/* profile.c */ /* creates all the necessary data for drawing the dive profile * uses cairo to draw it */ #include #include #include #include #include #include #include #include "dive.h" #include "display.h" #include "display-gtk.h" #include "divelist.h" #include "color.h" #include "libdivecomputer/parser.h" #include "libdivecomputer/version.h" int selected_dive = 0; char zoomed_plot = 0; static double plot_scale = SCALE_SCREEN; #define cairo_set_line_width_scaled(cr, w) \ cairo_set_line_width((cr), (w) * plot_scale); typedef enum { STABLE, SLOW, MODERATE, FAST, CRAZY } velocity_t; struct plot_data { unsigned int same_cylinder:1; unsigned int cylinderindex; int sec; /* pressure[0] is sensor pressure * pressure[1] is interpolated pressure */ int pressure[2]; int temperature; /* Depth info */ int depth; int ndl; int stoptime; int stopdepth; int smoothed; double po2, pn2, phe; velocity_t velocity; struct plot_data *min[3]; struct plot_data *max[3]; int avg[3]; }; #define SENSOR_PR 0 #define INTERPOLATED_PR 1 #define SENSOR_PRESSURE(_entry) (_entry)->pressure[SENSOR_PR] #define INTERPOLATED_PRESSURE(_entry) (_entry)->pressure[INTERPOLATED_PR] #define GET_PRESSURE(_entry) (SENSOR_PRESSURE(_entry) ? : INTERPOLATED_PRESSURE(_entry)) #define SAC_COLORS_START_IDX SAC_1 #define SAC_COLORS 9 #define VELOCITY_COLORS_START_IDX VELO_STABLE #define VELOCITY_COLORS 5 typedef enum { /* SAC colors. Order is important, the SAC_COLORS_START_IDX define above. */ SAC_1, SAC_2, SAC_3, SAC_4, SAC_5, SAC_6, SAC_7, SAC_8, SAC_9, /* Velocity colors. Order is still important, ref VELOCITY_COLORS_START_IDX. */ VELO_STABLE, VELO_SLOW, VELO_MODERATE, VELO_FAST, VELO_CRAZY, /* gas colors */ PO2, PO2_ALERT, PN2, PN2_ALERT, PHE, PHE_ALERT, /* Other colors */ TEXT_BACKGROUND, ALERT_BG, ALERT_FG, EVENTS, SAMPLE_DEEP, SAMPLE_SHALLOW, SMOOTHED, MINUTE, TIME_GRID, TIME_TEXT, DEPTH_GRID, MEAN_DEPTH, DEPTH_TOP, DEPTH_BOTTOM, TEMP_TEXT, TEMP_PLOT, SAC_DEFAULT, BOUNDING_BOX, PRESSURE_TEXT, BACKGROUND, CEILING_SHALLOW, CEILING_DEEP } color_indice_t; typedef struct { /* media[0] is screen, and media[1] is printer */ struct rgba { double r,g,b,a; } media[2]; } color_t; /* [color indice] = {{screen color, printer color}} */ static const color_t profile_color[] = { [SAC_1] = {{FUNGREEN1, BLACK1_LOW_TRANS}}, [SAC_2] = {{APPLE1, BLACK1_LOW_TRANS}}, [SAC_3] = {{ATLANTIS1, BLACK1_LOW_TRANS}}, [SAC_4] = {{ATLANTIS2, BLACK1_LOW_TRANS}}, [SAC_5] = {{EARLSGREEN1, BLACK1_LOW_TRANS}}, [SAC_6] = {{HOKEYPOKEY1, BLACK1_LOW_TRANS}}, [SAC_7] = {{TUSCANY1, BLACK1_LOW_TRANS}}, [SAC_8] = {{CINNABAR1, BLACK1_LOW_TRANS}}, [SAC_9] = {{REDORANGE1, BLACK1_LOW_TRANS}}, [VELO_STABLE] = {{CAMARONE1, BLACK1_LOW_TRANS}}, [VELO_SLOW] = {{LIMENADE1, BLACK1_LOW_TRANS}}, [VELO_MODERATE] = {{RIOGRANDE1, BLACK1_LOW_TRANS}}, [VELO_FAST] = {{PIRATEGOLD1, BLACK1_LOW_TRANS}}, [VELO_CRAZY] = {{RED1, BLACK1_LOW_TRANS}}, [PO2] = {{APPLE1, APPLE1_MED_TRANS}}, [PO2_ALERT] = {{RED1, APPLE1_MED_TRANS}}, [PN2] = {{BLACK1_LOW_TRANS, BLACK1_LOW_TRANS}}, [PN2_ALERT] = {{RED1, BLACK1_LOW_TRANS}}, [PHE] = {{PEANUT, PEANUT_MED_TRANS}}, [PHE_ALERT] = {{RED1, PEANUT_MED_TRANS}}, [TEXT_BACKGROUND] = {{CONCRETE1_LOWER_TRANS, WHITE1}}, [ALERT_BG] = {{BROOM1_LOWER_TRANS, BLACK1_LOW_TRANS}}, [ALERT_FG] = {{BLACK1_LOW_TRANS, BLACK1_LOW_TRANS}}, [EVENTS] = {{REDORANGE1, BLACK1_LOW_TRANS}}, [SAMPLE_DEEP] = {{PERSIANRED1, BLACK1_LOW_TRANS}}, [SAMPLE_SHALLOW] = {{PERSIANRED1, BLACK1_LOW_TRANS}}, [SMOOTHED] = {{REDORANGE1_HIGH_TRANS, BLACK1_LOW_TRANS}}, [MINUTE] = {{MEDIUMREDVIOLET1_HIGHER_TRANS, BLACK1_LOW_TRANS}}, [TIME_GRID] = {{WHITE1, TUNDORA1_MED_TRANS}}, [TIME_TEXT] = {{FORESTGREEN1, BLACK1_LOW_TRANS}}, [DEPTH_GRID] = {{WHITE1, TUNDORA1_MED_TRANS}}, [MEAN_DEPTH] = {{REDORANGE1_MED_TRANS, BLACK1_LOW_TRANS}}, [DEPTH_BOTTOM] = {{GOVERNORBAY1_MED_TRANS, TUNDORA1_MED_TRANS}}, [DEPTH_TOP] = {{MERCURY1_MED_TRANS, WHITE1_MED_TRANS}}, [TEMP_TEXT] = {{GOVERNORBAY2, BLACK1_LOW_TRANS}}, [TEMP_PLOT] = {{ROYALBLUE2_LOW_TRANS, BLACK1_LOW_TRANS}}, [SAC_DEFAULT] = {{WHITE1, BLACK1_LOW_TRANS}}, [BOUNDING_BOX] = {{WHITE1, BLACK1_LOW_TRANS}}, [PRESSURE_TEXT] = {{KILLARNEY1, BLACK1_LOW_TRANS}}, [BACKGROUND] = {{SPRINGWOOD1, BLACK1_LOW_TRANS}}, [CEILING_SHALLOW] = {{REDORANGE1_HIGH_TRANS, REDORANGE1_HIGH_TRANS}}, [CEILING_DEEP] = {{RED1_MED_TRANS, RED1_MED_TRANS}}, }; /* Scale to 0,0 -> maxx,maxy */ #define SCALEX(gc,x) (((x)-gc->leftx)/(gc->rightx-gc->leftx)*gc->maxx) #define SCALEY(gc,y) (((y)-gc->topy)/(gc->bottomy-gc->topy)*gc->maxy) #define SCALE(gc,x,y) SCALEX(gc,x),SCALEY(gc,y) static void move_to(struct graphics_context *gc, double x, double y) { cairo_move_to(gc->cr, SCALE(gc, x, y)); } static void line_to(struct graphics_context *gc, double x, double y) { cairo_line_to(gc->cr, SCALE(gc, x, y)); } static void set_source_rgba(struct graphics_context *gc, color_indice_t c) { const color_t *col = &profile_color[c]; struct rgba rgb = col->media[gc->printer]; double r = rgb.r; double g = rgb.g; double b = rgb.b; double a = rgb.a; cairo_set_source_rgba(gc->cr, r, g, b, a); } void init_profile_background(struct graphics_context *gc) { set_source_rgba(gc, BACKGROUND); } void pattern_add_color_stop_rgba(struct graphics_context *gc, cairo_pattern_t *pat, double o, color_indice_t c) { const color_t *col = &profile_color[c]; struct rgba rgb = col->media[gc->printer]; cairo_pattern_add_color_stop_rgba(pat, o, rgb.r, rgb.g, rgb.b, rgb.a); } #define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y)) /* debugging tool - not normally used */ static void dump_pi (struct plot_info *pi) { int i; printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n" " maxpressure:%d mintemp:%d maxtemp:%d\n", pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth, pi->maxpressure, pi->mintemp, pi->maxtemp); for (i = 0; i < pi->nr; i++) { struct plot_data *entry = &pi->entry[i]; printf(" entry[%d]:{same_cylinder:%d cylinderindex:%d sec:%d pressure:{%d,%d}\n" " time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n", i, entry->same_cylinder, entry->cylinderindex, entry->sec, entry->pressure[0], entry->pressure[1], entry->sec / 60, entry->sec % 60, entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed, entry->po2, entry->phe, entry->pn2, entry->po2 + entry->phe + entry->pn2); } printf(" }\n"); } /* * When showing dive profiles, we scale things to the * current dive. However, we don't scale past less than * 30 minutes or 90 ft, just so that small dives show * up as such unless zoom is enabled. * We also need to add 180 seconds at the end so the min/max * plots correctly */ static int get_maxtime(struct plot_info *pi) { int seconds = pi->maxtime; if (zoomed_plot) { /* Rounded up to one minute, with at least 2.5 minutes to * spare. * For dive times shorter than 10 minutes, we use seconds/4 to * calculate the space dynamically. * This is seamless since 600/4 = 150. */ if ( seconds < 600 ) return ROUND_UP(seconds+seconds/4, 60); else return ROUND_UP(seconds+150, 60); } else { /* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */ return MAX(30*60, ROUND_UP(seconds+150, 60*5)); } } /* get the maximum depth to which we want to plot * take into account the additional verical space needed to plot * partial pressure graphs */ static int get_maxdepth(struct plot_info *pi) { unsigned mm = pi->maxdepth; int md; if (zoomed_plot) { /* Rounded up to 10m, with at least 3m to spare */ md = ROUND_UP(mm+3000, 10000); } else { /* Minimum 30m, rounded up to 10m, with at least 3m to spare */ md = MAX(30000, ROUND_UP(mm+3000, 10000)); } if (GRAPHS_ENABLED) { if (md <= 20000) md += 10000; else md += ROUND_UP(md / 2, 10000); } return md; } typedef struct { int size; color_indice_t color; double hpos, vpos; } text_render_options_t; #define RIGHT (-1.0) #define CENTER (-0.5) #define LEFT (0.0) #define TOP (1) #define MIDDLE (0) #define BOTTOM (-1) static void plot_text(struct graphics_context *gc, const text_render_options_t *tro, double x, double y, const char *fmt, ...) { cairo_t *cr = gc->cr; cairo_font_extents_t fe; cairo_text_extents_t extents; double dx, dy; char buffer[80]; va_list args; va_start(args, fmt); vsnprintf(buffer, sizeof(buffer), fmt, args); va_end(args); cairo_set_font_size(cr, tro->size * plot_scale); cairo_font_extents(cr, &fe); cairo_text_extents(cr, buffer, &extents); dx = tro->hpos * (extents.width + extents.x_bearing); dy = tro->vpos * (extents.height + fe.descent); move_to(gc, x, y); cairo_rel_move_to(cr, dx, dy); cairo_text_path(cr, buffer); set_source_rgba(gc, TEXT_BACKGROUND); cairo_stroke(cr); move_to(gc, x, y); cairo_rel_move_to(cr, dx, dy); set_source_rgba(gc, tro->color); cairo_show_text(cr, buffer); } /* collect all event names and whether we display them */ struct ev_select { char *ev_name; gboolean plot_ev; }; static struct ev_select *ev_namelist; static int evn_allocated; static int evn_used; void evn_foreach(void (*callback)(const char *, int *, void *), void *data) { int i; for (i = 0; i < evn_used; i++) { /* here we display an event name on screen - so translate */ callback(_(ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data); } } void remember_event(const char *eventname) { int i = 0, len; if (!eventname || (len = strlen(eventname)) == 0) return; while (i < evn_used) { if (!strncmp(eventname, ev_namelist[i].ev_name, len)) return; i++; } if (evn_used == evn_allocated) { evn_allocated += 10; ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select)); if (! ev_namelist) /* we are screwed, but let's just bail out */ return; } ev_namelist[evn_used].ev_name = strdup(eventname); ev_namelist[evn_used].plot_ev = TRUE; evn_used++; } static void plot_one_event(struct graphics_context *gc, struct plot_info *pi, struct event *event, const text_render_options_t *tro) { int i, depth = 0; int x,y; char buffer[80]; /* is plotting this event disabled? */ if (event->name) { for (i = 0; i < evn_used; i++) { if (! strcmp(event->name, ev_namelist[i].ev_name)) { if (ev_namelist[i].plot_ev) break; else return; } } } for (i = 0; i < pi->nr; i++) { struct plot_data *data = pi->entry + i; if (event->time.seconds < data->sec) break; depth = data->depth; } /* draw a little triangular marker and attach tooltip */ x = SCALEX(gc, event->time.seconds); y = SCALEY(gc, depth); set_source_rgba(gc, ALERT_BG); cairo_move_to(gc->cr, x-15, y+6); cairo_line_to(gc->cr, x-3 , y+6); cairo_line_to(gc->cr, x-9, y-6); cairo_line_to(gc->cr, x-15, y+6); cairo_stroke_preserve(gc->cr); cairo_fill(gc->cr); set_source_rgba(gc, ALERT_FG); cairo_move_to(gc->cr, x-9, y-3); cairo_line_to(gc->cr, x-9, y+1); cairo_move_to(gc->cr, x-9, y+4); cairo_line_to(gc->cr, x-9, y+4); cairo_stroke(gc->cr); /* we display the event on screen - so translate */ if (event->value) snprintf(buffer, sizeof(buffer), "%s: %d", _(event->name), event->value); else snprintf(buffer, sizeof(buffer), "%s", _(event->name)); attach_tooltip(x-15, y-6, 12, 12, buffer); } static void plot_events(struct graphics_context *gc, struct plot_info *pi, struct divecomputer *dc) { static const text_render_options_t tro = {14, EVENTS, CENTER, TOP}; struct event *event = dc->events; if (gc->printer) return; while (event) { if (event->flags != SAMPLE_FLAGS_BEGIN && event->flags != SAMPLE_FLAGS_END) plot_one_event(gc, pi, event, &tro); event = event->next; } } static void render_depth_sample(struct graphics_context *gc, struct plot_data *entry, const text_render_options_t *tro) { int sec = entry->sec, decimals; double d; d = get_depth_units(entry->depth, &decimals, NULL); plot_text(gc, tro, sec, entry->depth, "%.*f", decimals, d); } static void plot_text_samples(struct graphics_context *gc, struct plot_info *pi) { static const text_render_options_t deep = {14, SAMPLE_DEEP, CENTER, TOP}; static const text_render_options_t shallow = {14, SAMPLE_SHALLOW, CENTER, BOTTOM}; int i; int last = -1; for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; if (entry->depth < 2000) continue; if ((entry == entry->max[2]) && entry->depth != last) { render_depth_sample(gc, entry, &deep); last = entry->depth; } if ((entry == entry->min[2]) && entry->depth != last) { render_depth_sample(gc, entry, &shallow); last = entry->depth; } if (entry->depth != last) last = -1; } } static void plot_depth_text(struct graphics_context *gc, struct plot_info *pi) { int maxtime, maxdepth; /* Get plot scaling limits */ maxtime = get_maxtime(pi); maxdepth = get_maxdepth(pi); gc->leftx = 0; gc->rightx = maxtime; gc->topy = 0; gc->bottomy = maxdepth; plot_text_samples(gc, pi); } static void plot_smoothed_profile(struct graphics_context *gc, struct plot_info *pi) { int i; struct plot_data *entry = pi->entry; set_source_rgba(gc, SMOOTHED); move_to(gc, entry->sec, entry->smoothed); for (i = 1; i < pi->nr; i++) { entry++; line_to(gc, entry->sec, entry->smoothed); } cairo_stroke(gc->cr); } static void plot_minmax_profile_minute(struct graphics_context *gc, struct plot_info *pi, int index) { int i; struct plot_data *entry = pi->entry; set_source_rgba(gc, MINUTE); move_to(gc, entry->sec, entry->min[index]->depth); for (i = 1; i < pi->nr; i++) { entry++; line_to(gc, entry->sec, entry->min[index]->depth); } for (i = 1; i < pi->nr; i++) { line_to(gc, entry->sec, entry->max[index]->depth); entry--; } cairo_close_path(gc->cr); cairo_fill(gc->cr); } static void plot_minmax_profile(struct graphics_context *gc, struct plot_info *pi) { if (gc->printer) return; plot_minmax_profile_minute(gc, pi, 2); plot_minmax_profile_minute(gc, pi, 1); plot_minmax_profile_minute(gc, pi, 0); } static void plot_depth_scale(struct graphics_context *gc, struct plot_info *pi) { int i, maxdepth, marker; static const text_render_options_t tro = {10, SAMPLE_DEEP, RIGHT, MIDDLE}; /* Depth markers: every 30 ft or 10 m*/ maxdepth = get_maxdepth(pi); gc->topy = 0; gc->bottomy = maxdepth; switch (output_units.length) { case METERS: marker = 10000; break; case FEET: marker = 9144; break; /* 30 ft */ } set_source_rgba(gc, DEPTH_GRID); for (i = marker; i < maxdepth; i += marker) { double d = get_depth_units(i, NULL, NULL); plot_text(gc, &tro, -0.002, i, "%.0f", d); } } /* ap points to an array of int with pi->nr + 1 elements that is * ininitialized with just one -1 entry * this adds entries (if they aren't too close to an existing one) * and keeps things sorted * we KNOW the array is big enough to hold all possible indices * a2p is a secondary array - we insert value at the same relative * positio as idx in