#include #include #include #include #include #include "dive.h" #include "display.h" #include "divelist.h" int selected_dive = 0; /* * Cairo scaling really is horribly horribly mis-designed. * * Which is sad, because I really like Cairo otherwise. But * the fact that the line width is scaled with the same scale * as the coordinate system is a f*&%ing disaster. So we * can't use it, and instead have this butt-ugly wrapper thing.. */ struct graphics_context { cairo_t *cr; double maxx, maxy; double scalex, scaley; }; /* Plot info with smoothing and one-, two- and three-minute minimums and maximums */ struct plot_info { int nr; int maxtime; struct plot_data { int sec; int val; int smoothed; int min[3]; int max[3]; int avg[3]; } entry[]; }; #define plot_info_size(nr) (sizeof(struct plot_info) + (nr)*sizeof(struct plot_data)) /* Scale to 0,0 -> maxx,maxy */ #define SCALE(gc,x,y) (x)*gc->maxx/gc->scalex,(y)*gc->maxy/gc->scaley static void move_to(struct graphics_context *gc, double x, double y) { cairo_move_to(gc->cr, SCALE(gc, x, y)); } static void line_to(struct graphics_context *gc, double x, double y) { cairo_line_to(gc->cr, SCALE(gc, x, y)); } #define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y)) /* * When showing dive profiles, we scale things to the * current dive. However, we don't scale past less than * 30 minutes or 90 ft, just so that small dives show * up as such. */ static int round_seconds_up(int seconds) { return MAX(30*60, ROUND_UP(seconds, 60*10)); } static int round_depth_up(depth_t depth) { unsigned mm = depth.mm; /* Minimum 30m */ return MAX(30000, ROUND_UP(mm+3000, 10000)); } typedef struct { int size; double r,g,b; enum {CENTER,LEFT} halign; enum {MIDDLE,TOP,BOTTOM} valign; } text_render_options_t; static void plot_text(struct graphics_context *gc, const text_render_options_t *tro, double x, double y, const char *fmt, ...) { cairo_t *cr = gc->cr; cairo_text_extents_t extents; double dx, dy; char buffer[80]; va_list args; va_start(args, fmt); vsnprintf(buffer, sizeof(buffer), fmt, args); va_end(args); cairo_set_font_size(cr, tro->size); cairo_text_extents(cr, buffer, &extents); dx = 0; switch (tro->halign) { case CENTER: dx = -(extents.width/2 + extents.x_bearing); break; case LEFT: dx = 0; break; } switch (tro->valign) { case TOP: dy = extents.height * 1.2; break; case BOTTOM: dy = -extents.height * 0.8; break; case MIDDLE: dy = 0; break; } move_to(gc, x, y); cairo_rel_move_to(cr, dx, dy); cairo_text_path(cr, buffer); cairo_set_source_rgb(cr, 0, 0, 0); cairo_stroke(cr); move_to(gc, x, y); cairo_rel_move_to(cr, dx, dy); cairo_set_source_rgb(cr, tro->r, tro->g, tro->b); cairo_show_text(cr, buffer); } static void render_depth_sample(struct graphics_context *gc, struct sample *sample, const text_render_options_t *tro) { int sec = sample->time.seconds; depth_t depth = sample->depth; const char *fmt; double d; switch (output_units.length) { case METERS: d = depth.mm / 1000.0; fmt = "%.1f"; break; case FEET: d = to_feet(depth); fmt = "%.0f"; break; } plot_text(gc, tro, sec, depth.mm, fmt, d); } /* * Find the next minimum/maximum point. * * We exit early if we hit "enough" of a depth reversal, * which is roughly 10 feet. */ static struct sample *next_minmax(struct sample *sample, struct sample *end, int minmax) { const int enough = 3000; struct sample *result; int depthlimit; if (sample >= end) return 0; depthlimit = sample->depth.mm; result = NULL; for (;;) { int depth; sample++; if (sample >= end) return NULL; depth = sample->depth.mm; if (minmax) { if (depth <= depthlimit) { if (depthlimit - depth > enough) break; continue; } } else { if (depth >= depthlimit) { if (depth - depthlimit > enough) break; continue; } } result = sample; depthlimit = depth; } return result; } static void plot_text_samples(struct graphics_context *gc, struct sample *a, struct sample *b) { static const text_render_options_t deep = {14, 1.0, 0.2, 0.2, CENTER, TOP}; static const text_render_options_t shallow = {14, 1.0, 0.2, 0.2, CENTER, BOTTOM}; for (;;) { if (b <= a) break; a = next_minmax(a, b, 1); if (!a) break; render_depth_sample(gc, a, &deep); a = next_minmax(a, b, 0); if (!a) break; if (a->depth.mm < 2500) continue; render_depth_sample(gc, a, &shallow); } } static void plot_depth_text(struct dive *dive, struct graphics_context *gc) { struct sample *sample, *end; int maxtime, maxdepth; /* Get plot scaling limits */ maxtime = round_seconds_up(dive->duration.seconds); maxdepth = round_depth_up(dive->maxdepth); gc->scalex = maxtime; gc->scaley = maxdepth; sample = dive->sample; end = dive->sample + dive->samples; plot_text_samples(gc, sample, end); } static void plot_smoothed_profile(struct graphics_context *gc, struct plot_info *pi) { int i; struct plot_data *entry = pi->entry; cairo_set_source_rgba(gc->cr, 1, 0.2, 0.2, 0.20); move_to(gc, entry->sec, entry->smoothed); for (i = 1; i < pi->nr; i++) { entry++; line_to(gc, entry->sec, entry->smoothed); } cairo_stroke(gc->cr); } static void plot_minmax_profile_minute(struct graphics_context *gc, struct plot_info *pi, int index, double a) { int i; struct plot_data *entry = pi->entry; cairo_set_source_rgba(gc->cr, 1, 0.2, 1, a); move_to(gc, entry->sec, entry->min[index]); for (i = 1; i < pi->nr; i++) { entry++; line_to(gc, entry->sec, entry->min[index]); } for (i = 1; i < pi->nr; i++) { line_to(gc, entry->sec, entry->max[index]); entry--; } cairo_close_path(gc->cr); cairo_fill(gc->cr); } static void plot_minmax_profile(struct graphics_context *gc, struct plot_info *pi) { plot_minmax_profile_minute(gc, pi, 2, 0.1); plot_minmax_profile_minute(gc, pi, 1, 0.1); plot_minmax_profile_minute(gc, pi, 0, 0.1); } static void plot_depth_profile(struct dive *dive, struct graphics_context *gc, struct plot_info *pi) { int i; cairo_t *cr = gc->cr; int begins, sec, depth; struct plot_data *entry; int maxtime, maxdepth, marker; cairo_set_line_width(gc->cr, 2); /* Get plot scaling limits */ maxtime = round_seconds_up(dive->duration.seconds); maxdepth = round_depth_up(dive->maxdepth); /* Time markers: every 5 min */ gc->scalex = maxtime; gc->scaley = 1.0; for (i = 5*60; i < maxtime; i += 5*60) { move_to(gc, i, 0); line_to(gc, i, 1); } /* Depth markers: every 30 ft or 10 m*/ gc->scalex = 1.0; gc->scaley = maxdepth; switch (output_units.length) { case METERS: marker = 10000; break; case FEET: marker = 9144; break; /* 30 ft */ } cairo_set_source_rgba(cr, 1, 1, 1, 0.5); for (i = marker; i < maxdepth; i += marker) { move_to(gc, 0, i); line_to(gc, 1, i); } cairo_stroke(cr); /* Show mean depth */ cairo_set_source_rgba(cr, 1, 0.2, 0.2, 0.40); move_to(gc, 0, dive->meandepth.mm); line_to(gc, 1, dive->meandepth.mm); cairo_stroke(cr); gc->scalex = maxtime; plot_smoothed_profile(gc, pi); plot_minmax_profile(gc, pi); entry = pi->entry; cairo_set_source_rgba(cr, 1, 0.2, 0.2, 0.80); begins = entry->sec; move_to(gc, entry->sec, entry->val); for (i = 1; i < pi->nr; i++) { entry++; sec = entry->sec; if (sec <= maxtime) { depth = entry->val; line_to(gc, sec, depth); } } gc->scaley = 1.0; line_to(gc, MIN(sec,maxtime), 0); line_to(gc, begins, 0); cairo_close_path(cr); cairo_set_source_rgba(cr, 1, 0.2, 0.2, 