/* calculate deco values * based on Bühlmann ZHL-16b * based on an implemention by heinrichs weikamp for the DR5 * the original file was given to Subsurface under the GPLv2 * by Matthias Heinrichs * * The implementation below is a fairly complete rewrite since then * (C) Robert C. Helling 2013 and released under the GPLv2 * * add_segment() - add at the given pressure, breathing gasmix * deco_allowed_depth() - ceiling based on lead tissue, surface pressure, 3m increments or smooth * set_gf() - set Buehlmann gradient factors * clear_deco() * cache_deco_state() * restore_deco_state() * dump_tissues() */ #include #include #include "dive.h" #include #include //! Option structure for Buehlmann decompression. struct buehlmann_config { double satmult; //! safety at inert gas accumulation as percentage of effect (more than 100). double desatmult; //! safety at inert gas depletion as percentage of effect (less than 100). unsigned int last_deco_stop_in_mtr; //! depth of last_deco_stop. double gf_high; //! gradient factor high (at surface). double gf_low; //! gradient factor low (at bottom/start of deco calculation). double gf_low_position_min; //! gf_low_position below surface_min_shallow. bool gf_low_at_maxdepth; //! if true, gf_low applies at max depth instead of at deepest ceiling. }; struct buehlmann_config buehlmann_config = { 1.0, 1.01, 0, 0.75, 0.35, 1.0, false }; //! Option structure for VPM-B decompression. struct vpmb_config { double crit_radius_N2; //! Critical radius of N2 nucleon (microns). double crit_radius_He; //! Critical radius of He nucleon (microns). double crit_volume_lambda; //! Constant corresponding to critical gas volume (bar * min). double gradient_of_imperm; //! Gradient after which bubbles become impermeable (bar). double surface_tension_gamma; //! Nucleons surface tension constant (N / 10m). double skin_compression_gammaC; //! Skin compression gammaC (N / 10m). double regeneration_time; //! Time needed for the bubble to regenerate to the start radius (min). double other_gases_pressure; //! Always present pressure of other gasses in tissues (bar). }; struct vpmb_config vpmb_config = { 0.55, 0.45, 230.284, 8.2, 0.179, 2.57, 20160, 0.1359888 }; const double buehlmann_N2_a[] = { 1.1696, 1.0, 0.8618, 0.7562, 0.62, 0.5043, 0.441, 0.4, 0.375, 0.35, 0.3295, 0.3065, 0.2835, 0.261, 0.248, 0.2327 }; const double buehlmann_N2_b[] = { 0.5578, 0.6514, 0.7222, 0.7825, 0.8126, 0.8434, 0.8693, 0.8910, 0.9092, 0.9222, 0.9319, 0.9403, 0.9477, 0.9544, 0.9602, 0.9653 }; const double buehlmann_N2_t_halflife[] = { 5.0, 8.0, 12.5, 18.5, 27.0, 38.3, 54.3, 77.0, 109.0, 146.0, 187.0, 239.0, 305.0, 390.0, 498.0, 635.0 }; const double buehlmann_N2_factor_expositon_one_second[] = { 2.30782347297664E-003, 1.44301447809736E-003, 9.23769302935806E-004, 6.24261986779007E-004, 4.27777107246730E-004, 3.01585140931371E-004, 2.12729727268379E-004, 1.50020603047807E-004, 1.05980191127841E-004, 7.91232600646508E-005, 6.17759153688224E-005, 4.83354552742732E-005, 3.78761777920511E-005, 2.96212356654113E-005, 2.31974277413727E-005, 1.81926738960225E-005 }; const double buehlmann_He_a[] = { 1.6189, 1.383, 1.1919, 1.0458, 0.922, 0.8205, 0.7305, 0.6502, 0.595, 0.5545, 0.5333, 0.5189, 0.5181, 0.5176, 0.5172, 0.5119 }; const double buehlmann_He_b[] = { 0.4770, 0.5747, 0.6527, 0.7223, 0.7582, 0.7957, 0.8279, 0.8553, 0.8757, 0.8903, 0.8997, 0.9073, 0.9122, 0.9171, 0.9217, 0.9267 }; const double buehlmann_He_t_halflife[] = { 