ap */ static void add_index(int idx, int margin, int **ap, int **a2p, int value) { int j, i = 0; int *a = *ap; int *a2 = *a2p; while (a[i] != -1 && a[i] < idx) i++; if (a[i] == idx) return; /* already have a POI to the left with the same vertical positiom and too close */ if ((i > 0 && a[i - 1] != -1 && a2[i - 1] == value && idx - a[i - 1] < margin)) return; /* already have a POI to the right with the same vertical positiom and too close */ if (a[i] != -1 && a2[i] == value && a[i] - idx < margin) return; if (a[i] != -1 && a[i] - idx < margin) return; j = i; while (a[j] != -1) j++; while (j >= i) { a[j+1] = a[j]; a2[j+1] = a2[j]; j--; } a[i] = idx; a2[i] = value; } #define LI(_i,_j) MAX((_i)-(_j), 0) #define RI(_i,_j) MIN((_i)+(_j), nr - 1) #define SPIKE(_i,_s) if (fabs(_s) > fabs(spk_data[_i])) spk_data[_i] = (_s) /* this is an attempt at a metric that finds spikes in a data series */ static void calculate_spikyness(int nr, double *data, double *spk_data, int deltax, double deltay) { int i, j; double dminl, dminr, dmaxl, dmaxr; #if DEBUG_PROFILE > 2 printf("Spike data: \n 0 "); #endif for (i = 0; i < nr; i++) { dminl = dminr = dmaxl = dmaxr = data[i]; spk_data[i] = 0.0; for (j = 1; j < deltax; j++) { if (data[LI(i,j)] < dminl) dminl = data[LI(i,j)]; if (data[LI(i,j)] > dmaxl) dmaxl = data[LI(i,j)]; if (data[RI(i,j)] < dminr) dminr = data[RI(i,j)]; if (data[RI(i,j)] > dmaxr) dmaxr = data[RI(i,j)]; /* don't do super narrow */ if (j < deltax / 3) continue; /* falling edge on left */ if (dmaxl == data[i] && dmaxr - data[i] < 0.1 * (data[i] - dminl)) SPIKE(i,(data[i] - dminl) / j); /* falling edge on right */ if (dmaxr == data[i] && dmaxl - data[i] < 0.1 * (data[i] - dminr)) SPIKE(i,(data[i] - dminr) / j); /* minima get a negative spike value */ /* rising edge on left */ if (dminl == data[i] && data[i] - dminr < 0.1 * (dmaxl - data[i])) SPIKE(i,(data[i] - dmaxl) / j); /* rising edge on right */ if (dminr == data[i] && data[i] - dminl < 0.1 * (dmaxr - data[i])) SPIKE(i,(data[i] - dmaxr) / j); } #if DEBUG_PROFILE > 2 fprintf(debugfile, "%.4lf ", spk_data[i]); if (i % 12 == 11) fprintf(debugfile, "\n%2d ", (i + 1) / 12); #endif } #if DEBUG_PROFILE > 2 printf("\n"); #endif } /* only show one spike in a deltax wide region - pick the highest (and first if the same) */ static gboolean higher_spike(double *spk_data, int idx, int nr, int deltax) { int i; double s = spk_data[idx]; for (i = MAX(0, idx - deltax); i <= MIN(idx + deltax, nr - 1); i++) { if (s > 0) { if (spk_data[i] > s) return TRUE; } else { if (spk_data[i] < s) return TRUE; } if (spk_data[i] == s && i < idx) return TRUE; } return FALSE; } /* this figures out which time stamps provide "interesting" formations in the graphs; * this includes local minima and maxima as well as long plateaus. * pass in the function that returns the value at a certain point (as double), * the delta in time (expressed as number of data points of "significant time") * the delta at which the value is considered to have been "significantly changed" and * the number of points to cover * returns a list of indices that ends with a -1 of times that are "interesting" */ static void find_points_of_interest(struct plot_info *pi, double (*value_func)(int, struct plot_info *), int deltax, double deltay, int **poip, int **poip_vpos) { int i, j, nr = pi->nr; double *data, *data_max, *data_min, *spk_data; double min, max; int *pois; /* avoid all the function calls by creating a local array and * have some helper arrays to make our lifes easier */ data = malloc(nr * sizeof(double)); data_max = malloc(nr * sizeof(double)); data_min = malloc(nr * sizeof(double)); spk_data = malloc(nr * sizeof(double)); pois = *poip = malloc((nr + 1) * sizeof(int)); *poip_vpos = malloc((nr + 1) * sizeof(int)); pois[0] = -1; pois[1] = -1; /* copy the data and get the absolute minimum and maximum while we do it */ for (i = 0; i < nr; i++) { data_max[i] = data_min[i] = data[i] = value_func(i, pi); if (i == 0 || data[i] < min) min = data[i]; if (i == 0 || data[i] > max) max = data[i]; } /* next find out if there are real spikes in the graph */ calculate_spikyness(nr, data, spk_data, deltax, deltay); /* now process all data points */ for (i = 0; i < nr; i++) { /* get the local min/max */ for (j = MAX(0, i - deltax); j < i + deltax && j < nr; j++) { if (data[j] < data[i]) data_min[i] = data[j]; if (data[j] > data[i]) data_max[i] = data[j]; } /* is i the overall minimum or maximum */ if (data[i] == max && (i == 0 || data[i - 1] != max)) add_index(i, deltax, poip, poip_vpos, BOTTOM); if (data[i] == min && (i == 0 || data[i - 1] != min)) add_index(i, deltax, poip, poip_vpos, TOP); /* is i a spike? */ if (fabs(spk_data[i]) > 0.01 && ! higher_spike(spk_data, i, nr, deltax)) { if (spk_data[i] > 0.0) add_index(i, deltax, poip, poip_vpos, BOTTOM); if (spk_data[i] < 0.0) add_index(i, deltax, poip, poip_vpos, TOP); } /* is i a significant local minimum or maximum? */ if (data[i] == data_min[i] && data_max[i] - data[i] > deltay) add_index(i, deltax, poip, poip_vpos, TOP); if (data[i] == data_max[i] && data[i] - data_min[i] > deltay) add_index(i, deltax, poip, poip_vpos, BOTTOM); } /* still need to search for plateaus */ } static void setup_pp_limits(struct graphics_context *gc, struct plot_info *pi) { int maxdepth; gc->leftx = 0; gc->rightx = get_maxtime(pi); /* the maxdepth already includes extra vertical space - and if * we use 1.5 times the corresponding pressure as maximum partial * pressure the graph seems to look fine*/ maxdepth = get_maxdepth(pi); gc->topy = 1.5 * (maxdepth + 10000) / 10000.0 * 1.01325; gc->bottomy = -gc->topy / 20; } static void plot_single_pp_text(struct graphics_context *gc, int sec, double pp, double vpos, color_indice_t color) { text_render_options_t tro = {12, color, CENTER, vpos}; plot_text(gc, &tro, sec, pp, "%.1lf", pp); } #define MAXPP(_mpp, _pp) { _mpp = 0; \ for(i = 0; i< pi->nr; i++) \ if (pi->entry[i]._pp > _mpp) \ _mpp = pi->entry[i]._pp; \ } static double po2_value(int idx, struct plot_info *pi) { return pi->entry[idx].po2; } static double pn2_value(int idx, struct plot_info *pi) { return pi->entry[idx].pn2; } static double phe_value(int idx, struct plot_info *pi) { return pi->entry[idx].phe; } static double plot_single_gas_pp_text(struct graphics_context *gc, struct plot_info *pi, double (*value_func)(int, struct plot_info *), double value_threshold, int color) { int *pois, *pois_vpos; int i, two_minutes = 1; double maxpp = 0.0; /* don't bother with local min/max if the dive is under two minutes */ if (pi->entry[pi->nr - 1].sec > 120) { int idx = 0; while (pi->entry[idx].sec == 0) idx++; while (pi->entry[idx + two_minutes].sec < 120) two_minutes++; } else { two_minutes = pi->nr; } find_points_of_interest(pi, value_func, two_minutes, value_threshold, &pois, &pois_vpos); for (i = 0; pois[i] != -1; i++) { struct plot_data *entry = pi->entry + pois[i]; double value = value_func(pois[i], pi); #if DEBUG_PROFILE > 1 fprintf(debugfile, "POI at %d sec value %lf\n", entry->sec, entry->po2); #endif plot_single_pp_text(gc, entry->sec, value, pois_vpos[i], color); if (value > maxpp) maxpp = value; } free(pois); free(pois_vpos); return maxpp; } static void