get_dc(dcNr); if (!s || !d) return; for (const auto &ev: s->events) { // Don't add events the planner knows about if (ev.time.seconds < time && !ev.is_gaschange() && !ev.is_divemodechange()) add_event(d, ev.time.seconds, ev.type, ev.flags, ev.value, ev.name); } } void copy_used_cylinders(const struct dive *s, struct dive *d, bool used_only) { if (!s || !d) return; d->cylinders.clear(); for (auto [i, cyl]: enumerated_range(s->cylinders)) { if (!used_only || s->is_cylinder_used(i) || s->get_cylinder(i)->cylinder_use == NOT_USED) d->cylinders.push_back(cyl); } } /* * So when we re-calculate maxdepth and meandepth, we will * not override the old numbers if they are close to the * new ones. * * Why? Because a dive computer may well actually track the * max. depth and mean depth at finer granularity than the * samples it stores. So it's possible that the max and mean * have been reported more correctly originally. * * Only if the values calculated from the samples are clearly * different do we override the normal depth values. * * This considers 1m to be "clearly different". That's * a totally random number. */ static void update_depth(depth_t *depth, int new_depth) { if (new_depth) { int old = depth->mm; if (abs(old - new_depth) > 1000) depth->mm = new_depth; } } static void update_temperature(temperature_t *temperature, int new_temp) { if (new_temp) { int old = temperature->mkelvin; if (abs(old - new_temp) > 1000) temperature->mkelvin = new_temp; } } /* Which cylinders had gas used? */ #define SOME_GAS 5000 static bool cylinder_used(const cylinder_t &cyl) { int start_mbar, end_mbar; start_mbar = cyl.start.mbar ?: cyl.sample_start.mbar; end_mbar = cyl.end.mbar ?: cyl.sample_end.mbar; // More than 5 bar used? This matches statistics.cpp // heuristics return start_mbar > end_mbar + SOME_GAS; } /* Get list of used cylinders. Returns the number of used cylinders. */ static int get_cylinder_used(const struct dive *dive, bool used[]) { int num = 0; for (auto [i, cyl]: enumerated_range(dive->cylinders)) { used[i] = cylinder_used(cyl); if (used[i]) num++; } return num; } /* * If the event has an explicit cylinder index, * we return that. If it doesn't, we return the best * match based on the gasmix. * * Some dive computers give cylinder indices, some * give just the gas mix. */ int dive::get_cylinder_index(const struct event &ev) const { if (ev.gas.index >= 0) return ev.gas.index; /* * This should no longer happen! * * We now match up gas change events with their cylinders at dive * event fixup time. */ report_info("Still looking up cylinder based on gas mix in get_cylinder_index()!"); gasmix mix = get_gasmix_from_event(ev); int best = find_best_gasmix_match(mix, cylinders); return best < 0 ? 0 : best; } cylinder_t *dive::get_or_create_cylinder(int idx) { if (idx < 0) { report_info("Warning: accessing invalid cylinder %d", idx); return NULL; } while (static_cast(idx) >= cylinders.size()) cylinders.emplace_back(); return &cylinders[idx]; } /* Are there any used cylinders which we do not know usage about? */ static bool has_unknown_used_cylinders(const struct dive &dive, const struct divecomputer *dc, const bool used_cylinders[], int num) { int idx; auto used_and_unknown = std::make_unique(dive.cylinders.size()); std::copy(used_cylinders, used_cylinders + dive.cylinders.size(), used_and_unknown.get()); /* We know about using the O2 cylinder in a CCR dive */ if (dc->divemode == CCR) { int o2_cyl = get_cylinder_idx_by_use(dive, OXYGEN); if (o2_cyl >= 0 && used_and_unknown[o2_cyl]) { used_and_unknown[o2_cyl] = false; num--; } } /* We know about the explicit first cylinder (or first) */ /* And we have possible switches to other gases */ gasmix_loop loop(dive, *dc); while (loop.has_next() && num > 0) { idx = loop.next_cylinder_index().first; if (idx >= 0 && used_and_unknown[idx]) { used_and_unknown[idx] = false; num--; } } return num > 0; } void per_cylinder_mean_depth(const struct dive *dive, struct divecomputer *dc, int *mean, int *duration) { int num_used_cylinders; if (dive->cylinders.empty()) return; for (size_t i = 0; i < dive->cylinders.size(); i++) mean[i] = duration[i] = 0; if (!dc) return; /* * There is no point in doing per-cylinder information * if we don't actually know about the usage of all the * used cylinders. */ auto used_cylinders = std::make_unique(dive->cylinders.size()); num_used_cylinders = get_cylinder_used(dive, used_cylinders.get()); if (has_unknown_used_cylinders(*dive, dc, used_cylinders.get(), num_used_cylinders)) { /* * If we had more than one used cylinder, but * do not know usage of them, we simply cannot * account mean depth to them. */ if (num_used_cylinders > 1) return; /* * For a single cylinder, use the overall mean * and duration */ for (size_t i = 0; i < dive->cylinders.size(); i++) { if (used_cylinders[i]) { mean[i] = dc->meandepth.mm; duration[i] = dc->duration.seconds; } } return; } if (dc->samples.empty()) fake_dc(dc); gasmix_loop loop(*dive, *dc); std::vector depthtime(dive->cylinders.size(), 0); int lasttime = 0; int lastdepth = 0; int last_cylinder_index = -1; std::pair gaschange_event; for (auto it = dc->samples.begin(); it != dc->samples.end(); ++it) { int32_t time = it->time.seconds; int depth = it->depth.mm; /* Make sure to move the event past 'lasttime' */ gaschange_event = loop.cylinder_index_at(lasttime); /* Do we need to fake a midway sample? */ if (last_cylinder_index >= 0 && last_cylinder_index != gaschange_event.first) { int newdepth = interpolate(lastdepth, depth, gaschange_event.second - lasttime, time - lasttime); if (newdepth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) { duration[gaschange_event.first] += gaschange_event.second - lasttime; depthtime[gaschange_event.first] += (gaschange_event.second - lasttime) * (newdepth + lastdepth) / 2; } lasttime = gaschange_event.second; lastdepth = newdepth; } /* We ignore segments at the surface */ if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) { duration[gaschange_event.first] += time - lasttime; depthtime[gaschange_event.first] += (time - lasttime) * (depth + lastdepth) / 2; } lastdepth = depth; lasttime = time; last_cylinder_index = gaschange_event.first; } for (size_t i = 0; i < dive->cylinders.size(); i++) { if (duration[i]) mean[i] = (depthtime[i] + duration[i] / 2) / duration[i]; } } static void update_min_max_temperatures(struct dive &dive, temperature_t temperature) { if (temperature.mkelvin) { if (!dive.maxtemp.mkelvin || temperature.mkelvin > dive.maxtemp.mkelvin) dive.maxtemp = temperature; if (!dive.mintemp.mkelvin || temperature.mkelvin < dive.mintemp.mkelvin) dive.mintemp = temperature; } } /* * If the cylinder tank pressures are within half a bar * (about 8 PSI) of the sample pressures, we consider it * to be a rounding error, and throw them away as redundant. */ static int same_rounded_pressure(pressure_t a, pressure_t b) { return abs(a.mbar - b.mbar) <= 500; } static double calculate_depth_to_mbarf(int depth, pressure_t surface_pressure, int salinity); /* this gets called when the dive mode has changed (so OC vs. CC) * there are two places we might have setpoints... events or in the samples */ void update_setpoint_events(const struct dive *dive, struct divecomputer *dc) { int new_setpoint = 0; if (dc->divemode == CCR) new_setpoint = prefs.defaultsetpoint; if (dc->divemode == OC && (dc->model == "Shearwater Predator" || dc->model == "Shearwater Petrel" || dc->model == "Shearwater Nerd")) { // make sure there's no setpoint in the samples // this is an irreversible change - so switching a dive to OC // by mistake when it's actually CCR is _bad_ // So we make sure, this comes from a Predator or Petrel and we only remove // pO2 values we would have computed anyway. gasmix_loop loop(*dive, *dc); for (auto &sample: dc->samples) { struct gasmix gasmix = loop.at(sample.time.seconds).first; gas_pressures pressures = fill_pressures(lrint(calculate_depth_to_mbarf(sample.depth.mm, dc->surface_pressure, 0)), gasmix ,0, dc->divemode); if (abs(sample.setpoint.mbar - (int)(1000 * pressures.o2)) <= 50) sample.setpoint.mbar = 0; } } // an "SP change" event at t=0 is currently our marker for OC vs CCR // this will need to change to a saner setup, but for now we can just // check if such an event is there and adjust it, or add that event struct event *ev = get_first_event(*dc, "SP change"); if (ev && ev->time.seconds == 0) { ev->value = new_setpoint; } else { if (!add_event(dc, 0, SAMPLE_EVENT_PO2, 0, new_setpoint, "SP change")) report_info("Could not add setpoint change event"); } } /* * See if the size/workingpressure looks like some standard cylinder * size, eg "AL80". * * NOTE! We don't take compressibility into account when naming * cylinders. That makes a certain amount of sense, since the * cylinder name is independent from the gasmix, and different * gasmixes have different compressibility. */ static void match_standard_cylinder(cylinder_type_t &type) { /* Do we already have a cylinder description? */ if (!type.description.empty()) return; double bar = type.workingpressure.mbar / 1000.0; double cuft = ml_to_cuft(type.size.mliter); cuft *= bar_to_atm(bar); int psi = lrint(to_PSI(type.workingpressure)); const char *fmt; switch (psi) { case 2300 ... 