1.88, 3.02, 4.72, 6.99, 10.21, 14.48, 20.53, 29.11, 41.20, 55.19, 70.69, 90.34, 115.29, 147.42, 188.24, 240.03 }; const double buehlmann_He_factor_expositon_one_second[] = { 6.12608039419837E-003, 3.81800836683133E-003, 2.44456078654209E-003, 1.65134647076792E-003, 1.13084424730725E-003, 7.97503165599123E-004, 5.62552521860549E-004, 3.96776399429366E-004, 2.80360036664540E-004, 2.09299583354805E-004, 1.63410794820518E-004, 1.27869320250551E-004, 1.00198406028040E-004, 7.83611475491108E-005, 6.13689891868496E-005, 4.81280465299827E-005 }; const double conservatism_lvls[] = { 1.0, 1.05, 1.12, 1.22, 1.35 }; #define WV_PRESSURE 0.0627 // water vapor pressure in bar #define DECO_STOPS_MULTIPLIER_MM 3000.0 #define NITROGEN_FRACTION 0.79 double tissue_n2_sat[16]; double tissue_he_sat[16]; int ci_pointing_to_guiding_tissue; double gf_low_pressure_this_dive; #define TISSUE_ARRAY_SZ sizeof(tissue_n2_sat) double tolerated_by_tissue[16]; double tissue_inertgas_saturation[16]; double buehlmann_inertgas_a[16], buehlmann_inertgas_b[16]; double max_n2_crushing_pressure[16]; double max_he_crushing_pressure[16]; double crushing_onset_tension[16]; // total inert gas tension in the t* moment double n2_regen_radius[16]; // rs double he_regen_radius[16]; double max_ambient_pressure; // last moment we were descending double allowable_n2_gradient[16]; double allowable_he_gradient[16]; double total_gradient[16]; double bottom_n2_gradient[16]; double bottom_he_gradient[16]; double initial_n2_gradient[16]; double initial_he_gradient[16]; double get_crit_radius_He() { if (prefs.conservatism_level <= 4) return vpmb_config.crit_radius_He * conservatism_lvls[prefs.conservatism_level]; return vpmb_config.crit_radius_He; } double get_crit_radius_N2() { if (prefs.conservatism_level <= 4) return vpmb_config.crit_radius_N2 * conservatism_lvls[prefs.conservatism_level]; return vpmb_config.crit_radius_N2; } static double tissue_tolerance_calc(const struct dive *dive) { int ci = -1; double ret_tolerance_limit_ambient_pressure = 0.0; double gf_high = buehlmann_config.gf_high; double gf_low = buehlmann_config.gf_low; double surface = get_surface_pressure_in_mbar(dive, true) / 1000.0; double lowest_ceiling = 0.0; double tissue_lowest_ceiling[16]; if (prefs.deco_mode != VPMB || !in_planner) { for (ci = 0; ci < 16; ci++) { tissue_inertgas_saturation[ci] = tissue_n2_sat[ci] + tissue_he_sat[ci]; buehlmann_inertgas_a[ci] = ((buehlmann_N2_a[ci] * tissue_n2_sat[ci]) + (buehlmann_He_a[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation[ci]; buehlmann_inertgas_b[ci] = ((buehlmann_N2_b[ci] * tissue_n2_sat[ci]) + (buehlmann_He_b[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation[ci]; /* tolerated = (tissue_inertgas_saturation - buehlmann_inertgas_a) * buehlmann_inertgas_b; */ tissue_lowest_ceiling[ci] = (buehlmann_inertgas_b[ci] * tissue_inertgas_saturation[ci] - gf_low * buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci]) / ((1.0 - buehlmann_inertgas_b[ci]) * gf_low + buehlmann_inertgas_b[ci]); if (tissue_lowest_ceiling[ci] > lowest_ceiling) lowest_ceiling = tissue_lowest_ceiling[ci]; if (!buehlmann_config.gf_low_at_maxdepth) { if (lowest_ceiling > gf_low_pressure_this_dive) gf_low_pressure_this_dive = lowest_ceiling; } } for (ci = 0; ci < 16; ci++) { double tolerated; if ((surface / buehlmann_inertgas_b[ci] + buehlmann_inertgas_a[ci] - surface) * gf_high + surface < (gf_low_pressure_this_dive / buehlmann_inertgas_b[ci] + buehlmann_inertgas_a[ci] - gf_low_pressure_this_dive) * gf_low + gf_low_pressure_this_dive) tolerated = (-buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci] * (gf_high * gf_low_pressure_this_dive - gf_low * surface) - (1.0 - buehlmann_inertgas_b[ci]) * (gf_high - gf_low) * gf_low_pressure_this_dive * surface + buehlmann_inertgas_b[ci] * (gf_low_pressure_this_dive - surface) * tissue_inertgas_saturation[ci]) / (-buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci] * (gf_high - gf_low) + (1.0 - buehlmann_inertgas_b[ci]) * (gf_low * gf_low_pressure_this_dive - gf_high * surface) + buehlmann_inertgas_b[ci] * (gf_low_pressure_this_dive - surface)); else tolerated = ret_tolerance_limit_ambient_pressure; tolerated_by_tissue[ci] = tolerated; if (tolerated >= ret_tolerance_limit_ambient_pressure) { ci_pointing_to_guiding_tissue = ci; ret_tolerance_limit_ambient_pressure = tolerated; } } } else { // VPM-B ceiling for (ci = 0; ci < 16; ci++) { double tolerated = tissue_n2_sat[ci] + tissue_he_sat[ci] + vpmb_config.other_gases_pressure - total_gradient[ci]; if (tolerated >= ret_tolerance_limit_ambient_pressure) { ci_pointing_to_guiding_tissue = ci; ret_tolerance_limit_ambient_pressure = tolerated; } tolerated_by_tissue[ci] = tolerated; } } return ret_tolerance_limit_ambient_pressure; } /* * Return buelman factor for a particular period and tissue index. * * We cache the last factor, since we commonly call this with the * same values... We have a special "fixed cache" for the one second * case, although I wonder if that's even worth it considering the * more general-purpose cache. */ struct factor_cache { int last_period; double last_factor; }; double n2_factor(int period_in_seconds, int ci) { static struct factor_cache cache[16]; if (period_in_seconds == 1) return buehlmann_N2_factor_expositon_one_second[ci]; if (period_in_seconds != cache[ci].last_period) { cache[ci].last_period = period_in_seconds; cache[ci].last_factor = 1 - pow(2.0, -period_in_seconds / (buehlmann_N2_t_halflife[ci] * 60)); } return cache[ci].last_factor; } double he_factor(int period_in_seconds, int ci) { static struct factor_cache cache[16]; if (period_in_seconds == 1) return buehlmann_He_factor_expositon_one_second[ci]; if (period_in_seconds != cache[ci].last_period) { cache[ci].last_period = period_in_seconds; cache[ci].last_factor = 1 - pow(2.0, -period_in_seconds / (buehlmann_He_t_halflife[ci] * 60)); } return cache[ci].last_factor; } double calc_surface_phase(double surface_pressure, double he_pressure, double n2_pressure, double he_time_constant, double n2_time_constant) { double inspired_n2 = (surface_pressure - WV_PRESSURE) * NITROGEN_FRACTION; if (n2_pressure > inspired_n2) return (he_pressure / he_time_constant + (n2_pressure - inspired_n2) / n2_time_constant) / (he_pressure + n2_pressure - inspired_n2); if (he_pressure + n2_pressure >= inspired_n2){ double gradient_decay_time = 1.0 / (n2_time_constant - he_time_constant) * log ((inspired_n2 - n2_pressure) / he_pressure); double gradients_integral = he_pressure / he_time_constant * (1.0 - exp(-he_time_constant * gradient_decay_time)) + (n2_pressure - inspired_n2) / n2_time_constant * (1.0 - exp(-n2_time_constant * gradient_decay_time)); return gradients_integral / (he_pressure + n2_pressure - inspired_n2); } return 0; } bool is_vpmb_ok(double pressure) { int ci; double gradient; double gas_tension; for (ci = 0; ci < 16; ++ci) { gas_tension = tissue_n2_sat[ci] + tissue_he_sat[ci] + vpmb_config.other_gases_pressure; gradient = gas_tension - pressure; if (gradient > total_gradient[ci]) return false; } return true; } void vpmb_start_gradient() { int ci; double gradient_n2, gradient_he; for (ci = 0; ci < 16; ++ci) { initial_n2_gradient[ci] = bottom_n2_gradient[ci] = allowable_n2_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / n2_regen_radius[ci]); initial_he_gradient[ci] = bottom_he_gradient[ci] = allowable_he_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / he_regen_radius[ci]); total_gradient[ci] = ((allowable_n2_gradient[ci] * tissue_n2_sat[ci]) + (allowable_he_gradient[ci] * tissue_he_sat[ci])) / (tissue_n2_sat[ci] + tissue_he_sat[ci]); } } void vpmb_next_gradient(double deco_time, double surface_pressure) { int ci; double gradient_n2, gradient_he; double n2_b, n2_c; double he_b, he_c; double desat_time; deco_time /= 60.0; for (ci = 0; ci < 16; ++ci) { desat_time = deco_time + calc_surface_phase(surface_pressure, tissue_he_sat[ci], tissue_n2_sat[ci], log(2.0) / buehlmann_He_t_halflife[ci], log(2.0) / buehlmann_N2_t_halflife[ci]); n2_b = initial_n2_gradient[ci] + (vpmb_config.crit_volume_lambda * vpmb_config.surface_tension_gamma) / (vpmb_config.skin_compression_gammaC * desat_time); he_b = initial_he_gradient[ci] + (vpmb_config.crit_volume_lambda * vpmb_config.surface_tension_gamma) / (vpmb_config.skin_compression_gammaC * desat_time); n2_c = vpmb_config.surface_tension_gamma * vpmb_config.surface_tension_gamma * vpmb_config.crit_volume_lambda * max_n2_crushing_pressure[ci]; n2_c = n2_c / (vpmb_config.skin_compression_gammaC * vpmb_config.skin_compression_gammaC * desat_time); he_c = vpmb_config.surface_tension_gamma * vpmb_config.surface_tension_gamma * vpmb_config.crit_volume_lambda * max_he_crushing_pressure[ci]; he_c = he_c / (vpmb_config.skin_compression_gammaC * vpmb_config.skin_compression_gammaC * desat_time); bottom_n2_gradient[ci] = allowable_n2_gradient[ci] = 0.5 * ( n2_b + sqrt(n2_b * n2_b - 4.0 * n2_c)); bottom_he_gradient[ci] = allowable_he_gradient[ci] = 0.5 * ( he_b + sqrt(he_b * he_b - 4.0 * he_c)); total_gradient[ci] = ((allowable_n2_gradient[ci] * tissue_n2_sat[ci]) + (allowable_he_gradient[ci] * tissue_he_sat[ci])) / (tissue_n2_sat[ci] + tissue_he_sat[ci]); } } double update_gradient(double first_stop_pressure, double next_stop_pressure, double first_gradient) { double first_radius = 2.0 * vpmb_config.surface_tension_gamma / first_gradient; double A = next_stop_pressure; double B = -2.0 * vpmb_config.surface_tension_gamma; double C = (first_stop_pressure + 2.0 * vpmb_config.surface_tension_gamma / first_radius) * pow(first_radius, 3.0); double low = first_radius; double high = first_radius * pow(first_stop_pressure / next_stop_pressure, (1.0/3.0)); double next_radius; double value; int ci; for (ci = 0; ci < 100; ++ci){ next_radius = (high + low) /2.0; value = A * pow(next_radius, 3.0) - B * next_radius * next_radius - C; if (value < 0) low = next_radius; else high = next_radius; } return 2.0 * vpmb_config.surface_tension_gamma / next_radius; } void boyles_law(double first_stop_pressure, double next_stop_pressure) { int ci; for (ci = 0; ci < 16; ++ci) { allowable_n2_gradient[ci] = update_gradient(first_stop_pressure, next_stop_pressure, bottom_n2_gradient[ci]); allowable_he_gradient[ci] = update_gradient(first_stop_pressure, next_stop_pressure, bottom_he_gradient[ci]); total_gradient[ci] = ((allowable_n2_gradient[ci] * tissue_n2_sat[ci]) + (allowable_he_gradient[ci] * tissue_he_sat[ci])) / (tissue_n2_sat[ci] + tissue_he_sat[ci]); } } void