plot_pp_text(struct graphics_context *gc, struct plot_info *pi) { double pp, dpp, m, maxpp = 0.0; int hpos; static const text_render_options_t tro = {11, PN2, LEFT, MIDDLE}; setup_pp_limits(gc, pi); if (partial_pressure_graphs.po2) { maxpp = plot_single_gas_pp_text(gc, pi, po2_value, 0.4, PO2); } if (partial_pressure_graphs.pn2) { m = plot_single_gas_pp_text(gc, pi, pn2_value, 0.6, PN2); if (m > maxpp) maxpp = m; } if (partial_pressure_graphs.phe) { m = plot_single_gas_pp_text(gc, pi, phe_value, 0.4, PHE); if (m > maxpp) maxpp = m; } /* while this is somewhat useful, I don't like the way it looks... * for now I'll leave the code here, but disable it */ if (0) { pp = floor(maxpp * 10.0) / 10.0 + 0.2; dpp = floor(2.0 * pp) / 10.0; hpos = pi->entry[pi->nr - 1].sec + 30; for (m = 0.0; m <= pp; m += dpp) plot_text(gc, &tro, hpos, m, "%.1f", m); } } static void plot_pp_gas_profile(struct graphics_context *gc, struct plot_info *pi) { int i; struct plot_data *entry; setup_pp_limits(gc, pi); if (partial_pressure_graphs.po2) { set_source_rgba(gc, PO2); entry = pi->entry; move_to(gc, entry->sec, entry->po2); for (i = 1; i < pi->nr; i++) { entry++; if (entry->po2 < partial_pressure_graphs.po2_threshold) line_to(gc, entry->sec, entry->po2); else move_to(gc, entry->sec, entry->po2); } cairo_stroke(gc->cr); set_source_rgba(gc, PO2_ALERT); entry = pi->entry; move_to(gc, entry->sec, entry->po2); for (i = 1; i < pi->nr; i++) { entry++; if (entry->po2 >= partial_pressure_graphs.po2_threshold) line_to(gc, entry->sec, entry->po2); else move_to(gc, entry->sec, entry->po2); } cairo_stroke(gc->cr); } if (partial_pressure_graphs.pn2) { set_source_rgba(gc, PN2); entry = pi->entry; move_to(gc, entry->sec, entry->pn2); for (i = 1; i < pi->nr; i++) { entry++; if (entry->pn2 < partial_pressure_graphs.pn2_threshold) line_to(gc, entry->sec, entry->pn2); else move_to(gc, entry->sec, entry->pn2); } cairo_stroke(gc->cr); set_source_rgba(gc, PN2_ALERT); entry = pi->entry; move_to(gc, entry->sec, entry->pn2); for (i = 1; i < pi->nr; i++) { entry++; if (entry->pn2 >= partial_pressure_graphs.pn2_threshold) line_to(gc, entry->sec, entry->pn2); else move_to(gc, entry->sec, entry->pn2); } cairo_stroke(gc->cr); } if (partial_pressure_graphs.phe) { set_source_rgba(gc, PHE); entry = pi->entry; move_to(gc, entry->sec, entry->phe); for (i = 1; i < pi->nr; i++) { entry++; if (entry->phe < partial_pressure_graphs.phe_threshold) line_to(gc, entry->sec, entry->phe); else move_to(gc, entry->sec, entry->phe); } cairo_stroke(gc->cr); set_source_rgba(gc, PHE_ALERT); entry = pi->entry; move_to(gc, entry->sec, entry->phe); for (i = 1; i < pi->nr; i++) { entry++; if (entry->phe >= partial_pressure_graphs.phe_threshold) line_to(gc, entry->sec, entry->phe); else move_to(gc, entry->sec, entry->phe); } cairo_stroke(gc->cr); } } static void plot_depth_profile(struct graphics_context *gc, struct plot_info *pi) { int i, incr; cairo_t *cr = gc->cr; int sec, depth; struct plot_data *entry; int maxtime, maxdepth, marker; int increments[8] = { 10, 20, 30, 60, 5*60, 10*60, 15*60, 30*60 }; /* Get plot scaling limits */ maxtime = get_maxtime(pi); maxdepth = get_maxdepth(pi); gc->maxtime = maxtime; /* Time markers: at most every 10 seconds, but no more than 12 markers. * We start out with 10 seconds and increment up to 30 minutes, * depending on the dive time. * This allows for 6h dives - enough (I hope) for even the craziest * divers - but just in case, for those 8h depth-record-breaking dives, * we double the interval if this still doesn't get us to 12 or fewer * time markers */ i = 0; while (maxtime / increments[i] > 12 && i < 7) i++; incr = increments[i]; while (maxtime / incr > 12) incr *= 2; gc->leftx = 0; gc->rightx = maxtime; gc->topy = 0; gc->bottomy = 1.0; set_source_rgba(gc, TIME_GRID); cairo_set_line_width_scaled(gc->cr, 2); for (i = incr; i < maxtime; i += incr) { move_to(gc, i, 0); line_to(gc, i, 1); } cairo_stroke(cr); /* now the text on the time markers */ text_render_options_t tro = {10, TIME_TEXT, CENTER, TOP}; if (maxtime < 600) { /* Be a bit more verbose with shorter dives */ for (i = incr; i < maxtime; i += incr) plot_text(gc, &tro, i, 1, "%02d:%02d", i/60, i%60); } else { /* Only render the time on every second marker for normal dives */ for (i = incr; i < maxtime; i += 2 * incr) plot_text(gc, &tro, i, 1, "%d", i/60); } /* Depth markers: every 30 ft or 10 m*/ gc->leftx = 0; gc->rightx = 1.0; gc->topy = 0; gc->bottomy = maxdepth; switch (output_units.length) { case METERS: marker = 10000; break; case FEET: marker = 9144; break; /* 30 ft */ } set_source_rgba(gc, DEPTH_GRID); for (i = marker; i < maxdepth; i += marker) { move_to(gc, 0, i); line_to(gc, 1, i); } cairo_stroke(cr); gc->leftx = 0; gc->rightx = maxtime; /* Show mean depth */ if (! gc->printer) { set_source_rgba(gc, MEAN_DEPTH); move_to(gc, 0, pi->meandepth); line_to(gc, pi->entry[pi->nr - 1].sec, pi->meandepth); cairo_stroke(cr); } /* * These are good for debugging text placement etc, * but not for actual display.. */ if (0) { plot_smoothed_profile(gc, pi); plot_minmax_profile(gc, pi); } /* Do the depth profile for the neat fill */ gc->topy = 0; gc->bottomy = maxdepth; cairo_pattern_t *pat; pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale); pattern_add_color_stop_rgba (gc, pat, 1, DEPTH_BOTTOM); pattern_add_color_stop_rgba (gc, pat, 0, DEPTH_TOP); cairo_set_source(gc->cr, pat); cairo_pattern_destroy(pat); cairo_set_line_width_scaled(gc->cr, 2); entry = pi->entry; move_to(gc, 0, 0); for (i = 0; i < pi->nr; i++, entry++) line_to(gc, entry->sec, entry->depth); /* Show any ceiling we may have encountered */ for (i = pi->nr - 1; i >= 0; i--, entry--) { if (entry->ndl) { /* non-zero NDL implies this is a safety stop, no ceiling */ line_to(gc, entry->sec, 0); } else if (entry->stopdepth < entry->depth) { line_to(gc, entry->sec, entry->stopdepth); } else { line_to(gc, entry->sec, entry->depth); } } cairo_close_path(gc->cr); cairo_fill(gc->cr); /* next show where we have been bad and crossed the ceiling */ pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale); pattern_add_color_stop_rgba (gc, pat, 0, CEILING_SHALLOW); pattern_add_color_stop_rgba (gc, pat, 1, CEILING_DEEP); cairo_set_source(gc->cr, pat); cairo_pattern_destroy(pat); entry = pi->entry; move_to(gc, 0, 0); for (i = 0; i < pi->nr; i++, entry++) line_to(gc, entry->sec, entry->depth); for (i = pi->nr - 1; i >= 0; i--, entry--) { if (entry->ndl == 0 && entry->stopdepth > entry->depth) { line_to(gc, entry->sec, entry->stopdepth); } else { line_to(gc, entry->sec, entry->depth); } } cairo_close_path(gc->cr); cairo_fill(gc->cr); /* Now do it again for the velocity colors */ entry = pi->entry; for (i = 1; i < pi->nr; i++) { entry++; sec = entry->sec; /* we want to draw the segments in different colors * representing the vertical velocity, so we need to * chop this into short segments */ depth = entry->depth; set_source_rgba(gc, VELOCITY_COLORS_START_IDX + entry->velocity); move_to(gc, entry[-1].sec, entry[-1].depth); line_to(gc, sec, depth); cairo_stroke(cr); } } static int setup_temperature_limits(struct graphics_context *gc, struct plot_info *pi) { int maxtime, mintemp, maxtemp, delta; /* Get