// SPDX-License-Identifier: LGPL-2.1+ /* * libdivecomputer * * Copyright (C) 2008 Jef Driesen * Copyright (C) 2014 Venkatesh Shukla * Copyright (C) 2015-2016 Anton Lundin * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ #include #include // strerror #include // errno #include // gettimeofday #include #include #include #ifdef _WIN32 #include // Sleep #else #include // nanosleep #endif #include "errorhelper.h" #define INFO(fmt, ...) report_info("INFO: " fmt, ##__VA_ARGS__) #define ERROR(fmt, ...) report_info("ERROR: " fmt, ##__VA_ARGS__) //#define SYSERROR(context, errcode) ERROR(__FILE__ ":" __LINE__ ": %s", strerror(errcode)) #define SYSERROR(errcode) (void)errcode #include "libdivecomputer.h" #include #include #define VID 0x0403 // Vendor ID of FTDI struct ftdi_serial_t { /* Library context. */ dc_context_t *context = nullptr; /* * The file descriptor corresponding to the serial port. * Also a libftdi_ftdi_ctx could be used? */ struct ftdi_context *ftdi_ctx = nullptr; long timeout = -1; // Default to blocking reads. /* * Serial port settings are saved into this variable immediately * after the port is opened. These settings are restored when the * serial port is closed. * Saving this using libftdi context or libusb. Search further. * Custom implementation using libftdi functions could be done. */ // Default to full-duplex. unsigned int baudrate = 0; unsigned int nbits = 0; unsigned int databits = 0; unsigned int stopbits = 0; unsigned int parity = 0; ~ftdi_serial_t() { if (ftdi_ctx) ftdi_free(ftdi_ctx); } }; static dc_status_t serial_ftdi_get_available (void *io, size_t *value) { ftdi_serial_t *device = (ftdi_serial_t *)io; if (device == NULL) return DC_STATUS_INVALIDARGS; // Direct access is not encouraged. But function implementation // is not available. The return quantity might be anything. // Find out further about its possible values and correct way of // access. *value = device->ftdi_ctx->readbuffer_remaining; return DC_STATUS_SUCCESS; } static dc_status_t serial_ftdi_get_transmitted (ftdi_serial_t *device) { if (device == NULL) return DC_STATUS_INVALIDARGS; // This is not possible using libftdi. Look further into it. return DC_STATUS_UNSUPPORTED; } /* * Get an msec value on some random base */ static unsigned int serial_ftdi_get_msec(void) { #ifdef _WIN32 return GetTickCount(); #else struct timeval tv; gettimeofday(&tv, NULL); return tv.tv_sec * 1000 + tv.tv_usec / 1000; #endif } static dc_status_t serial_ftdi_sleep (void *io, unsigned int timeout) { ftdi_serial_t *device = (ftdi_serial_t *)io; if (device == NULL) return DC_STATUS_INVALIDARGS; INFO ("Sleep: value=%u", timeout); #ifdef _WIN32 Sleep((DWORD)timeout); #else struct timespec ts; ts.tv_sec = (timeout / 1000); ts.tv_nsec = (timeout % 1000) * 1000000; while (nanosleep (&ts, &ts) != 0) { if (errno != EINTR ) { SYSERROR (errno); return DC_STATUS_IO; } } #endif return DC_STATUS_SUCCESS; } // Used internally for opening ftdi devices static int serial_ftdi_open_device (struct ftdi_context *ftdi_ctx) { INFO("serial_ftdi_open_device called"); int accepted_pids[] = { 0x6001, 0x6010, 0x6011, // Suunto (Smart Interface), Heinrichs Weikamp 0x6015, // possibly Aqualung 