2500: /* 2400 psi: LP tank */ fmt = "LP%d"; break; case 2600 ... 2700: /* 2640 psi: LP+10% */ fmt = "LP%d"; break; case 2900 ... 3100: /* 3000 psi: ALx tank */ fmt = "AL%d"; break; case 3400 ... 3500: /* 3442 psi: HP tank */ fmt = "HP%d"; break; case 3700 ... 3850: /* HP+10% */ fmt = "HP%d+"; break; default: return; } type.description = format_string_std(fmt, (int)lrint(cuft)); } /* * There are two ways to give cylinder size information: * - total amount of gas in cuft (depends on working pressure and physical size) * - physical size * * where "physical size" is the one that actually matters and is sane. * * We internally use physical size only. But we save the workingpressure * so that we can do the conversion if required. */ static void sanitize_cylinder_type(cylinder_type_t &type) { /* If we have no working pressure, it had *better* be just a physical size! */ if (!type.workingpressure.mbar) return; /* No size either? Nothing to go on */ if (!type.size.mliter) return; /* Ok, we have both size and pressure: try to match a description */ match_standard_cylinder(type); } static void sanitize_cylinder_info(struct dive &dive) { for (auto &cyl: dive.cylinders) { sanitize_gasmix(cyl.gasmix); sanitize_cylinder_type(cyl.type); } } /* some events should never be thrown away */ static bool is_potentially_redundant(const struct event &event) { if (event.name == "gaschange") return false; if (event.name == "bookmark") return false; if (event.name == "heading") return false; return true; } pressure_t dive::calculate_surface_pressure() const { pressure_t res; int sum = 0, nr = 0; bool logged = is_logged(); for (auto &dc: dcs) { if ((logged || !is_dc_planner(&dc)) && dc.surface_pressure.mbar) { sum += dc.surface_pressure.mbar; nr++; } } res.mbar = nr ? (sum + nr / 2) / nr : 0; return res; } static void fixup_surface_pressure(struct dive &dive) { dive.surface_pressure = dive.calculate_surface_pressure(); } /* if the surface pressure in the dive data is redundant to the calculated * value (i.e., it was added by running fixup on the dive) return 0, * otherwise return the surface pressure given in the dive */ pressure_t dive::un_fixup_surface_pressure() const { return surface_pressure.mbar == calculate_surface_pressure().mbar ? pressure_t() : surface_pressure; } static void fixup_water_salinity(struct dive &dive) { int sum = 0, nr = 0; bool logged = dive.is_logged(); for (auto &dc: dive.dcs) { if ((logged || !is_dc_planner(&dc)) && dc.salinity) { if (dc.salinity < 500) dc.salinity += FRESHWATER_SALINITY; sum += dc.salinity; nr++; } } if (nr) dive.salinity = (sum + nr / 2) / nr; } int dive::get_salinity() const { return user_salinity ? user_salinity : salinity; } static void fixup_meandepth(struct dive &dive) { int sum = 0, nr = 0; bool logged = dive.is_logged(); for (auto &dc: dive.dcs) { if ((logged || !is_dc_planner(&dc)) && dc.meandepth.mm) { sum += dc.meandepth.mm; nr++; } } if (nr) dive.meandepth.mm = (sum + nr / 2) / nr; } static void fixup_duration(struct dive &dive) { duration_t duration; bool logged = dive.is_logged(); for (auto &dc: dive.dcs) { if (logged || !is_dc_planner(&dc)) duration.seconds = std::max(duration.seconds, dc.duration.seconds); } dive.duration.seconds = duration.seconds; } static void fixup_watertemp(struct dive &dive) { if (!dive.watertemp.mkelvin) dive.watertemp = dive.dc_watertemp(); } static void fixup_airtemp(struct dive &dive) { if (!dive.airtemp.mkelvin) dive.airtemp = dive.dc_airtemp(); } /* if the air temperature in the dive data is redundant to the one in its * first divecomputer (i.e., it was added by running fixup on the dive) * return 0, otherwise return the air temperature given in the dive */ static temperature_t un_fixup_airtemp(const struct dive &a) { return a.airtemp.mkelvin == a.dc_airtemp().mkelvin ? temperature_t() : a.airtemp; } /* * events are stored as a linked list, so the concept of * "consecutive, identical events" is somewhat hard to * implement correctly (especially given that on some dive * computers events are asynchronous, so they can come in * between what would be the non-constant sample rate). * * So what we do is that we throw away clearly redundant * events that are fewer than 61 seconds apart (assuming there * is no dive computer with a sample rate of more than 60 * seconds... that would be pretty pointless to plot the * profile with) */ static void fixup_dc_events(struct divecomputer &dc) { std::vector to_delete; for (auto [idx, event]: enumerated_range(dc.events)) { if (!is_potentially_redundant(event)) continue; for (int idx2 = idx - 1; idx2 > 0; --idx2) { const auto &prev = dc.events[idx2]; if (event.time.seconds - prev.time.seconds > 60) break; if (range_contains(to_delete, idx2)) continue; if (prev.name == event.name && prev.flags == event.flags) { to_delete.push_back(idx); break; } } } // Delete from back to not invalidate indexes for (auto it = to_delete.rbegin(); it != to_delete.rend(); ++it) dc.events.erase(dc.events.begin() + *it); } static int interpolate_depth(struct divecomputer &dc, int idx, int lastdepth, int lasttime, int now) { int nextdepth = lastdepth; int nexttime = now; for (auto it = dc.samples.begin() + idx; it != dc.samples.end(); ++it) { if (it->depth.mm < 0) continue; nextdepth = it->depth.mm; nexttime = it->time.seconds; break; } return interpolate(lastdepth, nextdepth, now-lasttime, nexttime-lasttime); } static void fixup_dc_depths(struct dive &dive, struct divecomputer &dc) { int maxdepth = dc.maxdepth.mm; int lasttime = 0, lastdepth = 0; for (const auto [idx, sample]: enumerated_range(dc.samples)) { int time = sample.time.seconds; int depth = sample.depth.mm; if (depth < 0 && idx + 2 < static_cast(dc.samples.size())) { depth = interpolate_depth(dc, idx, lastdepth, lasttime, time); sample.depth.mm = depth; } if (depth > SURFACE_THRESHOLD) { if (depth > maxdepth) maxdepth = depth; } lastdepth = depth; lasttime = time; if (sample.cns > dive.maxcns) dive.maxcns = sample.cns; } update_depth(&dc.maxdepth, maxdepth); if (!dive.is_logged() || !is_dc_planner(&dc)) if (maxdepth > dive.maxdepth.mm) dive.maxdepth.mm = maxdepth; } static void fixup_dc_ndl(struct divecomputer &dc) { for (auto &sample: dc.samples) { if (sample.ndl.seconds != 0) break; if (sample.ndl.seconds == 0) sample.ndl.seconds = -1; } } static void fixup_dc_temp(struct dive &dive, struct divecomputer &dc) { int mintemp = 0, lasttemp = 0; for (auto &sample: dc.samples) { int temp = sample.temperature.mkelvin; if (temp) { /* * If we have consecutive identical * temperature readings, throw away * the redundant ones. */ if (lasttemp == temp) sample.temperature.mkelvin = 0; else lasttemp = temp; if (!mintemp || temp < mintemp) mintemp = temp; } update_min_max_temperatures(dive, sample.temperature); } update_temperature(&dc.watertemp, mintemp); update_min_max_temperatures(dive, dc.watertemp); } /* Remove redundant pressure information */ static void simplify_dc_pressures(struct divecomputer &dc) { int lastindex[2] = { -1, -1 }; int lastpressure[2] = { 0 }; for (auto &sample: dc.samples) { int j; for (j = 0; j < MAX_SENSORS; j++) { int pressure = sample.pressure[j].mbar; int index = sample.sensor[j]; if (index == lastindex[j]) { /* Remove duplicate redundant pressure information */ if (pressure == lastpressure[j]) sample.pressure[j].mbar = 0; } lastindex[j] = index; lastpressure[j] = pressure; } } } /* Do we need a sensor -> cylinder mapping? */ static void fixup_start_pressure(struct dive &dive, int idx, pressure_t p) { if (idx >= 0 && static_cast(idx) < dive.cylinders.size()) { cylinder_t &cyl = dive.cylinders[idx]; if (p.mbar && !cyl.sample_start.mbar) cyl.sample_start = p; } } static void fixup_end_pressure(struct dive &dive, int idx, pressure_t p) { if (idx >= 0 && static_cast(idx) < dive.cylinders.size()) { cylinder_t &cyl = dive.cylinders[idx]; if (p.mbar && !cyl.sample_end.mbar) cyl.sample_end = p; } } /* * Check the cylinder pressure sample