plot scaling limits */ maxtime = get_maxtime(pi); mintemp = pi->mintemp; maxtemp = pi->maxtemp; gc->leftx = 0; gc->rightx = maxtime; /* Show temperatures in roughly the lower third, but make sure the scale is at least somewhat reasonable */ delta = maxtemp - mintemp; if (delta < 3000) /* less than 3K in fluctuation */ delta = 3000; gc->topy = maxtemp + delta*2; if (GRAPHS_ENABLED) gc->bottomy = mintemp - delta * 2; else gc->bottomy = mintemp - delta / 3; pi->endtempcoord = SCALEY(gc, pi->endtemp); return maxtemp > mintemp; } static void plot_single_temp_text(struct graphics_context *gc, int sec, int mkelvin) { double deg; const char *unit; static const text_render_options_t tro = {12, TEMP_TEXT, LEFT, TOP}; deg = get_temp_units(mkelvin, &unit); plot_text(gc, &tro, sec, mkelvin, "%d%s", (int)(deg + 0.5), unit); } static void plot_temperature_text(struct graphics_context *gc, struct plot_info *pi) { int i; int last = -300, sec = 0; int last_temperature = 0, last_printed_temp = 0; if (!setup_temperature_limits(gc, pi)) return; for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry+i; int mkelvin = entry->temperature; if (!mkelvin) continue; last_temperature = mkelvin; sec = entry->sec; /* don't print a temperature * if it's been less than 5min and less than a 2K change OR * if it's been less than 2min OR if the change from the * last print is less than .4K (and therefore less than 1F */ if (((sec < last + 300) && (abs(mkelvin - last_printed_temp) < 2000)) || (sec < last + 120) || (abs(mkelvin - last_printed_temp) < 400)) continue; last = sec; plot_single_temp_text(gc,sec,mkelvin); last_printed_temp = mkelvin; } /* it would be nice to print the end temperature, if it's * different or if the last temperature print has been more * than a quarter of the dive back */ if ((abs(last_temperature - last_printed_temp) > 500) || ((double)last / (double)sec < 0.75)) plot_single_temp_text(gc, sec, last_temperature); } static void plot_temperature_profile(struct graphics_context *gc, struct plot_info *pi) { int i; cairo_t *cr = gc->cr; int last = 0; if (!setup_temperature_limits(gc, pi)) return; cairo_set_line_width_scaled(gc->cr, 2); set_source_rgba(gc, TEMP_PLOT); for (i = 0; i < pi->nr; i++) { struct plot_data *entry = pi->entry + i; int mkelvin = entry->temperature; int sec = entry->sec; if (!mkelvin) { if (!last) continue; mkelvin = last; } if (last) line_to(gc, sec, mkelvin); else move_to(gc, sec, mkelvin); last = mkelvin; } cairo_stroke(cr); } /* gets both the actual start and end pressure as well as the scaling factors */ static int get_cylinder_pressure_range(struct graphics_context *gc, struct plot_info *pi) { gc->leftx = 0; gc->rightx = get_maxtime(pi); if (GRAPHS_ENABLED) gc->bottomy = -pi->maxpressure * 0.75; else gc->bottomy = 0; gc->topy = pi->maxpressure * 1.5; if (!pi->maxpressure) return FALSE; while (pi->endtempcoord <= SCALEY(gc, pi->endpressure - (gc->topy) * 0.1)) gc->bottomy -= gc->topy * 0.1; return TRUE; } /* set the color for the pressure plot according to temporary sac rate * as compared to avg_sac; the calculation simply maps the delta between * sac and avg_sac to indexes 0 .. (SAC_COLORS - 1) with everything * more than 6000 ml/min below avg_sac mapped to 0 */ static void set_sac_color(struct graphics_context *gc, int sac, int avg_sac) { int sac_index = 0; int delta = sac - avg_sac + 7000; if (!gc->printer) { sac_index = delta / 2000; if (sac_index < 0) sac_index = 0; if (sac_index > SAC_COLORS - 1) sac_index = SAC_COLORS - 1; set_source_rgba(gc, SAC_COLORS_START_IDX + sac_index); } else { set_source_rgba(gc, SAC_DEFAULT); } } /* calculate the current SAC in ml/min and convert to int */ #define GET_LOCAL_SAC(_entry1, _entry2, _dive) (int) \ ((GET_PRESSURE((_entry1)) - GET_PRESSURE((_entry2))) * \ (_dive)->cylinder[(_entry1)->cylinderindex].type.size.mliter / \ (((_entry2)->sec - (_entry1)->sec) / 60.0) / \ depth_to_mbar(((_entry1)->depth + (_entry2)->depth) / 2.0, (_dive))) #define SAC_WINDOW 45 /* sliding window in seconds for current SAC calculation */ static void plot_cylinder_pressure(struct graphics_context *gc, struct plot_info *pi, struct dive *dive) { int i; int last = -1; int lift_pen = FALSE; int first_plot = TRUE; int sac = 0; struct plot_data *last_entry = NULL; if (!get_cylinder_pressure_range(gc, pi)) return; cairo_set_line_width_scaled(gc->cr, 2); for (i = 0; i < pi->nr; i++) { int mbar; struct plot_data *entry = pi->entry + i; mbar = GET_PRESSURE(entry); if (!entry->same_cylinder) { lift_pen = TRUE; last_entry = NULL; } if (!mbar) { lift_pen = TRUE; continue; } if (!last_entry) { last = i; last_entry = entry; sac = GET_LOCAL_SAC(entry, pi->entry + i + 1, dive); } else { int j; sac = 0; for (j = last; j < i; j++) sac += GET_LOCAL_SAC(pi->entry + j, pi->entry + j + 1, dive); sac /= (i - last); if (entry->sec - last_entry->sec >= SAC_WINDOW) { last++; last_entry = pi->entry + last; } } set_sac_color(gc, sac, dive->sac); if (lift_pen) { if (!first_plot && entry->same_cylinder) { /* if we have a previous event from the same tank, * draw at least a short line */ int prev_pr; prev_pr = GET_PRESSURE(entry - 1); move_to(gc, (entry-1)->sec, prev_pr); line_to(gc, entry->sec, mbar); } else { first_plot = FALSE; move_to(gc, entry->sec, mbar); } lift_pen = FALSE; } else { line_to(gc, entry->sec, mbar); } cairo_stroke(gc->cr); move_to(gc, entry->sec, mbar); } } static void plot_pressure_value(struct graphics_context *gc, int mbar, int sec, int xalign, int yalign) { int pressure; const char *unit; pressure = get_pressure_units(mbar, &unit); text_render_options_t tro = {10, PRESSURE_TEXT, xalign, yalign}; plot_text(gc, &tro, sec, mbar, "%d %s", pressure, unit); } static void plot_cylinder_pressure_text(struct graphics_context *gc, struct plot_info *pi) { int i; int mbar, cyl; int seen_cyl[MAX_CYLINDERS] = { FALSE, }; int last_pressure[MAX_CYLINDERS] = { 0, }; int last_time[MAX_CYLINDERS] = { 0, }; struct plot_data *entry; if (!get_cylinder_pressure_range(gc, pi)) return; /* only loop over the actual events from the dive computer * plus the second synthetic event at the start (to make sure * we get "time=0" right) * sadly with a recent change that first entry may no longer * have any pressure reading - in that case just grab the * pressure from the second entry */ if (GET_PRESSURE(pi->entry + 1) == 0 && GET_PRESSURE(pi->entry + 2) !