nuclear_regeneration(double time) { time /= 60.0; int ci; double crushing_radius_N2, crushing_radius_He; for (ci = 0; ci < 16; ++ci) { //rm crushing_radius_N2 = 1.0 / (max_n2_crushing_pressure[ci] / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / get_crit_radius_N2()); crushing_radius_He = 1.0 / (max_he_crushing_pressure[ci] / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / get_crit_radius_He()); //rs n2_regen_radius[ci] = crushing_radius_N2 + (get_crit_radius_N2() - crushing_radius_N2) * (1.0 - exp (-time / vpmb_config.regeneration_time)); he_regen_radius[ci] = crushing_radius_He + (get_crit_radius_He() - crushing_radius_He) * (1.0 - exp (-time / vpmb_config.regeneration_time)); } } // Calculates the nucleons inner pressure during the impermeable period double calc_inner_pressure(double crit_radius, double onset_tension, double current_ambient_pressure) { double onset_radius = 1.0 / (vpmb_config.gradient_of_imperm / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / crit_radius); // A*r^3 + B*r^2 + C == 0 // Solved with the help of mathematica double A = current_ambient_pressure - vpmb_config.gradient_of_imperm + (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) / onset_radius; double B = 2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma); double C = onset_tension * pow(onset_radius, 3); double BA = B/A; double CA = C/A; double discriminant = CA * (4 * BA * BA * BA + 27 * CA); // Let's make sure we have a real solution: if (discriminant < 0.0) { // This should better not happen report_error("Complex solution for inner pressure encountered!\n A=%f\tB=%f\tC=%f\n", A, B, C); return 0.0; } double denominator = pow(BA * BA * BA + 1.5 * (9 * CA + sqrt(3.0) * sqrt(discriminant)), 1/3.0); double current_radius = (BA + BA * BA / denominator + denominator) / 3.0; return onset_tension * onset_radius * onset_radius * onset_radius / (current_radius * current_radius * current_radius); } // Calculates the crushing pressure in the given moment. Updates crushing_onset_tension and critical radius if needed void calc_crushing_pressure(double pressure) { int ci; double gradient; double gas_tension; double n2_crushing_pressure, he_crushing_pressure; double n2_inner_pressure, he_inner_pressure; for (ci = 0; ci < 16; ++ci) { gas_tension = tissue_n2_sat[ci] + tissue_he_sat[ci] + vpmb_config.other_gases_pressure; gradient = pressure - gas_tension; if (gradient <= vpmb_config.gradient_of_imperm) { // permeable situation n2_crushing_pressure = he_crushing_pressure = gradient; crushing_onset_tension[ci] = gas_tension; } else { // impermeable if (max_ambient_pressure >= pressure) return; n2_inner_pressure = calc_inner_pressure(get_crit_radius_N2(), crushing_onset_tension[ci], pressure); he_inner_pressure = calc_inner_pressure(get_crit_radius_He(), crushing_onset_tension[ci], pressure); n2_crushing_pressure = pressure - n2_inner_pressure; he_crushing_pressure = pressure - he_inner_pressure; } max_n2_crushing_pressure[ci] = MAX(max_n2_crushing_pressure[ci], n2_crushing_pressure); max_he_crushing_pressure[ci] = MAX(max_he_crushing_pressure[ci], he_crushing_pressure); } max_ambient_pressure = MAX(pressure, max_ambient_pressure); } /* add period_in_seconds at the given pressure and gas to the deco calculation */ double add_segment(double pressure, const struct gasmix *gasmix, int