information and fill in the * overall cylinder pressures from those. * * We ignore surface samples for tank pressure information. * * At the beginning of the dive, let the cylinder cool down * if the diver starts off at the surface. And at the end * of the dive, there may be surface pressures where the * diver has already turned off the air supply (especially * for computers like the Uemis Zurich that end up saving * quite a bit of samples after the dive has ended). */ static void fixup_dive_pressures(struct dive &dive, struct divecomputer &dc) { /* Walk the samples from the beginning to find starting pressures.. */ for (auto &sample: dc.samples) { if (sample.depth.mm < SURFACE_THRESHOLD) continue; for (int idx = 0; idx < MAX_SENSORS; idx++) fixup_start_pressure(dive, sample.sensor[idx], sample.pressure[idx]); } /* ..and from the end for ending pressures */ for (auto it = dc.samples.rbegin(); it != dc.samples.rend(); ++it) { if (it->depth.mm < SURFACE_THRESHOLD) continue; for (int idx = 0; idx < MAX_SENSORS; idx++) fixup_end_pressure(dive, it->sensor[idx], it->pressure[idx]); } simplify_dc_pressures(dc); } /* * Match a gas change event against the cylinders we have */ static bool validate_gaschange(struct dive &dive, struct event &event) { int index; int o2, he, value; /* We'll get rid of the per-event gasmix, but for now sanitize it */ if (gasmix_is_air(event.gas.mix)) event.gas.mix.o2.permille = 0; /* Do we already have a cylinder index for this gasmix? */ if (event.gas.index >= 0) return true; index = find_best_gasmix_match(event.gas.mix, dive.cylinders); if (index < 0 || static_cast(index) >= dive.cylinders.size()) return false; /* Fix up the event to have the right information */ event.gas.index = index; event.gas.mix = dive.cylinders[index].gasmix; /* Convert to odd libdivecomputer format */ o2 = get_o2(event.gas.mix); he = get_he(event.gas.mix); o2 = (o2 + 5) / 10; he = (he + 5) / 10; value = o2 + (he << 16); event.value = value; if (he) event.type = SAMPLE_EVENT_GASCHANGE2; return true; } /* Clean up event, return true if event is ok, false if it should be dropped as bogus */ static bool validate_event(struct dive &dive, struct event &event) { if (event.is_gaschange()) return validate_gaschange(dive, event); return true; } static void fixup_dc_gasswitch(struct dive &dive, struct divecomputer &dc) { // erase-remove idiom auto &events = dc.events; events.erase(std::remove_if(events.begin(), events.end(), [&dive](auto &ev) { return !validate_event(dive, ev); }), events.end()); } static void fixup_no_o2sensors(struct divecomputer &dc) { // Its only relevant to look for sensor values on CCR and PSCR dives without any no_o2sensors recorded. if (dc.no_o2sensors != 0 || !(dc.divemode == CCR || dc.divemode == PSCR)) return; for (const auto &sample: dc.samples) { int nsensor = 0; // How many o2 sensors can we find in this sample? for (int j = 0; j < MAX_O2_SENSORS; j++) if (sample.o2sensor[j].mbar) nsensor++; // If we fond more than the previous found max, record it. if (nsensor > dc.no_o2sensors) dc.no_o2sensors = nsensor; // Already found the maximum posible amount. if (nsensor == MAX_O2_SENSORS) return; } } static void fixup_dc_sample_sensors(struct dive &dive, struct divecomputer &dc) { unsigned long sensor_mask = 0; for (auto &sample: dc.samples) { for (int j = 0; j < MAX_SENSORS; j++) { int sensor = sample.sensor[j]; // No invalid sensor ID's, please if (sensor < 0 || sensor > MAX_SENSORS) { sample.sensor[j] = NO_SENSOR; sample.pressure[j].mbar = 0; continue; } // Don't bother tracking sensors with no data if (!sample.pressure[j].mbar) { sample.sensor[j] = NO_SENSOR; continue; } // Remember the set of sensors we had sensor_mask |= 1ul << sensor; } } // Ignore the sensors we have cylinders for sensor_mask >>= dive.cylinders.size(); // Do we need to add empty cylinders? while (sensor_mask) { dive.cylinders.emplace_back(); sensor_mask >>= 1; } } static void fixup_dive_dc(struct dive &dive, struct divecomputer &dc) { /* Fixup duration and mean depth */ fixup_dc_duration(dc); /* Fix up sample depth data */ fixup_dc_depths(dive, dc); /* Fix up first sample ndl data */ fixup_dc_ndl(dc); /* Fix up dive temperatures based on dive computer samples */ fixup_dc_temp(dive, dc); /* Fix up gas switch events */ fixup_dc_gasswitch(dive, dc); /* Fix up cylinder ids in pressure sensors */ fixup_dc_sample_sensors(dive, dc); /* Fix up cylinder pressures based on DC info */ fixup_dive_pressures(dive, dc); fixup_dc_events(dc); /* Fixup CCR / PSCR dives with o2sensor values, but without no_o2sensors */ fixup_no_o2sensors(dc); /* If there are no samples, generate a fake profile based on depth and time */ if (dc.samples.empty()) fake_dc(&dc); } void dive::fixup_no_cylinder() { sanitize_cylinder_info(*this); maxcns = cns; /* * Use the dive's temperatures for minimum and maximum in case * we do not have temperatures recorded by DC. */ update_min_max_temperatures(*this, watertemp); for (auto &dc: dcs) fixup_dive_dc(*this, dc); fixup_water_salinity(*this); if (!surface_pressure.mbar) fixup_surface_pressure(*this); fixup_meandepth(*this); fixup_duration(*this); fixup_watertemp(*this); fixup_airtemp(*this); for (auto &cyl: cylinders) { add_cylinder_description(cyl.type); if (same_rounded_pressure(cyl.sample_start, cyl.start)) cyl.start.mbar = 0; if (same_rounded_pressure(cyl.sample_end, cyl.end)) cyl.end.mbar = 0; } for (auto &ws: weightsystems) add_weightsystem_description(ws); } /* Don't pick a zero for MERGE_MIN() */ #define MERGE_MAX(res, a, b, n) res->n = std::max(a.n, b.n) #define MERGE_MIN(res, a, b, n) res->n = (a.n) ? (b.n) ? std::min(a.n, b.n) : (a.n) : (b.n) #define MERGE_TXT(res, a, b, n, sep) res->n = merge_text(a.n, b.n, sep) #define MERGE_NONZERO(res, a, b, n) (res)->n = (a).n ? (a).n : (b).n /* * This is like append_sample(), but if the distance from the last sample * is excessive, we add two surface samples in between. * * This is so that if you merge two non-overlapping dives, we make sure * that the time in between the dives is at the surface, not some "last * sample that happened to be at a depth of 1.2m". */ static void merge_one_sample(const struct sample &sample, struct divecomputer &dc) { if (!dc.samples.empty()) { const struct sample &prev = dc.samples.back(); int last_time = prev.time.seconds; int last_depth = prev.depth.mm; /* * Only do surface events if the samples are more than * a minute apart, and shallower than 5m */ if (sample.time.seconds > last_time + 60 && last_depth < 5000) { struct sample surface; /* Init a few values from prev sample to avoid useless info in XML */ surface.bearing.degrees = prev.bearing.degrees; surface.ndl.seconds = prev.ndl.seconds; surface.time.seconds = last_time + 20; append_sample(surface, &dc); surface.time.seconds = sample.time.seconds - 20; append_sample(surface, &dc); } } append_sample(sample, &dc); } static void renumber_last_sample(struct divecomputer &dc, const int mapping[]); static void sample_renumber(struct sample &s, const struct sample *next, const int mapping[]); /* * Merge samples. Dive 'a' is "offset" seconds before Dive 'b' */ static void merge_samples(struct divecomputer &res, const struct divecomputer &a, const struct divecomputer &b, const int *cylinders_map_a, const int *cylinders_map_b, int offset) { auto as = a.samples.begin(); auto bs = b.samples.begin(); auto a_end = a.samples.end(); auto b_end = b.samples.end(); /* * We want a positive sample offset, so that sample * times are always positive. So if the samples for * 'b' are before the samples for 'a' (so the offset * is negative), we switch a and b around, and use * the reverse offset. */ if (offset < 0) { offset = -offset; std::swap(as, bs); std::swap(a_end, b_end); std::swap(cylinders_map_a, cylinders_map_b); } for (;;) { int at = as != a_end ? as->time.seconds : -1; int bt = bs != b_end ? bs->time.seconds + offset : -1; /* No samples? All done! */ if (at < 0 && bt < 0) return; /* Only samples from a? */ if (bt < 0) { add_sample_a: merge_one_sample(*as, res); renumber_last_sample(res, cylinders_map_a); as++; continue; } /* Only samples from b? */ if (at < 0) { add_sample_b: struct sample sample = *bs; sample.time.seconds += offset; merge_one_sample(sample, res); renumber_last_sample(res, cylinders_map_b); bs++; continue; } if (at < bt) goto add_sample_a; if (at > bt) goto add_sample_b; /* same-time sample: add a merged sample. Take the non-zero ones */ struct sample sample = *bs; sample.time.seconds += offset; sample_renumber(sample, nullptr, cylinders_map_b); if (as->depth.mm) sample.depth = as->depth; if (as->temperature.mkelvin) sample.temperature = as->temperature; for (int j = 0; j < MAX_SENSORS; ++j) { int sensor_id; sensor_id = cylinders_map_a[as->sensor[j]]; if (sensor_id < 0) continue; if (as->pressure[j].mbar) sample.pressure[j] = as->pressure[j]; if (as->sensor[j]) sample.sensor[j] = sensor_id; } if (as->cns) sample.cns = as->cns; if (as->setpoint.mbar) sample.setpoint = as->setpoint; if (as->ndl.seconds) sample.ndl = as->ndl; if (as->stoptime.seconds) sample.stoptime = as->stoptime; if (as->stopdepth.mm) sample.stopdepth = as->stopdepth; if (as->in_deco) sample.in_deco = true; merge_one_sample(sample, res); as++; bs++; } } static bool operator==(const struct extra_data &e1, const struct extra_data &e2) { return std::tie(e1.key, e1.value) == std::tie(e2.key, e2.value); } /* * Merge extra_data. * * The extra data from 'a' has already been copied into 'res'. So * we really should just copy over the data from 'b' too. * * This is not hugely efficient (with the whole "check this for * every value you merge" it's O(n**2)) but it's not like we * have very many extra_data entries per dive computer anyway. */ static void merge_extra_data(struct divecomputer &res, const struct divecomputer &a, const struct divecomputer &b) { for (auto &ed: b.extra_data) { if (range_contains(a.extra_data, ed)) continue; res.extra_data.push_back(ed); } } static std::string merge_text(const std::string &a, const std::string &b, const char *sep) { if (a.empty()) return b; if (b.empty()) return a; if (a == b) return a; return a + sep + b; } #define SORT(a, b) \ if (a != b) \ return a < b ? -1 : 1 #define SORT_FIELD(a, b, field) SORT(a.field, b.field) static int sort_event(const struct event &a, const struct event &b, int time_a, int time_b) { SORT(time_a, time_b); SORT_FIELD(a, b, type); SORT_FIELD(a, b, flags); SORT_FIELD(a, b, value); return a.name.compare(b.name); } static int same_gas(const struct event *a, const struct event *b) { if (a->type == b->type && a->flags == b->flags && a->value == b->value && a->name == b->name && same_gasmix(a->gas.mix, b->gas.mix)) { return true; } return false; } static void event_renumber(struct event &ev, const int mapping[]); static void add_initial_gaschange(struct dive &dive, struct divecomputer &dc, int offset, int idx); static void merge_events(struct dive &d, struct divecomputer &res, const struct divecomputer &src1_in, const struct divecomputer &src2_in, const int *cylinders_map1, const int *cylinders_map2, int offset) { const struct event *last_gas = NULL; /* Always use positive offsets */ auto src1 = &src1_in; auto src2 = &src2_in; if (offset < 0) { offset = -offset; std::swap(src1, src2); std::swap(cylinders_map1, cylinders_map2); // The pointers, not the contents are swapped. } auto a = src1->events.begin(); auto b = src2->events.begin(); while (a != src1->events.end() || b != src2->events.end()) { int s = 0; const struct event *pick; const int *cylinders_map; int event_offset; if (b == src2->events.end()) goto pick_a; if (a == src1->events.end()) goto pick_b; s = sort_event(*a, *b, a->time.seconds, b->time.seconds + offset); /* Identical events? Just skip one of them (we skip a) */ if (!s) { ++a; continue; } /* Otherwise, pick the one that sorts first */ if (s < 0) { pick_a: pick = &*a; ++a; event_offset = 0; cylinders_map = cylinders_map1; } else { pick_b: pick = &*b; ++b; event_offset = offset; cylinders_map = cylinders_map2; } /* * If that's a gas-change that matches the previous * gas change, we'll just skip it */ if (pick->is_gaschange()) { if (last_gas && same_gas(pick, last_gas)) continue; last_gas = pick; } /* Add it to the target list */ res.events.push_back(*pick); res.events.back().time.seconds += event_offset; event_renumber(res.events.back(), cylinders_map); } /* If the initial cylinder of a divecomputer was remapped, add a gas change event to that cylinder */ if (cylinders_map1[0] > 0) add_initial_gaschange(d, res, 0, cylinders_map1[0]); if (cylinders_map2[0] > 0) add_initial_gaschange(d, res, offset, cylinders_map2[0]); } /* Force an initial gaschange event to the (old) gas #0 */ static void add_initial_gaschange(struct dive &dive, struct divecomputer &dc, int offset, int idx) { /* if there is a gaschange event up to 30 sec after the initial event, * refrain from adding the initial event */ gasmix_loop loop(dive, dc); while (loop.has_next()) { int time = loop.next().second; if (time > offset + 30) break; else if (time > offset) return; } /* Old starting gas mix */ add_gas_switch_event(&dive, &dc, offset, idx); } static void sample_renumber(struct sample &s, const struct sample *prev, const int mapping[]) { for (int j = 0; j < MAX_SENSORS; j++) { int sensor = -1; if (s.sensor[j] != NO_SENSOR) sensor = mapping[s.sensor[j]]; if (sensor == -1) { // Remove sensor and gas pressure info if (!prev) { s.sensor[j] = 0; s.pressure[j].mbar = 0; } else { s.sensor[j] = prev->sensor[j]; s.pressure[j].mbar = prev->pressure[j].mbar; } } else { s.sensor[j] = sensor; } } } static void renumber_last_sample(struct divecomputer &dc, const int mapping[]) { if (dc.samples.empty()) return; sample *prev = dc.samples.size() > 1 ? &dc.samples[dc.samples.size() - 2] : nullptr; sample_renumber(dc.samples.back(), prev, mapping); } static void event_renumber(struct event &ev, const int mapping[]) { if (!ev.is_gaschange()) return; if (ev.gas.index < 0) return; ev.gas.index = mapping[ev.gas.index]; } static void dc_cylinder_renumber(struct dive &dive, struct divecomputer &dc, const int mapping[]) { /* Remap or delete the sensor indices */ for (auto [i, sample]: enumerated_range(dc.samples)) sample_renumber(sample, i > 0 ? &dc.samples[i-1] : nullptr, mapping); /* Remap the gas change indices */ for (auto &ev: dc.events) event_renumber(ev, mapping); /* If the initial cylinder of a dive was remapped, add a gas change event to that cylinder */ if (mapping[0] > 0) add_initial_gaschange(dive, dc, 0, mapping[0]); } /* * If the cylinder indices change (due to merging dives or deleting * cylinders in the middle), we need to change the indices in the * dive computer data for this dive. * * Also note that we assume that the initial cylinder is cylinder 0, * so if that got renamed, we need to create a fake gas change event */ void cylinder_renumber(struct dive &dive, int mapping[]) { for (auto &dc: dive.dcs) dc_cylinder_renumber(dive, dc, mapping); } int same_gasmix_cylinder(const cylinder_t &cyl, int cylid, const struct dive *dive, bool check_unused) { struct gasmix mygas = cyl.gasmix; for (auto [i, cyl]: enumerated_range(dive->cylinders)) { if (i == cylid) continue; struct gasmix gas2 = cyl.gasmix; if (gasmix_distance(mygas, gas2) == 0 && (dive->is_cylinder_used(i) || check_unused)) return i; } return -1; } static int pdiff(pressure_t a, pressure_t b) { return a.mbar && b.mbar && a.mbar != b.mbar; } static int different_manual_pressures(const cylinder_t *a, const cylinder_t *b) { return pdiff(a->start, b->start) || pdiff(a->end, b->end); } /* * Can we find an exact match for a cylinder in another dive? * Take the "already matched" map into account, so that we * don't match multiple similar cylinders to one target. * * To match, the cylinders have to have the same gasmix and the * same cylinder use (ie OC/Diluent/Oxygen), and if pressures * have been added manually they need to match. */ static int match_cylinder(const cylinder_t *cyl, const struct dive &dive, const bool try_match[]) { for (auto [i, target]: enumerated_range(dive.cylinders)) { if (!try_match[i]) continue; if (!same_gasmix(cyl->gasmix, target.gasmix)) continue; if (cyl->cylinder_use != target.cylinder_use) continue; if (different_manual_pressures(cyl, &target)) continue; /* open question: Should we check sizes too? */ return i; } return -1; } /* * Function used to merge manually set start or end pressures. This * is used to merge cylinders when merging dives. We store up to two * values for start _and_ end pressures: one derived from samples and * one entered manually, whereby the latter takes precedence. It may * happen that the user merges two dives where one has a manual, * the other only a sample-derived pressure. In such a case we want to * supplement the non-existing manual value by a sample derived one. * Otherwise, the merged dive would end up with incomplete pressure * information. * The last argument to the function specifies whether the larger * or smaller value of the two dives should be returned. Obviously, * for the starting pressure we want the larger and for the ending * pressure the smaller value. */ static pressure_t