=0) INTERPOLATED_PRESSURE(pi->entry + 1) = GET_PRESSURE(pi->entry + 2); for (i = 1; i < pi->nr; i++) { entry = pi->entry + i; if (!entry->same_cylinder) { cyl = entry->cylinderindex; if (!seen_cyl[cyl]) { mbar = GET_PRESSURE(entry); plot_pressure_value(gc, mbar, entry->sec, LEFT, BOTTOM); seen_cyl[cyl] = TRUE; } if (i > 2) { /* remember the last pressure and time of * the previous cylinder */ cyl = (entry - 1)->cylinderindex; last_pressure[cyl] = GET_PRESSURE(entry - 1); last_time[cyl] = (entry - 1)->sec; } } } cyl = entry->cylinderindex; if (GET_PRESSURE(entry)) last_pressure[cyl] = GET_PRESSURE(entry); last_time[cyl] = entry->sec; for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { if (last_time[cyl]) { plot_pressure_value(gc, last_pressure[cyl], last_time[cyl], CENTER, TOP); } } } static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index) { struct plot_data *p = entry; int time = entry->sec; int seconds = 90*(index+1); struct plot_data *min, *max; int avg, nr; /* Go back 'seconds' in time */ while (p > first) { if (p[-1].sec < time - seconds) break; p--; } /* Then go forward until we hit an entry past the time */ min = max = p; avg = p->depth; nr = 1; while (++p < last) { int depth = p->depth; if (p->sec > time + seconds) break; avg += depth; nr ++; if (depth < min->depth) min = p; if (depth > max->depth) max = p; } entry->min[index] = min; entry->max[index] = max; entry->avg[index] = (avg + nr/2) / nr; } static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last) { analyze_plot_info_minmax_minute(entry, first, last, 0); analyze_plot_info_minmax_minute(entry, first, last, 1); analyze_plot_info_minmax_minute(entry, first, last, 2); } static velocity_t velocity(int speed) { velocity_t v; if (speed < -304) /* ascent faster than -60ft/min */ v = CRAZY; else if (speed < -152) /* above -30ft/min */ v = FAST; else if (speed < -76) /* -15ft/min */ v = MODERATE; else if (speed < -25) /* -5ft/min */ v = SLOW; else if (speed < 25) /* very hard to find data, but it appears that the recommendations for descent are usually about 2x ascent rate; still, we want stable to mean stable */ v = STABLE; else if (speed < 152) /* between 5 and 30ft/min is considered slow */ v = SLOW; else if (speed < 304) /* up to 60ft/min is moderate */ v = MODERATE; else if (speed < 507) /* up to 100ft/min is fast */ v = FAST; else /* more than that is just crazy - you'll blow your ears out */ v = CRAZY; return v; } static struct plot_info *analyze_plot_info(struct plot_info *pi) { int i; int nr = pi->nr; /* Do pressure min/max based on the non-surface data */ for (i = 0; i < nr; i++) { struct plot_data *entry = pi->entry+i; int pressure = GET_PRESSURE(entry); int temperature = entry->temperature; if (pressure) { if (pressure > pi->maxpressure) pi->maxpressure = pressure; pi->endpressure = pressure; } if (temperature) { if (!pi->mintemp || temperature < pi->mintemp) pi->mintemp = temperature; if (temperature > pi->maxtemp) pi->maxtemp = temperature; pi->endtemp = temperature; } } /* Smoothing function: 5-point triangular smooth */ for (i = 2; i < nr; i++) { struct plot_data *entry = pi->entry+i; int depth; if (i < nr-2) { depth = entry[-2].depth + 2*entry[-1].depth + 3*entry[0].depth + 2*entry[1].depth + entry[2].depth; entry->smoothed = (depth+4) / 9; } /* vertical velocity in mm/sec */ /* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */ if (entry[0].sec - entry[-1].sec) { entry->velocity = velocity((entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec)); /* if our samples are short and we aren't too FAST*/ if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) { int past = -2; while (i+past > 0 && entry[0].sec - entry[past].sec < 15) past--; entry->velocity = velocity((entry[0].depth - entry[past].depth) / (entry[0].sec - entry[past].sec)); } } else entry->velocity = STABLE; } /* One-, two- and three-minute minmax data */ for (i = 0; i < nr; i++) { struct plot_data *entry = pi->entry +i; analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr); } return pi; } /* * simple structure to track the beginning and end tank pressure as * well as the integral of depth over time spent while we have no * pressure reading from the tank */ typedef struct pr_track_struct pr_track_t; struct pr_track_struct { int start; int end; int t_start; int t_end; double pressure_time; pr_track_t *next; }; static pr_track_t *pr_track_alloc(int start, int t_start) { pr_track_t *pt = malloc(sizeof(pr_track_t)); pt->start = start; pt->t_start = t_start; pt->end = 0; pt->t_end = 0; pt->pressure_time = 0.0; pt->next = NULL; return pt; } /* poor man's linked list */ static pr_track_t *list_last(pr_track_t *list) { pr_track_t *tail = list; if (!tail) return NULL; while (tail->next) { tail = tail->next; } return tail; } static pr_track_t *list_add(pr_track_t *list, pr_track_t *element) { pr_track_t *tail = list_last(list); if (!tail) return element; tail->next = element; return list; } static void list_free(pr_track_t *list) { if (!list) return; list_free(list->next); free(list); } static void dump_pr_track(pr_track_t **track_pr) { int cyl; pr_track_t *list; for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { list = track_pr[cyl]; while (list) { printf("cyl%d: start %d end %d t_start %d t_end %d pt %6.3f\n", cyl, list->start, list->end, list->t_start, list->t_end, list->pressure_time); list = list->next; } } } static void fill_missing_tank_pressures(struct plot_info *pi, pr_track_t **track_pr) { pr_track_t *list = NULL; pr_track_t *nlist = NULL; double pt, magic; int cyl, i; struct plot_data *entry; int cur_pr[MAX_CYLINDERS]; if (0) { /* another great debugging tool */ dump_pr_track(track_pr); } for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { cur_pr[cyl] = track_pr[cyl]->start; } /* The first two are "fillers", but in case we don't have a sample * at time 0 we need to process the second of them here */ for (i = 1; i < pi->nr; i++) { entry = pi->entry + i; if (SENSOR_PRESSURE(entry)) { cur_pr[entry->cylinderindex] = SENSOR_PRESSURE(entry); } else { if(!list || list->t_end < entry->sec) { nlist = track_pr[entry->cylinderindex]; list = NULL; while (nlist && nlist->t_start <= entry->sec) { list = nlist; nlist = list->next; } /* there may be multiple segments - so * let's assemble the length */ nlist = list; if (list) { pt = list->pressure_time; while (!nlist->end) { nlist = nlist->next; if (!nlist) { /* oops - we have no end pressure, * so this means this is a tank without * gas consumption information */ break; } pt += nlist->pressure_time; } } if (!nlist) { /* just continue without calculating * interpolated values */ INTERPOLATED_PRESSURE(entry) = cur_pr[entry->cylinderindex]; list = NULL; continue; } magic = (nlist->end - cur_pr[entry->cylinderindex]) / pt; } if (pt != 0.0) { double cur_pt = (entry->sec - (entry-1)->sec) * (1 + (entry->depth + (entry-1)->depth) / 20000.0); INTERPOLATED_PRESSURE(entry) = cur_pr[entry->cylinderindex] + cur_pt * magic + 0.5; cur_pr[entry->cylinderindex] = INTERPOLATED_PRESSURE(entry); } else INTERPOLATED_PRESSURE(entry) = cur_pr[entry->cylinderindex]; } } } static int get_cylinder_index(struct dive *dive, struct event *ev) { int i; /* * Try to find a cylinder that matches the O2 percentage * in the gas change event 'value' field. * * Crazy suunto gas change events. We really should do * this in libdivecomputer or something. */ for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder+i; int o2 = (cyl->gasmix.o2.permille + 5) / 10; if (o2 == ev->value) return i; } return 0; } static struct event *get_next_event(struct event *event, char *name) { if (!name || !