period_in_seconds, int ccpo2, const struct dive *dive, int sac) { int ci; struct gas_pressures pressures; fill_pressures(&pressures, pressure - WV_PRESSURE, gasmix, (double) ccpo2 / 1000.0, dive->dc.divemode); if (buehlmann_config.gf_low_at_maxdepth && pressure > gf_low_pressure_this_dive) gf_low_pressure_this_dive = pressure; for (ci = 0; ci < 16; ci++) { double pn2_oversat = pressures.n2 - tissue_n2_sat[ci]; double phe_oversat = pressures.he - tissue_he_sat[ci]; double n2_f = n2_factor(period_in_seconds, ci); double he_f = he_factor(period_in_seconds, ci); double n2_satmult = pn2_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult; double he_satmult = phe_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult; tissue_n2_sat[ci] += n2_satmult * pn2_oversat * n2_f; tissue_he_sat[ci] += he_satmult * phe_oversat * he_f; } calc_crushing_pressure(pressure); return tissue_tolerance_calc(dive); } #ifdef DECO_CALC_DEBUG void dump_tissues() { int ci; printf("N2 tissues:"); for (ci = 0; ci < 16; ci++) printf(" %6.3e", tissue_n2_sat[ci]); printf("\nHe tissues:"); for (ci = 0; ci < 16; ci++) printf(" %6.3e", tissue_he_sat[ci]); printf("\n"); } #endif void clear_deco(double surface_pressure) { int ci; for (ci = 0; ci < 16; ci++) { tissue_n2_sat[ci] = (surface_pressure - WV_PRESSURE) * N2_IN_AIR / 1000; tissue_he_sat[ci] = 0.0; max_n2_crushing_pressure[ci] = 0.0; max_he_crushing_pressure[ci] = 0.0; } gf_low_pressure_this_dive = surface_pressure; if (!buehlmann_config.gf_low_at_maxdepth) gf_low_pressure_this_dive += buehlmann_config.gf_low_position_min; max_ambient_pressure = 0.0; } void cache_deco_state(double tissue_tolerance, char **cached_datap) { char *data = *cached_datap; if (!data) { data = malloc(2 * TISSUE_ARRAY_SZ + 2 * sizeof(double) + sizeof(int)); *cached_datap = data; } memcpy(data, tissue_n2_sat, TISSUE_ARRAY_SZ); data += TISSUE_ARRAY_SZ; memcpy(data, tissue_he_sat, TISSUE_ARRAY_SZ); data += TISSUE_ARRAY_SZ; memcpy(data, &gf_low_pressure_this_dive, sizeof(double)); data += sizeof(double); memcpy(data, &tissue_tolerance, sizeof(double)); data += sizeof(double); memcpy(data, &ci_pointing_to_guiding_tissue, sizeof(int)); } double restore_deco_state(char *data) { double tissue_tolerance; memcpy(tissue_n2_sat, data, TISSUE_ARRAY_SZ); data += TISSUE_ARRAY_SZ; memcpy(tissue_he_sat, data, TISSUE_ARRAY_SZ); data += TISSUE_ARRAY_SZ; memcpy(&gf_low_pressure_this_dive, data, sizeof(double)); data += sizeof(double); memcpy(&tissue_tolerance, data, sizeof(double)); data += sizeof(double); memcpy(&ci_pointing_to_guiding_tissue, data, sizeof(int)); return tissue_tolerance; } unsigned int deco_allowed_depth(double tissues_tolerance, double surface_pressure, struct dive *dive, bool smooth) { unsigned int depth; double pressure_delta; /* Avoid negative depths */ pressure_delta = tissues_tolerance > surface_pressure ? tissues_tolerance - surface_pressure : 0.0; depth = rel_mbar_to_depth(pressure_delta * 1000, dive); if (!smooth) depth = ceil(depth / DECO_STOPS_MULTIPLIER_MM) * DECO_STOPS_MULTIPLIER_MM; if (depth > 0 && depth < buehlmann_config.last_deco_stop_in_mtr * 1000) depth = buehlmann_config.last_deco_stop_in_mtr * 1000; return depth; } void set_gf(short gflow, short gfhigh, bool gf_low_at_maxdepth) { if (gflow != -1) buehlmann_config.gf_low = (double)gflow / 100.0; if (gfhigh != -1) buehlmann_config.gf_high = (double)gfhigh / 100.0; buehlmann_config.gf_low_at_maxdepth = gf_low_at_maxdepth; }