merge_pressures(pressure_t a, pressure_t sample_a, pressure_t b, pressure_t sample_b, bool take_min) { if (!a.mbar && !b.mbar) return a; if (!a.mbar) a = sample_a; if (!b.mbar) b = sample_b; if (!a.mbar) a = b; if (!b.mbar) b = a; if (take_min) return a.mbar < b.mbar? a : b; return a.mbar > b.mbar? a : b; } /* * We matched things up so that they have the same gasmix and * use, but we might want to fill in any missing cylinder details * in 'a' if we had it from 'b'. */ static void merge_one_cylinder(cylinder_t *a, const cylinder_t *b) { if (!a->type.size.mliter) a->type.size.mliter = b->type.size.mliter; if (!a->type.workingpressure.mbar) a->type.workingpressure.mbar = b->type.workingpressure.mbar; if (a->type.description.empty()) a->type.description = b->type.description; /* If either cylinder has manually entered pressures, try to merge them. * Use pressures from divecomputer samples if only one cylinder has such a value. * Yes, this is an actual use case we encountered. * Note that we don't merge the sample-derived pressure values, as this is * perfomed after merging in fixup_dive() */ a->start = merge_pressures(a->start, a->sample_start, b->start, b->sample_start, false); a->end = merge_pressures(a->end, a->sample_end, b->end, b->sample_end, true); /* Really? */ a->gas_used.mliter += b->gas_used.mliter; a->deco_gas_used.mliter += b->deco_gas_used.mliter; a->bestmix_o2 = a->bestmix_o2 && b->bestmix_o2; a->bestmix_he = a->bestmix_he && b->bestmix_he; } static bool cylinder_has_data(const cylinder_t &cyl) { return !cyl.type.size.mliter && !cyl.type.workingpressure.mbar && cyl.type.description.empty() && !cyl.gasmix.o2.permille && !cyl.gasmix.he.permille && !cyl.start.mbar && !cyl.end.mbar && !cyl.sample_start.mbar && !cyl.sample_end.mbar && !cyl.gas_used.mliter && !cyl.deco_gas_used.mliter; } static bool cylinder_in_use(const struct dive *dive, int idx) { if (idx < 0 || static_cast(idx) >= dive->cylinders.size()) return false; /* This tests for gaschange events or pressure changes */ if (dive->is_cylinder_used(idx) || prefs.include_unused_tanks) return true; /* This tests for typenames or gas contents */ return cylinder_has_data(dive->cylinders[idx]); } bool is_cylinder_use_appropriate(const struct divecomputer &dc, const cylinder_t &cyl, bool allowNonUsable) { switch (cyl.cylinder_use) { case OC: if (dc.divemode == FREEDIVE) return false; break; case OXYGEN: if (!allowNonUsable) return false; case DILUENT: if (dc.divemode != CCR) return false; break; case NOT_USED: if (!allowNonUsable) return false; break; default: return false; } return true; } /* * Merging cylinder information is non-trivial, because the two dive computers * may have different ideas of what the different cylinder indexing is. * * Logic: take all the cylinder information from the preferred dive ('a'), and * then try to match each of the cylinders in the other dive by the gasmix that * is the best match and hasn't been used yet. * * For each dive, a cylinder-renumbering table is returned. */ static void merge_cylinders(struct dive &res, const struct dive &a, const struct dive &b, int mapping_a[], int mapping_b[]) { size_t max_cylinders = a.cylinders.size() + b.cylinders.size(); auto used_in_a = std::make_unique(max_cylinders); auto used_in_b = std::make_unique(max_cylinders); auto try_to_match = std::make_unique(max_cylinders); std::fill(try_to_match.get(), try_to_match.get() + max_cylinders, false); /* First, clear all cylinders in destination */ res.cylinders.clear(); /* Clear all cylinder mappings */ std::fill(mapping_a, mapping_a + a.cylinders.size(), -1); std::fill(mapping_b, mapping_b + b.cylinders.size(), -1); /* Calculate usage map of cylinders, clear matching map */ for (size_t i = 0; i < max_cylinders; i++) { used_in_a[i] = cylinder_in_use(&a, i); used_in_b[i] = cylinder_in_use(&b, i); } /* * For each cylinder in 'a' that is used, copy it to 'res'. * These are also potential matches for 'b' to use. */ for (size_t i = 0; i < max_cylinders; i++) { size_t res_nr = res.cylinders.size(); if (!used_in_a[i]) continue; mapping_a[i] = static_cast(res_nr); try_to_match[res_nr] = true; res.cylinders.push_back(a.cylinders[i]); } /* * For each cylinder in 'b' that is used, try to match it * with an existing cylinder in 'res' from 'a' */ for (size_t i = 0; i < b.cylinders.size(); i++) { int j; if (!used_in_b[i]) continue; j = match_cylinder(b.get_cylinder(i), res, try_to_match.get()); /* No match? Add it to the result */ if (j < 0) { size_t res_nr = res.cylinders.size(); mapping_b[i] = static_cast(res_nr); res.cylinders.push_back(b.cylinders[i]); continue; } /* Otherwise, merge the result to the one we found */ mapping_b[i] = j; merge_one_cylinder(res.get_cylinder(j), b.get_cylinder(i)); /* Don't match the same target more than once */ try_to_match[j] = false; } } /* Check whether a weightsystem table contains a given weightsystem */ static bool has_weightsystem(const weightsystem_table &t, const weightsystem_t &w) { return any_of(t.begin(), t.end(), [&w] (auto &w2) { return w == w2; }); } static void merge_equipment(struct dive &res, const struct dive &a, const struct dive &b) { for (auto &ws: a.weightsystems) { if (!has_weightsystem(res.weightsystems, ws)) res.weightsystems.push_back(ws); } for (auto &ws: b.weightsystems) { if (!has_weightsystem(res.weightsystems, ws)) res.weightsystems.push_back(ws); } } static void merge_temperatures(struct dive &res, const struct dive &a, const struct dive &b) { temperature_t airtemp_a = un_fixup_airtemp(a); temperature_t airtemp_b = un_fixup_airtemp(b); res.airtemp = airtemp_a.mkelvin ? airtemp_a : airtemp_b; MERGE_NONZERO(&res, a, b, watertemp.mkelvin); } #if CURRENTLY_NOT_USED /* * Sample 's' is between samples 'a' and 'b'. It is 'offset' seconds before 'b'. * * If 's' and 'a' are at the same time, offset is 0. */ static int compare_sample(const struct sample &s, const struct sample &a, const struct sample &b, int offset) { unsigned int depth = a.depth.mm; int diff; if (offset) { unsigned int interval = b.time.seconds - a.time.seconds; unsigned int depth_a = a.depth.mm; unsigned int depth_b = b.depth.mm; if (offset > interval) return -1; /* pick the average depth, scaled by the offset from 'b' */ depth = (depth_a * offset) + (depth_b * (interval - offset)); depth /= interval; } diff = s.depth.mm - depth; if (diff < 0) diff = -diff; /* cut off at one meter difference */ if (diff > 1000) diff = 1000; return diff * diff; } /* * Calculate a "difference" in samples between the two dives, given * the offset in seconds between them. Use this to find the best * match of samples between two different dive computers. */ static unsigned long sample_difference(struct divecomputer *a, struct divecomputer *b, int offset) { if (a->samples.empty() || b->samples.empty()) return; unsigned long error = 0; int start = -1; if (!asamples || !bsamples) return 0; /* * skip the first sample - this way we know can always look at * as/bs[-1] to look at the samples around it in the loop. */ auto as = a->samples.begin() + 1; auto bs = a->samples.begin() + 1; for (;;) { /* If we run out of samples, punt */ if (as == a->samples.end()) return INT_MAX; if (bs == b->samples.end()) return INT_MAX; int at = as->time.seconds; int bt = bs->time.seconds + offset; /* b hasn't started yet? Ignore it */ if (bt < 0) { ++bs; continue; } int diff; if (at < bt) { diff = compare_sample(*as, *std::prev(bs), *bs, bt - at); ++as; } else if (at > bt) { diff = compare_sample(*bs, *std::prev(as), *as, at - bt); ++bs; } else { diff = compare_sample(*as, *bs, *bs, 0); ++as; ++bs; } /* Invalid comparison point? */ if (diff < 0) continue; if (start < 0) start = at; error += diff; if (at - start > 120) break; } return error; } /* * Dive 'a' is 'offset' seconds before dive 'b' * * This is *not* because the dive computers clocks aren't in sync, * it is because the dive computers may "start" the dive at different * points in the dive, so the sample at time X in dive 'a' is the * same as the sample at time X+offset in dive 'b'. * * For example, some dive computers take longer to "wake up" when * they sense that you are under water (ie Uemis Zurich if it was off * when the dive started). And other dive computers have different * depths that they activate at, etc etc. * * If we cannot find a shared offset, don't try to merge. */ static int find_sample_offset(struct divecomputer *a, struct divecomputer *b) { /* No samples? Merge at any time (0 offset) */ if (a->samples.empty()) return 0; if (b->samples.empty()) return 0; /* * Common special-case: merging a dive that came from * the