0xF460, // Oceanic 0xF680, // Suunto 0x87D0, // Cressi (Leonardo) }; int num_accepted_pids = sizeof(accepted_pids) / sizeof(accepted_pids[0]); int i, pid, ret; for (i = 0; i < num_accepted_pids; i++) { pid = accepted_pids[i]; ret = ftdi_usb_open (ftdi_ctx, VID, pid); INFO("FTDI tried VID %04x pid %04x ret %d", VID, pid, ret); if (ret == -3) // Device not found continue; else return ret; } // No supported devices are attached. return ret; } // // Open the serial port. // Initialise ftdi_context and use it to open the device static dc_status_t serial_ftdi_open (void **io, dc_context_t *context) { INFO("serial_ftdi_open called"); // Allocate memory. auto device = std::make_unique(); INFO("setting up ftdi_ctx"); struct ftdi_context *ftdi_ctx = ftdi_new(); if (ftdi_ctx == NULL) { INFO("failed ftdi_new()"); SYSERROR (errno); return DC_STATUS_NOMEMORY; } // Library context. //device->context = context; // Initialize device ftdi context INFO("initialize ftdi_ctx"); ftdi_init(ftdi_ctx); if (ftdi_set_interface(ftdi_ctx,INTERFACE_ANY)) { ERROR ("%s", ftdi_get_error_string(ftdi_ctx)); return DC_STATUS_IO; } INFO("call serial_ftdi_open_device"); if (serial_ftdi_open_device(ftdi_ctx) < 0) { ERROR ("%s", ftdi_get_error_string(ftdi_ctx)); return DC_STATUS_IO; } if (ftdi_usb_reset(ftdi_ctx)) { ERROR ("%s", ftdi_get_error_string(ftdi_ctx)); return DC_STATUS_IO; } if (ftdi_usb_purge_buffers(ftdi_ctx)) { ERROR ("%s", ftdi_get_error_string(ftdi_ctx)); return DC_STATUS_IO; } device->ftdi_ctx = ftdi_ctx; *io = device.release(); return DC_STATUS_SUCCESS; } // // Close the serial port. // static dc_status_t serial_ftdi_close (void *io) { ftdi_serial_t *device = (ftdi_serial_t *)io; if (device == NULL) return DC_STATUS_SUCCESS; // Restore the initial terminal attributes. // See if it is possible using libusb or libftdi int ret = ftdi_usb_close(device->ftdi_ctx); if (ret < 0) { ERROR ("Unable to close the ftdi device : %d (%s)", ret, ftdi_get_error_string(device->ftdi_ctx)); return (dc_status_t)ret; } // Free memory. delete device; return DC_STATUS_SUCCESS; } // // Configure the serial port (baudrate, databits, parity, stopbits and flowcontrol). // static dc_status_t serial_ftdi_configure (void *io, unsigned int baudrate, unsigned int databits, dc_parity_t parity, dc_stopbits_t stopbits, dc_flowcontrol_t flowcontrol) { ftdi_serial_t *device = (ftdi_serial_t *)io; if (device == NULL) return DC_STATUS_INVALIDARGS; INFO ("Configure: baudrate=%i, databits=%i, parity=%i, stopbits=%i, flowcontrol=%i", baudrate, databits, parity, stopbits, flowcontrol); enum ftdi_bits_type ft_bits; enum ftdi_stopbits_type ft_stopbits; enum ftdi_parity_type ft_parity; if (ftdi_set_baudrate(device->ftdi_ctx, baudrate) < 0) { ERROR ("%s", ftdi_get_error_string(device->ftdi_ctx)); return DC_STATUS_IO; } // Set the character size. switch (databits) { case 7: ft_bits = BITS_7; break; case 8: ft_bits = BITS_8; break; default: return DC_STATUS_INVALIDARGS; } // Set the parity type. switch (parity) { case DC_PARITY_NONE: /**< No parity */ ft_parity = NONE; break; case DC_PARITY_EVEN: /**< Even parity */ ft_parity = EVEN; break; case DC_PARITY_ODD: /**< Odd parity */ ft_parity = ODD; break; case