// SPDX-License-Identifier: GPL-2.0 /* profile.c */ /* creates all the necessary data for drawing the dive profile */ #include "gettext.h" #include #include #include #include #include "dive.h" #include "divelist.h" #include "divelog.h" #include "errorhelper.h" #include "event.h" #include "interpolate.h" #include "sample.h" #include "subsurface-string.h" #include "profile.h" #include "gaspressures.h" #include "deco.h" #include "errorhelper.h" #include "libdivecomputer/parser.h" #include "libdivecomputer/version.h" #include "membuffer.h" #include "qthelper.h" #include "range.h" #include "format.h" //#define DEBUG_GAS 1 #define MAX_PROFILE_DECO 7200 int ascent_velocity(int depth, int avg_depth, int bottom_time); #ifdef DEBUG_PI /* debugging tool - not normally used */ static void dump_pi(const struct plot_info &pi) { int i; printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n" " maxpressure:%d mintemp:%d maxtemp:%d\n", pi.nr, pi.maxtime, pi.meandepth, pi.maxdepth, pi.maxpressure, pi.mintemp, pi.maxtemp); for (i = 0; i < pi.nr; i++) { struct plot_data &entry = pi.entry[i]; printf(" entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n" " time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n", i, entry.sensor[0], entry.sec, entry.pressure[0], entry.pressure[1], entry.sec / 60, entry.sec % 60, entry.temperature, entry.depth, entry.stopdepth, entry.stoptime, entry.ndl, entry.smoothed, entry.pressures.o2, entry.pressures.he, entry.pressures.n2, entry.pressures.o2 + entry.pressures.he + entry.pressures.n2); } printf(" }\n"); } #endif template static T round_up(T x, T y) { return ((x + y - 1) / y) * y; } template static T div_up(T x, T y) { return (x + y - 1) / y; } plot_info::plot_info() { } plot_info::~plot_info() { } /* * When showing dive profiles, we scale things to the * current dive. However, we don't scale past less than * 30 minutes or 90 ft, just so that small dives show * up as such unless zoom is enabled. */ int get_maxtime(const struct plot_info &pi) { int seconds = pi.maxtime; int min = prefs.zoomed_plot ? 30 : 30 * 60; return std::max(min, seconds); } /* get the maximum depth to which we want to plot */ int get_maxdepth(const struct plot_info &pi) { /* 3m to spare */ int mm = pi.maxdepth + 3000; return prefs.zoomed_plot ? mm : std::max(30000, mm); } /* UNUSED! */ static int get_local_sac(struct plot_info &pi, int idx1, int idx2, struct dive *dive) __attribute__((unused)); /* Get local sac-rate (in ml/min) between entry1 and entry2 */ static int get_local_sac(struct plot_info &pi, int idx1, int idx2, struct dive *dive) { int index = 0; cylinder_t *cyl; struct plot_data &entry1 = pi.entry[idx1]; struct plot_data &entry2 = pi.entry[idx2]; int duration = entry2.sec - entry1.sec; int depth, airuse; pressure_t a, b; double atm; if (duration <= 0) return 0; a.mbar = get_plot_pressure(pi, idx1, 0); b.mbar = get_plot_pressure(pi, idx2, 0); if (!b.mbar || a.mbar <= b.mbar) return 0; /* Mean pressure in ATM */ depth = (entry1.depth + entry2.depth) / 2; atm = dive->depth_to_atm(depth); cyl = dive->get_cylinder(index); // TODO: Implement addition/subtraction on units.h types airuse = cyl->gas_volume(a).mliter - cyl->gas_volume(b).mliter; /* milliliters per minute */ return lrint(airuse / atm * 60 / duration); } static velocity_t velocity(int speed) { velocity_t v; if (speed < -304) /* ascent faster than -60ft/min */ v = CRAZY; else if (speed < -152) /* above -30ft/min */ v = FAST; else if (speed < -76) /* -15ft/min */ v = MODERATE; else if (speed < -25) /* -5ft/min */ v = SLOW; else if (speed < 25) /* very hard to find data, but it appears that the recommendations for descent are usually about 2x ascent rate; still, we want stable to mean stable */ v = STABLE; else if (speed < 152) /* between 5 and 30ft/min is considered slow */ v = SLOW; else if (speed < 304) /* up to 60ft/min is moderate */ v = MODERATE; else if (speed < 507) /* up to 100ft/min is fast */ v = FAST; else /* more than that is just crazy - you'll blow your ears out */ v = CRAZY; return v; } static void analyze_plot_info(struct plot_info &pi) { /* Smoothing function: 5-point triangular smooth */ for (size_t i = 2; i < pi.entry.size(); i++) { struct plot_data &entry = pi.entry[i]; int depth; if (i + 2 < pi.entry.size()) { depth = pi.entry[i-2].depth + 2 * pi.entry[i-1].depth + 3 * pi.entry[i].depth + 2 * pi.entry[i+1].depth + pi.entry[i+2].depth; entry.smoothed = (depth + 4) / 9; } /* vertical velocity in mm/sec */ /* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */ if (pi.entry[i].sec - pi.entry[i-1].sec) { entry.speed = (pi.entry[i+0].depth - pi.entry[i-1].depth) / (pi.entry[i].sec - pi.entry[i-1].sec); entry.velocity = velocity(entry.speed); /* if our samples are short and we aren't too FAST*/ if (pi.entry[i].sec - pi.entry[i-1].sec < 15 && entry.velocity < FAST) { int past = -2; while (i + past > 0 && pi.entry[i].sec - pi.entry[i+past].sec < 15) past--; entry.velocity = velocity((pi.entry[i].depth - pi.entry[i+past].depth) / (pi.entry[i].sec - pi.entry[i+past].sec)); } } else { entry.velocity = STABLE; entry.speed = 0; } } } static size_t set_setpoint(struct plot_info &pi, size_t i, int setpoint, int end) { while (i < pi.entry.size()) { struct plot_data &entry = pi.entry[i]; if (entry.sec > end) break; entry.o2pressure.mbar = setpoint; i++; } return i; } static void check_setpoint_events(const struct dive *, const struct divecomputer *dc, struct plot_info &pi) { size_t i = 0; pressure_t setpoint; setpoint.mbar = 0; event_loop loop("SP change"); bool found = false; while (auto ev = loop.next(*dc)) { i = set_setpoint(pi, i, setpoint.mbar, ev->time.seconds); setpoint.mbar = ev->value; found = true; } if (found) // Fill the last setpoint until the end of the dive set_setpoint(pi, i, setpoint.mbar, INT_MAX); } static void calculate_max_limits_new(const struct dive *dive, const struct divecomputer *given_dc, struct plot_info &pi, bool in_planner) { bool seen = false; bool found_sample_beyond_last_event = false; int maxdepth = dive->maxdepth.mm; int maxtime = 0; int maxpressure = 0, minpressure = INT_MAX; int maxhr = 0, minhr = INT_MAX; int mintemp = dive->mintemp.mkelvin; int maxtemp = dive->maxtemp.mkelvin; /* Get the per-cylinder maximum pressure if they are manual */ for (auto &cyl: dive->cylinders) { int mbar_start = cyl.start.mbar; int mbar_end = cyl.end.mbar; if (mbar_start > maxpressure) maxpressure = mbar_start; if (mbar_end && mbar_end < minpressure) minpressure = mbar_end; } auto process_dc = [&] (const divecomputer &dc) { int lastdepth = 0; /* Make sure we can fit all events */ if (!dc.events.empty()) maxtime = std::max(maxtime, dc.events.back().time.seconds); for (auto &s: dc.samples) { int depth = s.depth.mm; int temperature = s.temperature.mkelvin; int heartbeat = s.heartbeat; for (int sensor = 0; sensor < MAX_SENSORS; ++sensor) { int pressure = s.pressure[sensor].mbar; if (pressure && pressure < minpressure) minpressure = pressure; if (pressure > maxpressure) maxpressure = pressure; } if (!mintemp && temperature < mintemp) mintemp = temperature; if (temperature > maxtemp) maxtemp = temperature; if (heartbeat > maxhr) maxhr = heartbeat; if (heartbeat && heartbeat < minhr) minhr = heartbeat; if (depth > maxdepth) maxdepth = s.depth.mm; /* Make sure that we get the first sample beyond the last event. * If maxtime is somewhere in the middle of the last segment, * populate_plot_entries() gets confused leading to display artifacts. */ if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD || in_planner || !found_sample_beyond_last_event) && s.time.seconds > maxtime) { found_sample_beyond_last_event = true; maxtime = s.time.seconds; } lastdepth = depth; } }; /* Then do all the samples from all the dive computers */ for (auto &dc: dive->dcs) { if (&dc == given_dc) seen = true; process_dc(dc); } if (!seen) process_dc(*given_dc); if (minpressure > maxpressure) minpressure = 0; if (minhr > maxhr) minhr = maxhr; pi.maxdepth = maxdepth; pi.maxtime = maxtime; pi.maxpressure = maxpressure; pi.minpressure = minpressure; pi.minhr = minhr; pi.maxhr = maxhr; pi.mintemp = mintemp; pi.maxtemp = maxtemp; } static plot_data &add_entry(struct plot_info &pi) { pi.entry.emplace_back(); pi.pressures.resize(pi.pressures.size() + pi.nr_cylinders); return pi.entry.back(); } /* copy the previous entry (we know this exists), update time and depth * and zero out the sensor pressure (since this is a synthetic entry) * increment the entry pointer and the count of synthetic entries. */ static void insert_entry(struct plot_info &pi, int time, int depth, int sac) { struct plot_data &entry = add_entry(pi); struct plot_data &prev = pi.entry[pi.entry.size() - 2]; entry = prev; entry.sec = time; entry.depth = depth; entry.running_sum = prev.running_sum + (time - prev.sec) * (depth + prev.depth) / 2; entry.sac = sac; entry.ndl = -1; entry.bearing = -1; } static void populate_plot_entries(const struct dive *dive, const struct divecomputer *dc, struct plot_info &pi) { pi.nr_cylinders = static_cast(dive->cylinders.size()); /* * To avoid continuous reallocation, allocate the expected number of entries. * We want to have a plot_info event at least every 10s (so "maxtime/10+1"), * but samples could be more dense than that (so add in dc->samples). We also * need to have one for every event (so count events and add that) and * additionally we want two surface events around the whole thing (thus the * additional 4). There is also one extra space for a final entry * that has time > maxtime (because there can be surface samples * past "maxtime" in the original sample data) */ size_t nr = dc->samples.size() + 6 + pi.maxtime / 10 + dc->events.size(); pi.entry.reserve(nr); pi.pressures.reserve(nr * pi.nr_cylinders); // The two extra events at the start pi.entry.resize(2); pi.pressures.resize(pi.nr_cylinders * 2); int lastdepth = 0; int lasttime = 0; int lasttemp = 0; /* skip events at time = 0 */ auto evit = dc->events.begin(); while (evit != dc->events.end() && evit->time.seconds == 0) ++evit; for (const auto &sample: dc->samples) { int time = sample.time.seconds; int offset, delta; int depth = sample.depth.mm; int sac = sample.sac.mliter; /* Add intermediate plot entries if required */ delta = time - lasttime; if (delta <= 0) { time = lasttime; delta = 1; // avoid divide by 0 } for (offset = 10; offset < delta; offset += 10) { if (lasttime + offset > pi.maxtime) break; /* Add events if they are between plot entries */ while (evit != dc->events.end() && static_cast(evit->time.seconds) < lasttime + offset) { insert_entry(pi, evit->time.seconds, interpolate(lastdepth, depth, evit->time.seconds - lasttime, delta), sac); ++evit; } /* now insert the time interpolated entry */ insert_entry(pi, lasttime + offset, interpolate(lastdepth, depth, offset, delta), sac); /* skip events that happened at this time */ while (evit != dc->events.end() && static_cast(evit->time.seconds) == lasttime + offset) ++evit; } /* Add events if they are between plot entries */ while (evit != dc->events.end() && static_cast(evit->time.seconds) < time) { insert_entry(pi, evit->time.seconds, interpolate(lastdepth, depth, evit->time.seconds - lasttime, delta), sac); ++evit; } plot_data &entry = add_entry(pi); plot_data &prev = pi.entry[pi.entry.size() - 2]; entry.sec = time; entry.depth = depth; entry.running_sum = prev.running_sum + (time - prev.sec) * (depth + prev.depth) / 2; entry.stopdepth = sample.stopdepth.mm; entry.stoptime = sample.stoptime.seconds; entry.ndl = sample.ndl.seconds; entry.tts = sample.tts.seconds; entry.in_deco = sample.in_deco; entry.cns = sample.cns; if (dc->divemode == CCR || (dc->divemode == PSCR && dc->no_o2sensors)) { entry.o2pressure.mbar = entry.o2setpoint.mbar = sample.setpoint.mbar; // for rebreathers int i; for (i = 0; i < MAX_O2_SENSORS; i++) entry.o2sensor[i].mbar = sample.o2sensor[i].mbar; } else { entry.pressures.o2 = sample.setpoint.mbar / 1000.0; } if (sample.pressure[0].mbar && sample.sensor[0] != NO_SENSOR) set_plot_pressure_data(pi, pi.entry.size() - 1, SENSOR_PR, sample.sensor[0], sample.pressure[0].mbar); if (sample.pressure[1].mbar && sample.sensor[1] != NO_SENSOR) set_plot_pressure_data(pi, pi.entry.size() - 1, SENSOR_PR, sample.sensor[1], sample.pressure[1].mbar); if (sample.temperature.mkelvin) entry.temperature = lasttemp = sample.temperature.mkelvin; else entry.temperature = lasttemp; entry.heartbeat = sample.heartbeat; entry.bearing = sample.bearing.degrees; entry.sac = sample.sac.mliter; if (sample.rbt.seconds) entry.rbt = sample.rbt.seconds; /* skip events that happened at this time */ while (evit != dc->events.end() && static_cast(evit->time.seconds) == time) ++evit; lasttime = time; lastdepth = depth; if (time > pi.maxtime) break; } /* Add any remaining events */ while (evit != dc->events.end()) { int time = evit->time.seconds; if (time > lasttime) { insert_entry(pi, evit->time.seconds, 0, 0); lasttime = time; } ++evit; } /* Add two final surface events */ add_entry(pi).sec = lasttime + 1; add_entry(pi).sec = lasttime + 2; pi.nr = (int)pi.entry.size(); } /* * Calculate the sac rate between the two plot entries 'first' and 'last'. * * Everything in between has a cylinder pressure for at least some of the cylinders. */ static int sac_between(const struct dive *dive, const struct plot_info &pi, int first, int last, const char gases[]) { if (first == last) return 0; /* Get airuse for the set of cylinders over the range */ int airuse = 0; for (int i = 0; i < pi.nr_cylinders; i++) { pressure_t a, b; if (!gases[i]) continue; a.mbar = get_plot_pressure(pi, first, i); b.mbar = get_plot_pressure(pi, last, i); const cylinder_t *cyl = dive->get_cylinder(i); // TODO: Implement addition/subtraction on units.h types int cyluse = cyl->gas_volume(a).mliter - cyl->gas_volume(b).mliter; if (cyluse > 0) airuse += cyluse; } if (!airuse) return 0; /* Calculate depthpressure integrated over time */ double pressuretime = 0.0; do { const struct plot_data &entry = pi.entry[first]; const struct plot_data &next = pi.entry[first + 1]; int depth = (entry.depth + next.depth) / 2; int time = next.sec - entry.sec; double atm = dive->depth_to_atm(depth); pressuretime += atm * time; } while (++first < last); /* Turn "atmseconds" into "atmminutes" */ pressuretime /= 60; /* SAC = mliter per minute */ return lrint(airuse / pressuretime); } /* Is there pressure data for all gases? */ static bool all_pressures(const struct plot_info &pi, int idx, const char gases[]) { int i; for (i = 0; i < pi.nr_cylinders; i++) { if (gases[i] && !get_plot_pressure(pi, idx, i)) return false; } return true; } /* Which of the set of gases have pressure data? Returns false if none of them. */ static bool filter_pressures(const struct plot_info &pi, int idx, const char gases_in[], char gases_out[]) { int i; bool has_pressure = false; for (i = 0; i < pi.nr_cylinders; i++) { gases_out[i] = gases_in[i] && get_plot_pressure(pi, idx, i); has_pressure |= gases_out[i]; } return has_pressure; } /* * Try to do the momentary sac rate for this entry, averaging over one * minute. This is premature optimization, but instead of allocating * an array of gases, the caller passes in scratch memory in the last * argument. */ static void fill_sac(const struct dive *dive, struct plot_info &pi, int idx, const char gases_in[], char gases[]) { struct plot_data &entry = pi.entry[idx]; int first, last; int time; if (entry.sac) return; /* * We may not have pressure data for all the cylinders, * but we'll calculate the SAC for the ones we do have. */ if (!filter_pressures(pi, idx, gases_in, gases)) return; /* * Try to go back 30 seconds to get 'first'. * Stop if the cylinder pressure data set changes. */ first = idx; time = entry.sec - 30; while (idx > 0) { const struct plot_data &entry = pi.entry[idx]; const struct plot_data &prev = pi.entry[idx - 1]; if (prev.depth < SURFACE_THRESHOLD && entry.depth < SURFACE_THRESHOLD) break; if (prev.sec < time) break; if (!all_pressures(pi, idx - 1, gases)) break; idx--; first = idx; } /* Now find an entry a minute after the first one */ last = first; time = pi.entry[first].sec + 60; while (++idx < pi.nr) { const struct plot_data &entry = pi.entry[last]; const struct plot_data &next = pi.entry[last + 1]; if (next.depth < SURFACE_THRESHOLD && entry.depth < SURFACE_THRESHOLD) break; if (next.sec > time) break; if (!all_pressures(pi, idx + 1, gases)) break; last = idx; } /* Ok, now calculate the SAC between 'first' and 'last' */ entry.sac = sac_between(dive, pi, first, last, gases); } /* * Create a bitmap of cylinders that match our current gasmix */ static void matching_gases(const struct dive *dive, struct gasmix gasmix, char gases[]) { for (auto [i, cyl]: enumerated_range(dive->cylinders)) gases[i] = same_gasmix(gasmix, cyl.gasmix); } static void calculate_sac(const struct dive *dive, const struct divecomputer *dc, struct plot_info &pi) { std::vector gases(pi.nr_cylinders, false); /* This might be premature optimization, but let's allocate the gas array for * the fill_sac function only once an not once per sample */ std::vector gases_scratch(pi.nr_cylinders); struct gasmix gasmix = gasmix_invalid; gasmix_loop loop(*dive, *dc); for (int i = 0; i < pi.nr; i++) { const struct plot_data &entry = pi.entry[i]; struct gasmix newmix = loop.next(entry.sec); if (!same_gasmix(newmix, gasmix)) { gasmix = newmix; matching_gases(dive, newmix, gases.data()); } fill_sac(dive, pi, i, gases.data(), gases_scratch.data()); } } static void populate_secondary_sensor_data(const struct divecomputer &dc, struct plot_info &pi) { std::vector seen(pi.nr_cylinders, 0); for (int idx = 0; idx < pi.nr; ++idx) for (int c = 0; c < pi.nr_cylinders; ++c) if (get_plot_pressure_data(pi, idx, SENSOR_PR, c)) ++seen[c]; // Count instances so we can differentiate a real sensor from just start and end pressure int idx = 0; /* We should try to see if it has interesting pressure data here */ for (const auto &sample: dc.samples) { if (idx >= pi.nr) break; for (; idx < pi.nr; ++idx) { if (idx == pi.nr - 1 || pi.entry[idx].sec >= sample.time.seconds) // We've either found the entry at or just after the sample's time, // or this is the last entry so use for the last sensor readings if there are any. break; } for (int s = 0; s < MAX_SENSORS; ++s) // Copy sensor data if available, but don't add if this dc already has sensor data if (sample.sensor[s] != NO_SENSOR && seen[sample.sensor[s]] < 3 && sample.pressure[s].mbar) set_plot_pressure_data(pi, idx, SENSOR_PR, sample.sensor[s], sample.pressure[s].mbar); } } /* * This adds a pressure entry to the plot_info based on the gas change * information and the manually filled in pressures. */ static void add_plot_pressure(struct plot_info &pi, int time, int cyl, pressure_t p) { for (int i = 0; i < pi.nr; i++) { if (i == pi.nr - 1 || pi.entry[i].sec >= time) { set_plot_pressure_data(pi, i, SENSOR_PR, cyl, p.mbar); return; } } } static void setup_gas_sensor_pressure(const struct dive *dive, const struct divecomputer *dc, struct plot_info &pi) { if (pi.nr_cylinders == 0) return; /* FIXME: The planner uses a dummy one-past-end cylinder for surface air! */ int num_cyl = pi.nr_cylinders + 1; std::vector seen(num_cyl, 0); std::vector first(num_cyl, 0); std::vector last(num_cyl, INT_MAX); int prev = dive->explicit_first_cylinder(dc); prev = prev >= 0 ? prev : 0; seen[prev] = 1; event_loop loop("gaschange"); while (auto ev = loop.next(*dc)) { int cyl = ev->gas.index; int sec = ev->time.seconds; if (cyl < 0) continue; // unknown cylinder if (cyl >= num_cyl) { report_info("setup_gas_sensor_pressure(): invalid cylinder idx %d", cyl); continue; } last[prev] = sec; prev = cyl; last[cyl] = sec; if (!seen[cyl]) { // The end time may be updated by a subsequent cylinder change first[cyl] = sec; seen[cyl] = 1; } } last[prev] = INT_MAX; // Fill in "seen[]" array - mark cylinders we're not interested // in as negative. for (int i = 0; i < pi.nr_cylinders; i++) { const cylinder_t *cyl = dive->get_cylinder(i); int start = cyl->start.mbar; int end = cyl->end.mbar; /* * Fundamentally uninteresting? * * A dive computer with no pressure data isn't interesting * to plot pressures for even if we've seen it.. */ if (!start || !end || start == end) { seen[i] = -1; continue; } /* If we've seen it, we're definitely interested */ if (seen[i]) continue; /* If it's only mentioned by other dc's, ignore it */ for (auto &secondary: dive->dcs) { if (dive->has_gaschange_event(&secondary, i)) { seen[i] = -1; break; } } } for (int i = 0; i < pi.nr_cylinders; i++) { if (seen[i] >= 0) { const cylinder_t *cyl = dive->get_cylinder(i); add_plot_pressure(pi, first[i], i, cyl->start); add_plot_pressure(pi, last[i], i, cyl->end); } } /* * Here, we should try to walk through all the dive computers, * and try to see if they have sensor data different from the * current dive computer (dc). */ for (auto &secondary: dive->dcs) { if (&secondary == dc) continue; populate_secondary_sensor_data(secondary, pi); } } /* calculate DECO STOP / TTS / NDL */ static void calculate_ndl_tts(struct deco_state *ds, const struct dive *dive, struct plot_data &entry, struct gasmix gasmix, double surface_pressure, enum divemode_t divemode, bool in_planner) { /* should this be configurable? */ /* ascent speed up to first deco stop */ const int ascent_s_per_step = 1; const int ascent_s_per_deco_step = 1; /* how long time steps in deco calculations? */ const int time_stepsize = 60; const int deco_stepsize = M_OR_FT(3, 10); /* at what depth is the current deco-step? */ int next_stop = round_up(deco_allowed_depth( tissue_tolerance_calc(ds, dive, dive->depth_to_bar(entry.depth), in_planner), surface_pressure, dive, 1), deco_stepsize); int ascent_depth = entry.depth; /* at what time should we give up and say that we got enuff NDL? */ /* If iterating through a dive, entry.tts_calc needs to be reset */ entry.tts_calc = 0; /* If we don't have a ceiling yet, calculate ndl. Don't try to calculate * a ndl for lower values than 3m it would take forever */ if (next_stop == 0) { if (entry.depth < 3000) { entry.ndl = MAX_PROFILE_DECO; return; } /* stop if the ndl is above max_ndl seconds, and call it plenty of time */ while (entry.ndl_calc < MAX_PROFILE_DECO && deco_allowed_depth(tissue_tolerance_calc(ds, dive, dive->depth_to_bar(entry.depth), in_planner), surface_pressure, dive, 1) <= 0 ) { entry.ndl_calc += time_stepsize; add_segment(ds, dive->depth_to_bar(entry.depth), gasmix, time_stepsize, entry.o2pressure.mbar, divemode, prefs.bottomsac, in_planner); } /* we