0.20); cairo_fill_preserve(cr); cairo_set_source_rgba(cr, 1, 0.2, 0.2, 0.80); cairo_stroke(cr); } /* gets both the actual start and end pressure as well as the scaling factors */ static int get_cylinder_pressure_range(struct dive *dive, struct graphics_context *gc, pressure_t *startp, pressure_t *endp) { int i; int min, max; gc->scalex = round_seconds_up(dive->duration.seconds); max = 0; min = 5000000; if (startp) startp->mbar = endp->mbar = 0; for (i = 0; i < dive->samples; i++) { int mbar; struct sample *sample = dive->sample + i; /* FIXME! We only track cylinder 0 right now */ if (sample->cylinderindex) continue; mbar = sample->cylinderpressure.mbar; if (!mbar) continue; if (mbar < min) min = mbar; if (mbar > max) max = mbar; } if (startp) startp->mbar = max; if (endp) endp->mbar = min; if (!max) return 0; gc->scaley = max * 1.5; return 1; } static void plot_cylinder_pressure(struct dive *dive, struct graphics_context *gc) { int i, sec = -1; if (!get_cylinder_pressure_range(dive, gc, NULL, NULL)) return; cairo_set_source_rgba(gc->cr, 0.2, 1.0, 0.2, 0.80); move_to(gc, 0, dive->cylinder[0].start.mbar); for (i = 1; i < dive->samples; i++) { int mbar; struct sample *sample = dive->sample + i; mbar = sample->cylinderpressure.mbar; if (!mbar) continue; sec = sample->time.seconds; if (sec <= dive->duration.seconds) line_to(gc, sec, mbar); } /* * We may have "surface time" events, in which case we don't go * back to dive duration */ if (sec < dive->duration.seconds) line_to(gc, dive->duration.seconds, dive->cylinder[0].end.mbar); cairo_stroke(gc->cr); } /* * Return air usage (in liters). */ static double calculate_airuse(struct dive *dive) { double airuse = 0; int i; for (i = 0; i < MAX_CYLINDERS; i++) { cylinder_t *cyl = dive->cylinder + i; int size = cyl->type.size.mliter; double kilo_atm; if (!size) continue; kilo_atm = (cyl->start.mbar - cyl->end.mbar) / 1013250.0; /* Liters of air at 1 atm == milliliters at 1k atm*/ airuse += kilo_atm * size; } return airuse; } static void plot_info(struct dive *dive, struct graphics_context *gc) { text_render_options_t tro = {10, 0.2, 1.0, 0.2, LEFT, TOP}; const double liters_per_cuft = 28.317; const char *unit; double airuse; airuse = calculate_airuse(dive); if (!airuse) return; /* I really need to start addign some unit setting thing */ switch (output_units.volume) { case LITER: unit = "l"; break; case CUFT: unit = "cuft"; airuse /= liters_per_cuft; break; } plot_text(gc, &tro, 0.8, 0.8, "vol: %4.2f %s", airuse, unit); if (dive->duration.seconds) { double pressure = 1 + (dive->meandepth.mm / 10000.0); double sac = airuse / pressure * 60 / dive->duration.seconds; plot_text(gc, &tro, 0.8, 0.85, "SAC: %4.2f %s/min", sac, unit); } } static void plot_cylinder_pressure_text(struct dive *dive, struct graphics_context *gc) { pressure_t startp, endp; if (get_cylinder_pressure_range(dive, gc, &startp, &endp)) { int start, end; const char *unit = "bar"; switch (output_units.pressure) { case PASCAL: start = startp.mbar * 100; end = startp.mbar * 100; unit = "pascal"; break; case BAR: start = (startp.mbar + 500) / 1000; end = (endp.mbar + 500) / 1000; unit = "bar"; break; case PSI: start = to_PSI(startp); end = to_PSI(endp); unit = "psi"; break; } text_render_options_t tro = {10, 0.2, 1.0, 0.2, LEFT, TOP}; plot_text(gc, &tro, 0, startp.mbar, "%d %s", start, unit); plot_text(gc, &tro, dive->duration.seconds, endp.mbar, "%d %s", end, unit); } } static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index) { struct plot_data *p = entry; int time = entry->sec; int seconds = 60*(index+1); int