*name) return NULL; while (event) { if (!strcmp(event->name, name)) return event; event = event->next; } return event; } static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end) { while (i < pi->nr) { struct plot_data *entry = pi->entry+i; if (entry->sec > end) break; if (entry->cylinderindex != cylinderindex) { entry->cylinderindex = cylinderindex; entry->pressure[0] = 0; } i++; } return i; } static void check_gas_change_events(struct dive *dive, struct divecomputer *dc, struct plot_info *pi) { int i = 0, cylinderindex = 0; struct event *ev = get_next_event(dc->events, "gaschange"); if (!ev) return; do { i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds); cylinderindex = get_cylinder_index(dive, ev); ev = get_next_event(ev->next, "gaschange"); } while (ev); set_cylinder_index(pi, i, cylinderindex, ~0u); } /* for computers that track gas changes through events */ static int count_gas_change_events(struct divecomputer *dc) { int count = 0; struct event *ev = get_next_event(dc->events, "gaschange"); while (ev) { count++; ev = get_next_event(ev->next, "gaschange"); } return count; } /* * Create a plot-info with smoothing and ranged min/max * * This also makes sure that we have extra empty events on both * sides, so that you can do end-points without having to worry * about it. */ static struct plot_info *create_plot_info(struct dive *dive, struct divecomputer *dc, struct graphics_context *gc) { int cylinderindex = -1; int lastdepth, lastindex; int i, pi_idx, nr, sec, cyl, stoptime, ndl, stopdepth; struct plot_info *pi; pr_track_t *track_pr[MAX_CYLINDERS] = {NULL, }; pr_track_t *pr_track, *current; gboolean missing_pr = FALSE; struct plot_data *entry = NULL; struct event *ev; double amb_pressure; /* The plot-info is embedded in the graphics context */ pi = &gc->pi; memset(pi, 0, sizeof(*pi)); /* we want to potentially add synthetic plot_info elements for the gas changes */ nr = dc->samples + 4 + 2 * count_gas_change_events(dc); pi->entry = calloc(nr, sizeof(struct plot_data)); if (!pi->entry) return NULL; pi->nr = nr; pi_idx = 2; /* the two extra events at the start */ /* check for gas changes before the samples start */ ev = get_next_event(dc->events, "gaschange"); while (ev && ev->time.seconds < dc->sample->time.seconds) { entry = pi->entry + pi_idx; entry->sec = ev->time.seconds; entry->depth = 0; /* is that always correct ? */ pi_idx++; ev = get_next_event(ev->next, "gaschange"); } if (ev && ev->time.seconds == dc->sample->time.seconds) { /* we already have a sample at the time of the event */ ev = get_next_event(ev->next, "gaschange"); } sec = 0; lastindex = 0; lastdepth = -1; for (i = 0; i < dc->samples; i++) { int depth; int delay = 0; struct sample *sample = dc->sample+i; if ((dive->start > -1 && sample->time.seconds < dive->start) || (dive->end > -1 && sample->time.seconds > dive->end)) { pi_idx--; continue; } entry = pi->entry + i + pi_idx; ndl = sample->ndl.seconds; pi->has_ndl |= ndl; stopdepth = sample->stopdepth.mm; stoptime = sample->stoptime.seconds; while (ev && ev->time.seconds < sample->time.seconds) { /* insert two fake plot info structures for the end of * the old tank and the start of the new tank */ if (ev->time.seconds == sample->time.seconds - 1) { entry->sec = ev->time.seconds - 1; (entry+1)->sec = ev->time.seconds; } else { entry->sec = ev->time.seconds; (entry+1)->sec = ev->time.seconds + 1; } /* we need a fake depth - let's interpolate */ if (i) { entry->depth = sample->depth.mm - (sample->depth.mm - (sample-1)->depth.mm) / 2; } else entry->depth = sample->depth.mm; (entry + 1)->depth = entry->depth; entry->stopdepth = stopdepth; entry->stoptime = stoptime; entry->ndl = ndl; (entry + 1)->stopdepth = stopdepth; (entry + 1)->stoptime = stoptime; (entry + 1)->ndl = ndl; pi_idx += 2; entry = pi->entry + i + pi_idx; ev = get_next_event(ev->next, "gaschange"); } if (ev && ev->time.seconds == sample->time.seconds) { /* we already have a sample at the time of the event * just add a new one for the old tank and delay the * real even by one second (to keep time monotonous) */ entry->sec = ev->time.seconds; entry->depth = sample->depth.mm; entry->stopdepth = stopdepth; entry->stoptime = stoptime; entry->ndl = ndl; pi_idx++; entry = pi->entry + i + pi_idx; ev = get_next_event(ev->next, "gaschange"); delay = 1; } sec = entry->sec = sample->time.seconds + delay; depth = entry->depth = sample->depth.mm; entry->stopdepth = stopdepth; entry->stoptime = stoptime; entry->ndl = ndl; entry->cylinderindex = sample->cylinderindex; SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar; entry->temperature = sample->temperature.mkelvin; if (depth || lastdepth) lastindex = i + pi_idx; lastdepth = depth; if (depth > pi->maxdepth) pi->maxdepth = depth; } entry = pi->entry + i + pi_idx; /* are there still unprocessed gas changes? that would be very strange */ while (ev) { entry->sec = ev->time.seconds; entry->depth = 0; /* why are there gas changes after the dive is over? */ pi_idx++; entry = pi->entry + i + pi_idx; ev = get_next_event(ev->next, "gaschange"); } nr = dc->samples + pi_idx - 2; check_gas_change_events(dive, dc, pi); for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) /* initialize the start pressures */ track_pr[cyl] = pr_track_alloc(dive->cylinder[cyl].start.mbar, -1); current = track_pr[pi->entry[2].cylinderindex]; for (i = 0; i < nr + 1; i++) { int fo2, fhe; entry = pi->entry + i + 1; entry->same_cylinder = entry->cylinderindex == cylinderindex; cylinderindex = entry->cylinderindex; /* track the segments per cylinder and their pressure/time integral */ if (!entry->same_cylinder) { current->end = SENSOR_PRESSURE(entry-1); current->t_end = (entry-1)->sec; current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec); track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current); } else { /* same cylinder */ if ((!SENSOR_PRESSURE(entry) && SENSOR_PRESSURE(entry-1)) || (SENSOR_PRESSURE(entry) && !SENSOR_PRESSURE(entry-1))) { /* transmitter changed its working status */ current->end = SENSOR_PRESSURE(entry-1); current->t_end = (entry-1)->sec; current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec); track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current); } } amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0; fo2 = dive->cylinder[cylinderindex].gasmix.o2.permille; fhe = dive->cylinder[cylinderindex].gasmix.he.permille; if (!fo2) fo2 = AIR_PERMILLE; entry->po2 = fo2 / 1000.0 * amb_pressure; entry->phe = fhe / 1000.0 * amb_pressure; entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure; /* finally, do the discrete integration to get the SAC rate equivalent */ current->pressure_time += (entry->sec - (entry-1)->sec) * depth_to_mbar((entry->depth + (entry-1)->depth) / 2, dive) / 1000.0; missing_pr |= !SENSOR_PRESSURE(entry); } if (entry) current->t_end = entry->sec; for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { /* initialize the end pressures */ int pr = dive->cylinder[cyl].end.mbar; if (pr && track_pr[cyl]) { pr_track = list_last(track_pr[cyl]); pr_track->end = pr; } } /* Fill in the last two entries with empty values but valid times * without creating a false cylinder change event */ i = nr + 2; pi->entry[i].sec = sec + 20; pi->entry[i].same_cylinder = 1; pi->entry[i].cylinderindex = pi->entry[i-1].cylinderindex; INTERPOLATED_PRESSURE(pi->entry + i) = GET_PRESSURE(pi->entry + i - 1); amb_pressure = depth_to_mbar(pi->entry[i - 1].depth, dive) / 1000.0; pi->entry[i].po2 = pi->entry[i-1].po2 / amb_pressure; pi->entry[i].phe = pi->entry[i-1].phe / amb_pressure; pi->entry[i].pn2 = 1.01325 - pi->entry[i].po2 - pi->entry[i].phe; pi->entry[i+1].sec = sec + 40; pi->entry[i+1].same_cylinder = 1; pi->entry[i+1].cylinderindex = pi->entry[i-1].cylinderindex; INTERPOLATED_PRESSURE(pi->entry + i + 1) = GET_PRESSURE(pi->entry + i - 1); pi->entry[i+1].po2 = pi->entry[i].po2; pi->entry[i+1].phe = pi->entry[i].phe; pi->entry[i+1].pn2 = pi->entry[i].pn2; /* make sure the first two pi entries have a sane po2 / phe / pn2 */ amb_pressure = depth_to_mbar(pi->entry[2].depth, dive) / 1000.0; if (pi->entry[1].po2 < 0.01) pi->entry[1].po2 = pi->entry[2].po2 / amb_pressure; if (pi->entry[1].phe < 0.01) pi->entry[1].phe = pi->entry[2].phe / amb_pressure; pi->entry[1].pn2 = 1.01325 - pi->entry[1].po2 - pi->entry[1].phe; amb_pressure = depth_to_mbar(pi->entry[1].depth, dive) / 1000.0; if (pi->entry[0].po2 < 0.01) pi->entry[0].po2 = pi->entry[1].po2 / amb_pressure; if (pi->entry[0].phe < 0.01) pi->entry[0].phe = pi->entry[1].phe / amb_pressure; pi->entry[0].pn2 = 1.01325 - pi->entry[0].po2 - pi->entry[0].phe; /* the number of actual entries - some computers have lots of * depth 0 samples at the end of a dive, we want to make sure * we have exactly one of them at the end */ pi->nr = lastindex+1; while (pi->nr <= i+2 && pi->entry[pi->nr-1].depth > 0) pi->nr++; pi->maxtime = pi->entry[lastindex].sec; /* Analyze_plot_info() will do the sample max pressures, * this handles the manual pressures */ pi->maxpressure = 0; for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { unsigned int mbar = dive->cylinder[cyl].start.mbar; if (mbar > pi->maxpressure) pi->maxpressure = mbar; } pi->meandepth = dive->meandepth.mm; if (missing_pr) { fill_missing_tank_pressures(pi, track_pr); } for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) list_free(track_pr[cyl]); if (0) /* awesome for debugging - not useful otherwise */ dump_pi(pi); return analyze_plot_info(pi); } static void plot_set_scale(scale_mode_t scale) { switch (scale) { default: case SC_SCREEN: plot_scale = SCALE_SCREEN; break; case SC_PRINT: plot_scale = SCALE_PRINT; break; } } void plot(struct graphics_context *gc, struct dive *dive, scale_mode_t scale) { struct plot_info *pi; struct divecomputer *dc = &dive->dc; cairo_rectangle_t *drawing_area = &gc->drawing_area; plot_set_scale(scale); if (!dc->samples) { static struct sample fake[4]; static struct divecomputer fakedc = { .sample = fake, .samples = 4 }; /* The dive has no samples, so create a few fake ones. This assumes an ascent/descent rate of 9 m/min, which is just below the limit for FAST. */ int duration = dive->duration.seconds; int maxdepth = dive->maxdepth.mm; int asc_desc_time = dive->maxdepth.mm*60/9000; if (asc_desc_time * 2 >= duration) asc_desc_time = duration / 2; fake[1].time.seconds = asc_desc_time; fake[1].depth.mm = maxdepth; fake[2].time.seconds = duration - asc_desc_time; fake[2].depth.mm = maxdepth; fake[3].time.seconds = duration * 1.00; fakedc.events = dc->events; dc = &fakedc; } pi = create_plot_info(dive, dc, gc); /* shift the drawing area so we have a nice margin around it */ cairo_translate(gc->cr, drawing_area->x, drawing_area->y); cairo_set_line_width_scaled(gc->cr, 1); cairo_set_line_cap(gc->cr, CAIRO_LINE_CAP_ROUND); cairo_set_line_join(gc->cr, CAIRO_LINE_JOIN_ROUND); /* * We don't use "cairo_translate()" because that doesn't * scale line width etc. But the actual scaling we need * do set up ourselves.. * * Snif. What a pity. */ gc->maxx = (drawing_area->width - 2*drawing_area->x); gc->maxy = (drawing_area->height - 2*drawing_area->y); /* Depth profile */ plot_depth_profile(gc, pi); plot_events(gc, pi, dc); /* Temperature profile */ plot_temperature_profile(gc, pi); /* Cylinder pressure plot */ plot_cylinder_pressure(gc, pi, dive); /* Text on top of all graphs.. */ plot_temperature_text(gc, pi); plot_depth_text(gc, pi); plot_cylinder_pressure_text(gc, pi); /* Bounding box last */ gc->leftx = 0; gc->rightx = 1.0; gc->topy = 0; gc->bottomy = 1.0; set_source_rgba(gc, BOUNDING_BOX); cairo_set_line_width_scaled(gc->cr, 1); move_to(gc, 0, 0); line_to(gc, 0, 1); line_to(gc, 1, 1); line_to(gc, 1, 0); cairo_close_path(gc->cr); cairo_stroke(gc->cr); /* Put the dive computer name in the lower left corner */ if (dc->model) { static const text_render_options_t computer = {10, TIME_TEXT, LEFT, MIDDLE}; plot_text(gc, &computer, 0, 1, "%s", dc->model); } if (GRAPHS_ENABLED) { plot_pp_gas_profile(gc, pi); plot_pp_text(gc, pi); } /* now shift the translation back by half the margin; * this way we can draw the vertical scales on both sides */ cairo_translate(gc->cr, -drawing_area->x / 2.0, 0); gc->maxx += drawing_area->x; gc->leftx = -(drawing_area->x / drawing_area->width) / 2.0; gc->rightx = 1.0 - gc->leftx; plot_depth_scale(gc, pi); if (gc->printer) { free(pi->entry); pi->entry = NULL; pi->nr = 0; } } static void plot_string(struct plot_data *entry, char *buf, size_t bufsize, int depth, int pressure, int temp, gboolean has_ndl) { int pressurevalue; const char *depth_unit, *pressure_unit, *temp_unit; char *buf2 = malloc(bufsize); double depthvalue, tempvalue; depthvalue = get_depth_units(depth, NULL, &depth_unit); snprintf(buf, bufsize, "D:%.1f %s", depthvalue, depth_unit); if (pressure) { pressurevalue = get_pressure_units(pressure, &pressure_unit); memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, "%s\nP:%d %s", buf2, pressurevalue, pressure_unit); } if (temp) { tempvalue = get_temp_units(temp, &temp_unit); memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, "%s\nT:%.1f %s", buf2, tempvalue, temp_unit); } if (entry->stopdepth) { depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit); memcpy(buf2, buf, bufsize); if (entry->ndl) { /* this is a safety stop as we still have ndl */ if (entry->stoptime) snprintf(buf, bufsize, "%s\nSafetystop:%umin @ %.0f %s", buf2, entry->stoptime / 60, depthvalue, depth_unit); else snprintf(buf, bufsize, "%s\nSafetystop:unkn time @ %.0f %s", buf2, depthvalue, depth_unit); } else { /* actual deco stop */ if (entry->stoptime) snprintf(buf, bufsize, "%s\nDeco:%umin @ %.0f %s", buf2, entry->stoptime / 60, depthvalue, depth_unit); else snprintf(buf, bufsize, "%s\nDeco:unkn time @ %.0f %s", buf2, depthvalue, depth_unit); } } else if (has_ndl) { memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, "%s\nNDL:%umin", buf2, entry->ndl / 60); } if (partial_pressure_graphs.po2) { memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, "%s\npO" UTF8_SUBSCRIPT_2 ":%.1f", buf2, entry->po2); } if (partial_pressure_graphs.pn2) { memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, "%s\npN" UTF8_SUBSCRIPT_2 ":%.1f", buf2, entry->pn2); } if (partial_pressure_graphs.phe) { memcpy(buf2, buf, bufsize); snprintf(buf, bufsize, "%s\npHe:%.1f", buf2, entry->phe); } free(buf2); } void get_plot_details(struct graphics_context *gc, int time, char *buf, size_t bufsize) { struct plot_info *pi = &gc->pi; int pressure = 0, temp = 0; struct plot_data *entry; int i; for (i = 0; i < pi->nr; i++) { entry = pi->entry + i; if (entry->temperature) temp = entry->temperature; if (GET_PRESSURE(entry)) pressure = GET_PRESSURE(entry); if (entry->sec >= time) break; } plot_string(entry, buf, bufsize, entry->depth, pressure, temp, pi->has_ndl); }