don't need to calculate anything else */ return; } /* We are in deco */ entry.in_deco_calc = true; /* Add segments for movement to stopdepth */ for (; ascent_depth > next_stop; ascent_depth -= ascent_s_per_step * ascent_velocity(ascent_depth, entry.running_sum / entry.sec, 0), entry.tts_calc += ascent_s_per_step) { add_segment(ds, dive->depth_to_bar(ascent_depth), gasmix, ascent_s_per_step, entry.o2pressure.mbar, divemode, prefs.decosac, in_planner); next_stop = round_up(deco_allowed_depth(tissue_tolerance_calc(ds, dive, dive->depth_to_bar(ascent_depth), in_planner), surface_pressure, dive, 1), deco_stepsize); } ascent_depth = next_stop; /* And how long is the current deco-step? */ entry.stoptime_calc = 0; entry.stopdepth_calc = next_stop; next_stop -= deco_stepsize; /* And how long is the total TTS */ while (next_stop >= 0) { /* save the time for the first stop to show in the graph */ if (ascent_depth == entry.stopdepth_calc) entry.stoptime_calc += time_stepsize; entry.tts_calc += time_stepsize; if (entry.tts_calc > MAX_PROFILE_DECO) break; add_segment(ds, dive->depth_to_bar(ascent_depth), gasmix, time_stepsize, entry.o2pressure.mbar, divemode, prefs.decosac, in_planner); if (deco_allowed_depth(tissue_tolerance_calc(ds, dive, dive->depth_to_bar(ascent_depth), in_planner), surface_pressure, dive, 1) <= next_stop) { /* move to the next stop and add the travel between stops */ for (; ascent_depth > next_stop; ascent_depth -= ascent_s_per_deco_step * ascent_velocity(ascent_depth, entry.running_sum / entry.sec, 0), entry.tts_calc += ascent_s_per_deco_step) add_segment(ds, dive->depth_to_bar(ascent_depth), gasmix, ascent_s_per_deco_step, entry.o2pressure.mbar, divemode, prefs.decosac, in_planner); ascent_depth = next_stop; next_stop -= deco_stepsize; } } } /* Let's try to do some deco calculations. */ static void calculate_deco_information(struct deco_state *ds, const struct deco_state *planner_ds, const struct dive *dive, const struct divecomputer *dc, struct plot_info &pi) { int i, count_iteration = 0; double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : dive->get_surface_pressure().mbar) / 1000.0; bool first_iteration = true; int prev_deco_time = 10000000, time_deep_ceiling = 0; bool in_planner = planner_ds != NULL; if (!in_planner) { ds->deco_time = 0; ds->first_ceiling_pressure.mbar = 0; } else { ds->deco_time = planner_ds->deco_time; ds->first_ceiling_pressure = planner_ds->first_ceiling_pressure; } deco_state_cache cache_data_initial; lock_planner(); /* For VPM-B outside the planner, cache the initial deco state for CVA iterations */ if (decoMode(in_planner) == VPMB) { cache_data_initial.cache(ds); } /* For VPM-B outside the planner, iterate until deco time converges (usually one or two iterations after the initial) * Set maximum number of iterations to 10 just in case */ while ((abs(prev_deco_time - ds->deco_time) >= 30) && (count_iteration < 10)) { int last_ndl_tts_calc_time = 0, first_ceiling = 0, current_ceiling, last_ceiling = 0, final_tts = 0 , time_clear_ceiling = 0; if (decoMode(in_planner) == VPMB) ds->first_ceiling_pressure.mbar = dive->depth_to_mbar(first_ceiling); gasmix_loop loop(*dive, *dc); divemode_loop loop_d(*dc); for (i = 1; i < pi.nr; i++) { struct plot_data &entry = pi.entry[i]; struct plot_data &prev = pi.entry[i - 1]; int j, t0 = prev.sec, t1 = entry.sec; int time_stepsize = 20, max_ceiling = -1; divemode_t current_divemode = loop_d.next(entry.sec); struct gasmix gasmix = loop.next(t1); entry.ambpressure = dive->depth_to_bar(entry.depth); entry.gfline = get_gf(ds, entry.ambpressure, dive) * (100.0 - AMB_PERCENTAGE) + AMB_PERCENTAGE; if (t0 > t1) { report_info("non-monotonous dive stamps %d %d", t0, t1); int xchg = t1; t1 = t0; t0 = xchg; } if (t0 != t1 && t1 - t0 < time_stepsize) time_stepsize = t1 - t0; for (j = t0 + time_stepsize; j <= t1; j += time_stepsize) { int depth = interpolate(prev.depth, entry.depth, j - t0, t1 - t0); add_segment(ds, dive->depth_to_bar(depth), gasmix, time_stepsize, entry.o2pressure.mbar, current_divemode, entry.sac, in_planner); entry.icd_warning = ds->icd_warning; if ((t1 - j < time_stepsize) && (j < t1)) time_stepsize = t1 - j; } if (t0 == t1) { entry.ceiling = prev.ceiling; } else { /* Keep updating the VPM-B gradients until the start of the ascent phase of the dive. */ if (decoMode(in_planner) == VPMB && last_ceiling >= first_ceiling && first_iteration == true) { nuclear_regeneration(ds, t1); vpmb_start_gradient(ds); /* For