DC_PARITY_MARK: /**< Mark parity (always 1) */ case DC_PARITY_SPACE: /**< Space parity (alwasy 0) */ default: return DC_STATUS_INVALIDARGS; } // Set the number of stop bits. switch (stopbits) { case DC_STOPBITS_ONE: /**< 1 stop bit */ ft_stopbits = STOP_BIT_1; break; case DC_STOPBITS_TWO: /**< 2 stop bits */ ft_stopbits = STOP_BIT_2; break; case DC_STOPBITS_ONEPOINTFIVE: /**< 1.5 stop bits*/ default: return DC_STATUS_INVALIDARGS; } // Set the attributes if (ftdi_set_line_property(device->ftdi_ctx, ft_bits, ft_stopbits, ft_parity)) { ERROR ("%s", ftdi_get_error_string(device->ftdi_ctx)); return DC_STATUS_IO; } // Set the flow control. switch (flowcontrol) { case DC_FLOWCONTROL_NONE: /**< No flow control */ if (ftdi_setflowctrl(device->ftdi_ctx, SIO_DISABLE_FLOW_CTRL) < 0) { ERROR ("%s", ftdi_get_error_string(device->ftdi_ctx)); return DC_STATUS_IO; } break; case DC_FLOWCONTROL_HARDWARE: /**< Hardware (RTS/CTS) flow control */ if (ftdi_setflowctrl(device->ftdi_ctx, SIO_RTS_CTS_HS) < 0) { ERROR ("%s", ftdi_get_error_string(device->ftdi_ctx)); return DC_STATUS_IO; } break; case DC_FLOWCONTROL_SOFTWARE: /**< Software (XON/XOFF) flow control */ if (ftdi_setflowctrl(device->ftdi_ctx, SIO_XON_XOFF_HS) < 0) { ERROR ("%s", ftdi_get_error_string(device->ftdi_ctx)); return DC_STATUS_IO; } break; default: return DC_STATUS_INVALIDARGS; } device->baudrate = baudrate; device->nbits = 1 + databits + stopbits + (parity ? 1 : 0); device->databits = databits; device->stopbits = stopbits; device->parity = parity; return DC_STATUS_SUCCESS; } // // Configure the serial port (timeouts). // static dc_status_t serial_ftdi_set_timeout (void *io, int timeout) { ftdi_serial_t *device = (ftdi_serial_t *)io; if (device == NULL) return DC_STATUS_INVALIDARGS; INFO ("Timeout: value=%i", timeout); device->timeout = timeout; return DC_STATUS_SUCCESS; } static dc_status_t serial_ftdi_read (void *io, void *data, size_t size, size_t *actual) { ftdi_serial_t *device = (ftdi_serial_t *)io; if (device == NULL) return DC_STATUS_INVALIDARGS; // The total timeout. long timeout = device->timeout; // Simulate blocking read as 10s timeout if (timeout <= -1) timeout = 10000; unsigned int start_time = serial_ftdi_get_msec(); unsigned int nbytes = 0; while (nbytes < size) { int n = ftdi_read_data (device->ftdi_ctx, (unsigned char *) data + nbytes, size - nbytes); if (n < 0) { if (n == LIBUSB_ERROR_INTERRUPTED) continue; //Retry. ERROR ("%s", ftdi_get_error_string(device->ftdi_ctx)); return DC_STATUS_IO; //Error during read call. } else if (n == 0) { if (serial_ftdi_get_msec() - start_time > (unsigned int)timeout) { ERROR("%s", "FTDI read timed out."); return DC_STATUS_TIMEOUT; } serial_ftdi_sleep (device, 1); } nbytes += n; } INFO ("Read %d bytes", nbytes); if (actual) *actual = nbytes; return DC_STATUS_SUCCESS; } static dc_status_t serial_ftdi_write (void *io, const void *data, size_t size, size_t *actual) { ftdi_serial_t *device = (ftdi_serial_t *)io; if (device == NULL) return DC_STATUS_INVALIDARGS; unsigned int nbytes = 0; while (nbytes < size) { int n = ftdi_write_data (device->ftdi_ctx, (unsigned char *) data + nbytes, size - nbytes); if (n < 0) { if (n == LIBUSB_ERROR_INTERRUPTED) continue; // Retry. ERROR ("%s", ftdi_get_error_string(device->ftdi_ctx)); return DC_STATUS_IO; // Error during write call. } else if (n == 0) { break; // EOF. } nbytes += n; } INFO ("Wrote %d bytes", nbytes); if (actual) *actual = nbytes; return DC_STATUS_SUCCESS; } static dc_status_t serial_ftdi_purge (void *io, dc_direction_t queue) { ftdi_serial_t *device = (ftdi_serial_t *)io; if (device == NULL) return DC_STATUS_INVALIDARGS; size_t input; serial_ftdi_get_available (io, &input); INFO ("Flush: queue=%u, input=%lu, output=%i", queue, (unsigned long)input, serial_ftdi_get_transmitted (device)); switch (queue) { case DC_DIRECTION_INPUT: /**< Input direction */ if (ftdi_usb_purge_tx_buffer(device->ftdi_ctx)) { ERROR ("%s", ftdi_get_error_string(device->ftdi_ctx)); return DC_STATUS_IO; } break; case DC_DIRECTION_OUTPUT: /**< Output direction */ if (ftdi_usb_purge_rx_buffer(device->ftdi_ctx)) { ERROR ("%s", ftdi_get_error_string(device->ftdi_ctx)); return DC_STATUS_IO; } break; case DC_DIRECTION_ALL: /**< All directions */ default: if (ftdi_usb_reset(device->ftdi_ctx)) { ERROR ("%s", ftdi_get_error_string(device->ftdi_ctx)); return DC_STATUS_IO; } break; } return DC_STATUS_SUCCESS; } static dc_status_t serial_ftdi_set_break (void *io, unsigned int level) { ftdi_serial_t *device = (ftdi_serial_t *)io; if (device == NULL) return DC_STATUS_INVALIDARGS; INFO ("Break: value=%i", level); if (ftdi_set_line_property2(device->ftdi_ctx, (ftdi_bits_type)device->databits, (ftdi_stopbits_type)device->stopbits, (ftdi_parity_type)device->parity, (ftdi_break_type)level)) { ERROR ("%s", ftdi_get_error_string(device->ftdi_ctx)); return DC_STATUS_IO; } return DC_STATUS_UNSUPPORTED; } static dc_status_t serial_ftdi_set_dtr (void *io, unsigned int value) { ftdi_serial_t *device = (ftdi_serial_t *)io; if (device == NULL) return DC_STATUS_INVALIDARGS; INFO ("DTR: value=%u", value); if (ftdi_setdtr(device->ftdi_ctx, value)) { ERROR ("%s", ftdi_get_error_string(device->ftdi_ctx)); return DC_STATUS_IO; } return DC_STATUS_SUCCESS; } static dc_status_t serial_ftdi_set_rts (void *io, unsigned int level) { ftdi_serial_t *device = (ftdi_serial_t *)io; if (device == NULL) return DC_STATUS_INVALIDARGS; INFO ("RTS: value=%u", level); if (ftdi_setrts(device->ftdi_ctx, level)) { ERROR ("%s", ftdi_get_error_string(device->ftdi_ctx)); return DC_STATUS_IO; } return DC_STATUS_SUCCESS; } dc_status_t ftdi_open(dc_iostream_t **iostream, dc_context_t *context) { dc_status_t rc = DC_STATUS_SUCCESS; void *io = NULL; static const dc_custom_cbs_t callbacks = { .set_timeout = serial_ftdi_set_timeout, .set_break = serial_ftdi_set_break, .set_dtr = serial_ftdi_set_dtr, .set_rts = serial_ftdi_set_rts, .get_available = serial_ftdi_get_available, .configure = serial_ftdi_configure, .read = serial_ftdi_read, .write = serial_ftdi_write, .purge = serial_ftdi_purge, .sleep = serial_ftdi_sleep, .close = serial_ftdi_close, }; INFO("in ftdi_open"); rc = serial_ftdi_open(&io, context); if (rc != DC_STATUS_SUCCESS) { INFO("serial_ftdi_open() failed"); return rc; } INFO("calling dc_custom_open())"); return dc_custom_open(iostream, context, DC_TRANSPORT_SERIAL, &callbacks, io); }