same dive computer, so the samples are identical. * Check this first, without wasting time trying to find * some minimal offset case. */ int best = 0; unsigned long max = sample_difference(a, b, 0); if (!max) return 0; /* * Otherwise, look if we can find anything better within * a thirty second window.. */ for (int offset = -30; offset <= 30; offset++) { unsigned long diff; int diff = sample_difference(a, b, offset); if (diff > max) continue; best = offset; max = diff; } return best; } #endif /* * Are a and b "similar" values, when given a reasonable lower end expected * difference? * * So for example, we'd expect different dive computers to give different * max. depth readings. You might have them on different arms, and they * have different pressure sensors and possibly different ideas about * water salinity etc. * * So have an expected minimum difference, but also allow a larger relative * error value. */ static int similar(unsigned long a, unsigned long b, unsigned long expected) { if (!a && !b) return 1; if (a && b) { unsigned long min, max, diff; min = a; max = b; if (a > b) { min = b; max = a; } diff = max - min; /* Smaller than expected difference? */ if (diff < expected) return 1; /* Error less than 10% or the maximum */ if (diff * 10 < max) return 1; } return 0; } /* * Match every dive computer against each other to see if * we have a matching dive. * * Return values: * -1 for "is definitely *NOT* the same dive" * 0 for "don't know" * 1 for "is definitely the same dive" */ static int match_dc_dive(const struct dive &a, const struct dive &b) { for (auto &dc1: a.dcs) { for (auto &dc2: b.dcs) { int match = match_one_dc(dc1, dc2); if (match) return match; } } return 0; } /* * Do we want to automatically try to merge two dives that * look like they are the same dive? * * This happens quite commonly because you download a dive * that you already had, or perhaps because you maintained * multiple dive logs and want to load them all together * (possibly one of them was imported from another dive log * application entirely). * * NOTE! We mainly look at the dive time, but it can differ * between two dives due to a few issues: * * - rounding the dive date to the nearest minute in other dive * applications * * - dive computers with "relative datestamps" (ie the dive * computer doesn't actually record an absolute date at all, * but instead at download-time synchronizes its internal * time with real-time on the downloading computer) * * - using multiple dive computers with different real time on * the same dive * * We do not merge dives that look radically different, and if * the dates are *too* far off the user will have to join two * dives together manually. But this tries to handle the sane * cases. */ bool dive::likely_same(const struct dive &b) const { /* don't merge manually added dives with anything */ if (is_dc_manually_added_dive(&dcs[0]) || is_dc_manually_added_dive(&b.dcs[0])) return 0; /* * Do some basic sanity testing of the values we * have filled in during 'fixup_dive()' */ if (!similar(maxdepth.mm, b.maxdepth.mm, 1000) || (meandepth.mm && b.meandepth.mm && !similar(meandepth.mm, b.meandepth.mm, 1000)) || !duration.seconds || !b.duration.seconds || !similar(duration.seconds, b.duration.seconds, 5 * 60)) return 0; /* See if we can get an exact match on the dive computer */ if (match_dc_dive(*this, b)) return true; /* * Allow a time difference due to dive computer time * setting etc. Check if they overlap. */ int fuzz = std::max(duration.seconds, b.duration.seconds) / 2; fuzz = std::max(fuzz, 60); return (when <= b.when + fuzz) && (when >= b.when - fuzz); } static bool operator==(const sample &a, const sample &b) { if (a.time.seconds != b.time.seconds) return false; if (a.depth.mm != b.depth.mm) return false; if (a.temperature.mkelvin != b.temperature.mkelvin) return false; if (a.pressure[0].mbar != b.pressure[0].mbar) return false; return a.sensor[0] == b.sensor[0]; } static int same_dc(const struct divecomputer &a, const struct divecomputer &b) { int i; i = match_one_dc(a, b); if (i) return i > 0; if (a.when && b.when && a.when != b.when) return 0; if (a.samples != b.samples) return 0; return a.events == b.events; } static int might_be_same_device(const struct divecomputer &a, const struct divecomputer &b) { /* No dive computer model? That matches anything */ if (a.model.empty() || b.model.empty()) return 1; /* Otherwise at least the model names have to match */ if (strcasecmp(a.model.c_str(), b.model.c_str())) return 0; /* No device ID? Match */ if (!a.deviceid || !b.deviceid) return 1; return a.deviceid == b.deviceid; } static void remove_redundant_dc(struct dive &d, bool prefer_downloaded) { // Note: since the vector doesn't grow and we only erase // elements after the iterator, this is fine. for (auto it = d.dcs.begin(); it != d.dcs.end(); ++it) { // Remove all following DCs that compare as equal. // Use the (infamous) erase-remove idiom. auto it2 = std::remove_if(std::next(it), d.dcs.end(), [d, prefer_downloaded, &it] (const divecomputer &dc) { return same_dc(*it, dc) || (prefer_downloaded && might_be_same_device(*it, dc)); }); d.dcs.erase(it2, d.dcs.end()); prefer_downloaded = false; } } static const struct divecomputer *find_matching_computer(const struct divecomputer &match, const struct dive &d) { for (const auto &dc: d.dcs) { if (might_be_same_device(match, dc)) return &dc; } return nullptr; } static void copy_dive_computer(struct divecomputer &res, const struct divecomputer &a) { res = a; res.samples.clear(); res.events.clear(); } /* * Join dive computers with a specific time offset between * them. * * Use the dive computer ID's (or names, if ID's are missing) * to match them up. If we find a matching dive computer, we * merge them. If not, we just take the data from 'a'. */ static void interleave_dive_computers(struct dive &res, const struct dive &a, const struct dive &b, const int cylinders_map_a[], const int cylinders_map_b[]) { res.dcs.clear(); for (const auto &dc1: a.dcs) { res.dcs.emplace_back(); divecomputer &newdc = res.dcs.back(); copy_dive_computer(newdc, dc1); const divecomputer *match = find_matching_computer(dc1, b); if (match) { int offset = match->when - dc1.when; merge_events(res, newdc, dc1, *match, cylinders_map_a, cylinders_map_b, offset); merge_samples(newdc, dc1, *match, cylinders_map_a, cylinders_map_b, offset); merge_extra_data(newdc, dc1, *match); /* Use the diveid of the later dive! */ if (offset > 0) newdc.diveid = match->diveid; } else { dc_cylinder_renumber(res, res.dcs.back(), cylinders_map_a); } } } /* * Join dive computer information. * * If we have old-style dive computer information (no model * name etc), we will prefer a new-style one and just throw * away the old. We're assuming it's a re-download. * * Otherwise, we'll just try to keep all the information, * unless the user has specified that they prefer the * downloaded computer, in which case we'll aggressively * try to throw out old information that *might* be from * that one. */ static void join_dive_computers(struct dive &d, const struct dive &a, const struct dive &b, const int cylinders_map_a[], const int cylinders_map_b[], bool prefer_downloaded) { d.dcs.clear(); if (!a.dcs[0].model.empty() && b.dcs[0].model.empty()) { copy_dc_renumber(d, a, cylinders_map_a); return; } if (!b.dcs[0].model.empty() && a.dcs[0].model.empty()) { copy_dc_renumber(d, b, cylinders_map_b); return; } copy_dc_renumber(d, a, cylinders_map_a); copy_dc_renumber(d, b, cylinders_map_b); remove_redundant_dc(d, prefer_downloaded); } static bool has_dc_type(const struct dive &dive, bool dc_is_planner) { return std::any_of(dive.dcs.begin(), dive.dcs.end(), [dc_is_planner] (const divecomputer &dc) { return is_dc_planner(&dc) == dc_is_planner; }); } // Does this dive have a dive computer for which is_dc_planner has value planned bool dive::is_planned() const { return has_dc_type(*this, true); } bool dive::is_logged() const { return has_dc_type(*this, false); } std::unique_ptr dive::create_merged_dive(const struct dive &a, const struct dive &b, int offset, bool prefer_downloaded) { auto res = std::make_unique(); if (offset) { /* * If "likely_same_dive()" returns true, that means that * it is *not* the same dive computer, and we do not want * to try to turn it into a single longer dive. So we'd * join them as two separate dive computers at zero offset. */ if (a.likely_same(b)) offset = 0; } res->when = prefer_downloaded ? b.when : a.when; res->selected = a.selected || b.selected; MERGE_TXT(res, a, b, notes, "\n--\n"); MERGE_TXT(res, a, b, buddy, ", "); MERGE_TXT(res, a, b, diveguide, ", "); MERGE_MAX(res, a, b, rating); MERGE_TXT(res, a, b, suit, ", "); MERGE_MAX(res, a, b, number); MERGE_NONZERO(res, a, b, visibility); MERGE_NONZERO(res, a, b, wavesize); MERGE_NONZERO(res, a, b, current); MERGE_NONZERO(res, a, b, surge); MERGE_NONZERO(res, a, b, chill); res->pictures = !a.pictures.empty() ? a.pictures : b.pictures; res->tags = taglist_merge(a.tags, b.tags); /* if we get dives without any gas / cylinder information in an import, make sure * that there is at leatst one entry in the cylinder map for that dive */ auto cylinders_map_a = std::make_unique(std::max(size_t(1), a.cylinders.size())); auto cylinders_map_b = std::make_unique(std::max(size_t(1), b.cylinders.size())); merge_cylinders(*res, a, b, cylinders_map_a.get(), cylinders_map_b.get()); merge_equipment(*res, a, b); merge_temperatures(*res, a, b); if (prefer_downloaded) { /* If we prefer downloaded, do those first, and get rid of "might be same" computers */ join_dive_computers(*res, b, a, cylinders_map_b.get(), cylinders_map_a.get(), true); } else if (offset && might_be_same_device(a.dcs[0], b.dcs[0])) { interleave_dive_computers(*res, a, b, cylinders_map_a.get(), cylinders_map_b.get()); } else { join_dive_computers(*res, a, b, cylinders_map_a.get(), cylinders_map_b.get(), false); } return res; } /* * "dc_maxtime()" is how much total time this dive computer * has for this dive. Note that it can differ from "duration" * if there are surface events in the middle. * * Still, we do ignore all but the last surface samples from the * end, because some divecomputers just generate lots of them. */ static inline int dc_totaltime(const struct divecomputer &dc) { int time = dc.duration.seconds; for (auto it = dc.samples.rbegin(); it != dc.samples.rend(); ++it) { time = it->time.seconds; if (it->depth.mm >= SURFACE_THRESHOLD) break; } return time; } /* * The end of a dive is actually not trivial, because "duration" * is not the duration until the end, but the time we spend under * water, which can be very different if there are surface events * during the dive. * * So walk the dive computers, looking for the longest actual * time in the samples (and just default to the dive duration if * there are no samples). */ duration_t dive::totaltime() const { int time = duration.seconds; bool logged = is_logged(); for (auto &dc: dcs) { if (logged || !is_dc_planner(&dc)) { int dc_time = dc_totaltime(dc); if (dc_time > time) time = dc_time; } } return { time }; } timestamp_t dive::endtime() const { return when + totaltime().seconds; } bool dive::time_during_dive_with_offset(timestamp_t when, timestamp_t offset) const { timestamp_t start = when; timestamp_t end = endtime(); return start - offset <= when && when <= end + offset; } /* this sets a usually unused copy of the preferences with the units * that were active the last time the dive list was saved to git storage * (this isn't used in XML files); storing the unit preferences in the * data file is usually pointless (that's a setting of the software, * not a property of the data), but it's a great hint of what the user * might expect to see when creating a backend service that visualizes * the dive list without Subsurface running - so this is basically a * functionality for the core library that Subsurface itself doesn't * use but that another consumer of the library (like an HTML exporter) * will need */ void set_informational_units(const char *units) { if (strstr(units, "METRIC")) { git_prefs.unit_system = METRIC; } else if (strstr(units, "IMPERIAL")) { git_prefs.unit_system = IMPERIAL; } else if (strstr(units, "PERSONALIZE")) { git_prefs.unit_system = PERSONALIZE; if (strstr(units, "METERS")) git_prefs.units.length = units::METERS; if (strstr(units, "FEET")) git_prefs.units.length = units::FEET; if (strstr(units, "LITER")) git_prefs.units.volume = units::LITER; if (strstr(units, "CUFT")) git_prefs.units.volume = units::CUFT; if (strstr(units, "BAR")) git_prefs.units.pressure = units::BAR; if (strstr(units, "PSI")) git_prefs.units.pressure = units::PSI; if (strstr(units, "CELSIUS")) git_prefs.units.temperature = units::CELSIUS; if (strstr(units, "FAHRENHEIT")) git_prefs.units.temperature = units::FAHRENHEIT; if (strstr(units, "KG")) git_prefs.units.weight = units::KG; if (strstr(units, "LBS")) git_prefs.units.weight = units::LBS; if (strstr(units, "SECONDS")) git_prefs.units.vertical_speed_time = units::SECONDS; if (strstr(units, "MINUTES")) git_prefs.units.vertical_speed_time = units::MINUTES; } } /* clones a dive and moves given dive computer to front */ std::unique_ptr clone_make_first_dc(const struct dive &d, int dc_number) { /* copy the dive */ auto res = std::make_unique(d); /* make a new unique id, since we still can't handle two equal ids */ res->id = dive_getUniqID(); if (dc_number != 0) move_in_range(res->dcs, dc_number, dc_number + 1, 0); return res; } //Calculate O2 in best mix fraction_t dive::best_o2(depth_t depth, bool in_planner) const { fraction_t fo2; int po2 = in_planner ? prefs.bottompo2 : (int)(prefs.modpO2 * 1000.0); fo2.permille = (po2 * 100 / depth_to_mbar(depth.mm)) * 10; //use integer arithmetic to round down to nearest percent // Don't permit >100% O2 if (fo2.permille > 1000) fo2.permille = 1000; return fo2; } //Calculate He in best mix. O2 is considered narcopic fraction_t dive::best_he(depth_t depth, bool o2narcotic, fraction_t fo2) const { fraction_t fhe; int pnarcotic, ambient; pnarcotic = depth_to_mbar(prefs.bestmixend.mm); ambient = depth_to_mbar(depth.mm); if (o2narcotic) { fhe.permille = (100 - 100 * pnarcotic / ambient) * 10; //use integer arithmetic to round up to nearest percent } else { fhe.permille = 1000 - fo2.permille - N2_IN_AIR * pnarcotic / ambient; } if (fhe.permille < 0) fhe.permille = 0; return fhe; } static constexpr std::array null_id = {}; void dive::invalidate_cache() { git_id = null_id; } bool dive::cache_is_valid() const { return git_id != null_id; } pressure_t dive::get_surface_pressure() const { return surface_pressure.mbar > 0 ? surface_pressure : pressure_t { SURFACE_PRESSURE }; } /* This returns the conversion factor that you need to multiply * a (relative) depth in mm to obtain a (relative) pressure in mbar. * As everywhere in Subsurface, the expected unit of a salinity is * g/10l such that sea water has a salinity of 10300 */ static double salinity_to_specific_weight(int salinity) { return salinity * 0.981 / 100000.0; } /* Pa = N/m^2 - so we determine the weight (in N) of the mass of 10m * of water (and use standard salt water at 1.03kg per liter if we don't know salinity) * and add that to the surface pressure (or to 1013 if that's unknown) */ static double calculate_depth_to_mbarf(int depth, pressure_t surface_pressure, int salinity) { double specific_weight; int mbar = surface_pressure.mbar; if (!mbar) mbar = SURFACE_PRESSURE; if (!salinity) salinity = SEAWATER_SALINITY; if (salinity < 500) salinity += FRESHWATER_SALINITY; specific_weight = salinity_to_specific_weight(salinity); return mbar + depth * specific_weight; } int dive::depth_to_mbar(int depth) const { return lrint(depth_to_mbarf(depth)); } double dive::depth_to_mbarf(int depth) const { // For downloaded and planned dives, use DC's values int salinity = dcs[0].salinity; pressure_t surface_pressure = dcs[0].surface_pressure; if (is_dc_manually_added_dive(&dcs[0])) { // For manual dives, salinity and pressure in another place... surface_pressure = this->surface_pressure; salinity = user_salinity; } return calculate_depth_to_mbarf(depth, surface_pressure, salinity); } double dive::depth_to_bar(int depth) const { return depth_to_mbar(depth) / 1000.0; } double dive::depth_to_atm(int depth) const { return mbar_to_atm(depth_to_mbar(depth)); } /* for the inverse calculation we use just the relative pressure * (that's the one that some dive computers like the Uemis Zurich * provide - for the other models that do this libdivecomputer has to * take care of this, but the Uemis we support natively */ int dive::rel_mbar_to_depth(int mbar) const { // For downloaded and planned dives, use DC's salinity. Manual dives, use user's salinity int salinity = is_dc_manually_added_dive(&dcs[0]) ? user_salinity : dcs[0].salinity; if (!salinity) salinity = SEAWATER_SALINITY; /* whole mbar gives us cm precision */ double specific_weight = salinity_to_specific_weight(salinity); return (int)lrint(mbar / specific_weight); } int dive::mbar_to_depth(int mbar) const { // For downloaded and planned dives, use DC's pressure. Manual dives, use user's pressure pressure_t