min, max, avg, nr; /* Go back 'seconds' in time */ while (p > first) { if (p[-1].sec < time - seconds) break; p--; } /* Then go forward until we hit an entry past the time */ min = max = avg = p->val; nr = 1; while (++p < last) { int val = p->val; if (p->sec > time + seconds) break; avg += val; nr ++; if (val < min) min = val; if (val > max) max = val; } entry->min[index] = min; entry->max[index] = max; entry->avg[index] = (avg + nr/2) / nr; } static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last) { analyze_plot_info_minmax_minute(entry, first, last, 0); analyze_plot_info_minmax_minute(entry, first, last, 1); analyze_plot_info_minmax_minute(entry, first, last, 2); } static struct plot_info *analyze_plot_info(struct plot_info *pi) { int i; int nr = pi->nr; /* Smoothing function: 5-point triangular smooth */ for (i = 2; i < nr-2; i++) { struct plot_data *entry = pi->entry+i; int val; val = entry[-2].val + 2*entry[-1].val + 3*entry[0].val + 2*entry[1].val + entry[2].val; entry->smoothed = (val+4) / 9; } /* One-, two- and three-minute minmax data */ for (i = 0; i < nr; i++) { struct plot_data *entry = pi->entry +i; analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr); } return pi; } /* * Create a plot-info with smoothing and ranged min/max * * This also makes sure that we have extra empty events on both * sides, so that you can do end-points without having to worry * about it. */ static struct plot_info *depth_plot_info(struct dive *dive) { int i, nr = dive->samples + 4, sec; size_t alloc_size = plot_info_size(nr); struct plot_info *pi; pi = malloc(alloc_size); if (!pi) return pi; memset(pi, 0, alloc_size); pi->nr = nr; sec = 0; for (i = 0; i < dive->samples; i++) { struct sample *sample = dive->sample+i; struct plot_data *entry = pi->entry + i + 2; sec = entry->sec = sample->time.seconds; entry->val = sample->depth.mm; } /* Fill in the last two entries with empty values but valid times */ i = dive->samples + 2; pi->entry[i].sec = sec + 20; pi->entry[i+1].sec = sec + 40; return analyze_plot_info(pi); } static void plot(struct graphics_context *gc, int w, int h, struct dive *dive) { double topx, topy; struct plot_info *pi = depth_plot_info(dive); topx = w / 20.0; topy = h / 20.0; cairo_translate(gc->cr, topx, topy); /* * We can use "cairo_translate()" because that doesn't * scale line width etc. But the actual scaling we need * do set up ourselves.. * * Snif. What a pity. */ gc->maxx = (w - 2*topx); gc->maxy = (h - 2*topy); /* Cylinder pressure plot */ plot_cylinder_pressure(dive, gc); /* Depth profile */ plot_depth_profile(dive, gc, pi); /* Text on top of all graphs.. */ plot_depth_text(dive, gc); plot_cylinder_pressure_text(dive, gc); /* And info box in the lower right corner.. */ gc->scalex = gc->scaley = 1.0; plot_info(dive, gc); /* Bounding box last */ cairo_set_source_rgb(gc->cr, 1, 1, 1); move_to(gc, 0, 0); line_to(gc, 0, 1); line_to(gc, 1, 1); line_to(gc, 1, 0); cairo_close_path(gc->cr); cairo_stroke(gc->cr); } static gboolean expose_event(GtkWidget *widget, GdkEventExpose *event, gpointer data) { struct dive *dive = current_dive; struct graphics_context gc; int w,h; w = widget->allocation.width; h = widget->allocation.height; gc.cr = gdk_cairo_create(widget->window); cairo_set_source_rgb(gc.cr, 0, 0, 0); cairo_paint(gc.cr); if (dive) plot(&gc, w, h, dive); cairo_destroy(gc.cr); return FALSE; } GtkWidget *dive_profile_widget(void) { GtkWidget *da; da = gtk_drawing_area_new(); gtk_widget_set_size_request(da, 450, 350); g_signal_connect(da, "expose_event", G_CALLBACK(expose_event), NULL); return da; }