surface_pressure = is_dc_manually_added_dive(&dcs[0]) ? this->surface_pressure : dcs[0].surface_pressure; if (!surface_pressure.mbar) surface_pressure.mbar = SURFACE_PRESSURE; return rel_mbar_to_depth(mbar - surface_pressure.mbar); } /* MOD rounded to multiples of roundto mm */ depth_t dive::gas_mod(struct gasmix mix, pressure_t po2_limit, int roundto) const { double depth = (double) mbar_to_depth(po2_limit.mbar * 1000 / get_o2(mix)); return depth_t { (int)lrint(depth / roundto) * roundto }; } /* Maximum narcotic depth rounded to multiples of roundto mm */ depth_t dive::gas_mnd(struct gasmix mix, depth_t end, int roundto) const { pressure_t ppo2n2 { depth_to_mbar(end.mm) }; int maxambient = prefs.o2narcotic ? (int)lrint(ppo2n2.mbar / (1 - get_he(mix) / 1000.0)) : get_n2(mix) > 0 ? (int)lrint(ppo2n2.mbar * N2_IN_AIR / get_n2(mix)) : // Actually: Infinity 1000000; return depth_t { (int)lrint(((double)mbar_to_depth(maxambient)) / roundto) * roundto }; } std::string dive::get_country() const { return dive_site ? taxonomy_get_country(dive_site->taxonomy) : std::string(); } std::string dive::get_location() const { return dive_site ? dive_site->name : std::string(); } int dive::number_of_computers() const { return static_cast(dcs.size()); } struct divecomputer *dive::get_dc(int nr) { if (dcs.empty()) // Can't happen! return NULL; nr = std::max(0, nr); return &dcs[static_cast(nr) % dcs.size()]; } const struct divecomputer *dive::get_dc(int nr) const { return const_cast(*this).get_dc(nr); } bool dive::dive_has_gps_location() const { return dive_site && dive_site->has_gps_location(); } /* Extract GPS location of a dive computer stored in the GPS1 * or GPS2 extra data fields */ static location_t dc_get_gps_location(const struct divecomputer &dc) { location_t res; for (const auto &data: dc.extra_data) { if (data.key == "GPS1") { parse_location(data.value.c_str(), &res); /* If we found a valid GPS1 field exit early since * it has priority over GPS2 */ if (has_location(&res)) break; } else if (data.key == "GPS2") { /* For GPS2 fields continue searching, as we might * still find a GPS1 field */ parse_location(data.value.c_str(), &res); } } return res; } /* Get GPS location for a dive. Highest priority is given to the GPS1 * extra data written by libdivecomputer, as this comes from a real GPS * device. If that doesn't exits, use the currently set dive site. * This function is potentially slow, therefore only call sparingly * and remember the result. */ location_t dive::get_gps_location() const { for (const struct divecomputer &dc: dcs) { location_t res = dc_get_gps_location(dc); if (has_location(&res)) return res; } /* No libdivecomputer generated GPS data found. * Let's use the location of the current dive site. */ return dive_site ? dive_site->location : location_t(); } gasmix_loop::gasmix_loop(const struct dive &d, const struct divecomputer &dc) : dive(d), dc(dc), first_run(true), loop("gaschange", dc) { } /* Some dive computers (Cobalt) don't start the dive with cylinder 0 but explicitly * tell us what the first gas is with a gas change event in the first sample. * Sneakily we'll use a return value of 0 (or FALSE) when there is no explicit * first cylinder - in which case cylinder 0 is indeed the first cylinder. * We likewise return 0 if the event concerns a cylinder that doesn't exist. * If the dive has no cylinders, -1 is returned. */ std::pair gasmix_loop::next_cylinder_index() { if (dive.cylinders.empty()) return std::make_pair(-1, INT_MAX); if (first_run) { next_event = loop.next(); last_cylinder_index = 0; // default to first cylinder last_time = 0; if (next_event && ((!dc.samples.empty() && next_event->time.seconds == dc.samples[0].time.seconds) || next_event->time.seconds <= 1)) { last_cylinder_index = dive.get_cylinder_index(*next_event); last_time = next_event->time.seconds; next_event = loop.next(); } else if (dc.divemode == CCR) { last_cylinder_index = std::max(get_cylinder_idx_by_use(dive, DILUENT), last_cylinder_index); } first_run = false; } else { if (next_event) { last_cylinder_index = dive.get_cylinder_index(*next_event); last_time = next_event->time.seconds; next_event = loop.next(); } else { last_cylinder_index = -1; last_time = INT_MAX; } } return std::make_pair(last_cylinder_index, last_time); } std::pair gasmix_loop::next() { if (first_run && dive.cylinders.empty()) { first_run = false; // return one cylinder of air if we don't have any cylinders return std::make_pair(gasmix_air, 0); } next_cylinder_index(); return std::make_pair(last_cylinder_index < 0 ? gasmix_invalid : dive.get_cylinder(last_cylinder_index)->gasmix, last_time); } std::pair gasmix_loop::cylinder_index_at(int time) { if (first_run) next_cylinder_index(); while (has_next() && next_event->time.seconds <= time) next_cylinder_index(); return std::make_pair(last_cylinder_index, last_time); } std::pair gasmix_loop::at(int time) { if (dive.cylinders.empty()) // return air if we don't have any cylinders return std::make_pair(gasmix_air, 0); cylinder_index_at(time); return std::make_pair(last_cylinder_index < 0 ? gasmix_invalid : dive.get_cylinder(last_cylinder_index)->gasmix, last_time); } bool gasmix_loop::has_next() const { return first_run || (!dive.cylinders.empty() && next_event); } /* get the gas at a certain time during the dive */ /* If there is a gasswitch at that time, it returns the new gasmix */ struct gasmix dive::get_gasmix_at_time(const struct divecomputer &dc, duration_t time) const { return gasmix_loop(*this, dc).at(time.seconds).first; } /* Does that cylinder have any pressure readings? */ bool cylinder_with_sensor_sample(const struct dive *dive, int cylinder_id) { for (const auto &dc: dive->dcs) { for (const auto &sample: dc.samples) { for (int j = 0; j < MAX_SENSORS; ++j) { if (!sample.pressure[j].mbar) continue; if (sample.sensor[j] == cylinder_id) return true; } } } return false; } /* * What do the dive computers say the water temperature is? * (not in the samples, but as dc property for dcs that support that) */ temperature_t dive::dc_watertemp() const { int sum = 0, nr = 0; for (auto &dc: dcs) { if (dc.watertemp.mkelvin) { sum += dc.watertemp.mkelvin; nr++; } } if (!nr) return temperature_t(); return temperature_t{ static_cast((sum + nr / 2) / nr) }; } /* * What do the dive computers say the air temperature is? */ temperature_t dive::dc_airtemp() const { int sum = 0, nr = 0; for (auto &dc: dcs) { if (dc.airtemp.mkelvin) { sum += dc.airtemp.mkelvin; nr++; } } if (!nr) return temperature_t(); return temperature_t{ static_cast((sum + nr / 2) / nr) }; } /* * Get "maximal" dive gas for a dive. * Rules: * - Trimix trumps nitrox (highest He wins, O2 breaks ties) * - Nitrox trumps air (even if hypoxic) * These are the same rules as the inter-dive sorting rules. */ dive::get_maximal_gas_result dive::get_maximal_gas() const { int maxo2 = -1, maxhe = -1, mino2 = 1000; for (auto [i, cyl]: enumerated_range(cylinders)) { int o2 = get_o2(cyl.gasmix); int he = get_he(cyl.gasmix); if (!is_cylinder_used(i)) continue; if (cyl.cylinder_use == OXYGEN) continue; if (cyl.cylinder_use == NOT_USED) continue; if (o2 > maxo2) maxo2 = o2; if (o2 < mino2 && maxhe <= 0) mino2 = o2; if (he > maxhe) { maxhe = he; mino2 = o2; } } /* All air? Show/sort as "air"/zero */ if ((!maxhe && maxo2 == O2_IN_AIR && mino2 == maxo2) || (maxo2 == -1 && maxhe == -1 && mino2 == 1000)) maxo2 = mino2 = 0; return { mino2, maxhe, maxo2 }; } bool dive::has_gaschange_event(const struct divecomputer *dc, int idx) const { gasmix_loop loop(*this, *dc); while (loop.has_next()) { if (loop.next_cylinder_index().first == idx) return true; } return false; } bool dive::is_cylinder_used(int idx) const { if (idx < 0 || static_cast(idx) >= cylinders.size()) return false; const cylinder_t &cyl = cylinders[idx]; if ((cyl.start.mbar - cyl.end.mbar) > SOME_GAS) return true; if ((cyl.sample_start.mbar - cyl.sample_end.mbar) > SOME_GAS) return true; for (auto &dc: dcs) { if (has_gaschange_event(&dc, idx)) return true; else if (dc.divemode == CCR && idx == get_cylinder_idx_by_use(*this, OXYGEN)) return true; } return false; } bool dive::is_cylinder_prot(int idx) const { if (idx < 0 || static_cast(idx) >= cylinders.size()) return false; return std::any_of(dcs.begin(), dcs.end(), [this, idx](auto &dc) { return has_gaschange_event(&dc, idx); }); } weight_t dive::total_weight() const { // TODO: implement addition for units.h types return std::accumulate(weightsystems.begin(), weightsystems.end(), weight_t(), [] (weight_t w, const weightsystem_t &ws) { return weight_t{ w.grams + ws.weight.grams }; }); }