CVA iterations, calculate next gradient */ if (!first_iteration || in_planner) vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0, in_planner); } entry.ceiling = deco_allowed_depth(tissue_tolerance_calc(ds, dive, dive->depth_to_bar(entry.depth), in_planner), surface_pressure, dive, !prefs.calcceiling3m); if (prefs.calcceiling3m) current_ceiling = deco_allowed_depth(tissue_tolerance_calc(ds, dive, dive->depth_to_bar(entry.depth), in_planner), surface_pressure, dive, true); else current_ceiling = entry.ceiling; last_ceiling = current_ceiling; /* If using VPM-B, take first_ceiling_pressure as the deepest ceiling */ if (decoMode(in_planner) == VPMB) { if (current_ceiling >= first_ceiling || (time_deep_ceiling == t0 && entry.depth == prev.depth)) { time_deep_ceiling = t1; first_ceiling = current_ceiling; ds->first_ceiling_pressure.mbar = dive->depth_to_mbar(first_ceiling); if (first_iteration) { nuclear_regeneration(ds, t1); vpmb_start_gradient(ds); /* For CVA calculations, deco time = dive time remaining is a good guess, but we want to over-estimate deco_time for the first iteration so it converges correctly, so add 30min*/ if (!in_planner) ds->deco_time = pi.maxtime - t1 + 1800; vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0, in_planner); } } // Use the point where the ceiling clears as the end of deco phase for CVA calculations if (current_ceiling > 0) time_clear_ceiling = 0; else if (time_clear_ceiling == 0 && t1 > time_deep_ceiling) time_clear_ceiling = t1; } } entry.surface_gf = 0.0; entry.current_gf = 0.0; for (j = 0; j < 16; j++) { double m_value = ds->buehlmann_inertgas_a[j] + entry.ambpressure / ds->buehlmann_inertgas_b[j]; double surface_m_value = ds->buehlmann_inertgas_a[j] + surface_pressure / ds->buehlmann_inertgas_b[j]; entry.ceilings[j] = deco_allowed_depth(ds->tolerated_by_tissue[j], surface_pressure, dive, 1); if (entry.ceilings[j] > max_ceiling) max_ceiling = entry.ceilings[j]; double current_gf = (ds->tissue_inertgas_saturation[j] - entry.ambpressure) / (m_value - entry.ambpressure); entry.percentages[j] = ds->tissue_inertgas_saturation[j] < entry.ambpressure ? lrint(ds->tissue_inertgas_saturation[j] / entry.ambpressure * AMB_PERCENTAGE) : lrint(AMB_PERCENTAGE + current_gf * (100.0 - AMB_PERCENTAGE)); if (current_gf > entry.current_gf) entry.current_gf = current_gf; double surface_gf = 100.0 * (ds->tissue_inertgas_saturation[j] - surface_pressure) / (surface_m_value - surface_pressure); if (surface_gf > entry.surface_gf) entry.surface_gf = surface_gf; } // In the planner, if the ceiling is violated, add an event. // TODO: This *really* shouldn't be done here. This is a contract // between the planner and the profile that the planner uses a dive // that can be trampled upon. But ultimately, the ceiling-violation // marker should be handled differently! // Don't scream if we violate the ceiling by a few cm. if (in_planner && !pi.waypoint_above_ceiling && entry.depth < max_ceiling - 100 && entry.sec > 0) { struct dive *non_const_dive = (struct dive *)dive; // cast away const! add_event(&non_const_dive->dcs[0], entry.sec, SAMPLE_EVENT_CEILING, -1, max_ceiling / 1000, translate("gettextFromC", "planned waypoint above ceiling")); pi.waypoint_above_ceiling = true; } /* should we do more calculations? * We don't for print-mode because this info doesn't show up there * If the ceiling hasn't cleared by the last data point, we need tts for VPM-B CVA calculation * It is not necessary to do these calculation on the first VPMB iteration, except for the last data point */ if ((prefs.calcndltts && (decoMode(in_planner) != VPMB || in_planner || !first_iteration)) || (decoMode(in_planner) == VPMB && !in_planner && i == pi.nr - 1)) { /* only calculate ndl/tts on every 30 seconds */ if ((entry.sec - last_ndl_tts_calc_time) < 30 && i != pi.nr - 1) { struct plot_data &prev_entry = pi.entry[i - 1]; entry.stoptime_calc = prev_entry.stoptime_calc; entry.stopdepth_calc = prev_entry.stopdepth_calc; entry.tts_calc = prev_entry.tts_calc; entry.ndl_calc = prev_entry.ndl_calc; continue; } last_ndl_tts_calc_time = entry.sec; /* We are going to mess up deco state, so store it for later restore */ deco_state_cache cache_data; cache_data.cache(ds); calculate_ndl_tts(ds, dive, entry, gasmix, surface_pressure, current_divemode, in_planner); if (decoMode(in_planner) == VPMB && !in_planner && i == pi.nr - 1) final_tts = entry.tts_calc; /* Restore "real" deco state for next real time step */ cache_data.restore(ds, decoMode(in_planner) == VPMB); } } if (decoMode(in_planner) == VPMB && !in_planner) { int this_deco_time; prev_deco_time = ds->deco_time; // Do we need to update deco_time? if (final_tts > 0) ds->deco_time = last_ndl_tts_calc_time + final_tts - time_deep_ceiling; else if (time_clear_ceiling > 0) /* Consistent with planner, deco_time ends after ascending (20s @9m/min from 3m) * at end of whole minute after clearing ceiling. The deepest ceiling when planning a dive * comes typically 10-60s after the end of the bottom time, so add 20s to the calculated * deco time. */ ds->deco_time = round_up(time_clear_ceiling - time_deep_ceiling + 20, 60) + 20; vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0, in_planner); final_tts = 0; last_ndl_tts_calc_time = 0; first_ceiling = 0; first_iteration = false; count_iteration ++; this_deco_time = ds->deco_time; cache_data_initial.restore(ds, true); ds->deco_time = this_deco_time; } else { // With Buhlmann iterating isn't needed. This makes the while condition false. prev_deco_time = ds->deco_time = 0; } } #if DECO_CALC_DEBUG & 1 dump_tissues(ds); #endif unlock_planner(); } /* Sort the o2 pressure values. There are so few that a simple bubble sort * will do */ void sort_o2_pressures(int *sensorn, int np, const struct plot_data &entry) { int smallest, position, old; for (int i = 0; i < np - 1; i++) { position = i; smallest = entry.o2sensor[sensorn[i]].mbar; for (int j = i+1; j < np; j++) if (entry.o2sensor[sensorn[j]].mbar < smallest) { position = j; smallest = entry.o2sensor[sensorn[j]].mbar; } old = sensorn[i]; sensorn[i] = position; sensorn[position] = old; } } /* Function calculate_ccr_po2: This function takes information from one plot_data structure (i.e. one point on * the dive profile), containing the oxygen sensor values of a CCR system and, for that plot_data structure, * calculates the po2 value from the sensor data. If there are at least 3 sensors, sensors are voted out until * their span is within diff_limit. */ static int calculate_ccr_po2(struct plot_data &entry, const struct divecomputer *dc) { int sump = 0, minp = 0, maxp = 0; int sensorn[MAX_O2_SENSORS]; int i, np = 0; for (i = 0; i < dc->no_o2sensors && i < MAX_O2_SENSORS; i++) if (entry.o2sensor[i].mbar) { // Valid reading sensorn[np++] = i; sump += entry.o2sensor[i].mbar; } if (np == 0) return entry.o2pressure.mbar; else if (np == 1) return entry.o2sensor[sensorn[0]].mbar; maxp = np - 1; sort_o2_pressures(sensorn, np, entry); // This is the Shearwater voting logic: If there are still at least three sensors and one // differs by more than 20% from the closest it is voted out. while (maxp - minp > 1) { if (entry.o2sensor[sensorn[minp + 1]].mbar - entry.o2sensor[sensorn[minp]].mbar > sump / (maxp - minp + 1) / 5) { sump -= entry.o2sensor[sensorn[minp]].mbar; ++minp; continue; } if (entry.o2sensor[sensorn[maxp]].mbar - entry.o2sensor[sensorn[maxp - 1]].mbar > sump / (maxp - minp +1) / 5) { sump -= entry.o2sensor[sensorn[maxp]].mbar; --maxp; continue; } break; } return sump / (maxp - minp + 1); } static double gas_density(const struct gas_pressures &pressures) { return (pressures.o2 * O2_DENSITY + pressures.he * HE_DENSITY + pressures.n2 * N2_DENSITY) / 1000.0; } static void calculate_gas_information_new(const struct dive *dive, const struct divecomputer *dc, struct plot_info &pi) { int i; double amb_pressure; gasmix_loop loop(*dive, *dc); divemode_loop loop_d(*dc); for (i = 1; i < pi.nr; i++) { double fn2, fhe; struct plot_data &entry = pi.entry[i]; auto gasmix = loop.next(entry.sec); amb_pressure = dive->depth_to_bar(entry.depth); divemode_t current_divemode = loop_d.next(entry.sec); entry.pressures = fill_pressures(amb_pressure, gasmix, (current_divemode == OC) ? 0.0 : entry.o2pressure.mbar / 1000.0, current_divemode); fn2 = 1000.0 * entry.pressures.n2 / amb_pressure; fhe = 1000.0 * entry.pressures.he / amb_pressure; if (dc->divemode == PSCR) { // OC pO2 is calulated for PSCR with or without external PO2 monitoring. struct gasmix gasmix2 = loop.next(entry.sec); entry.scr_OC_pO2.mbar = (int) dive->depth_to_mbar(entry.depth) * get_o2(gasmix2) / 1000; } /* Calculate MOD, EAD, END and EADD based on partial pressures calculated before * so there is no difference in calculating between OC and CC * END takes O₂ + N₂ (air) into account ("Narcotic" for trimix dives) * EAD just uses N₂ ("Air" for nitrox dives) */ pressure_t modpO2 = { .mbar = (int)(prefs.modpO2 * 1000) }; entry.mod = dive->gas_mod(gasmix, modpO2, 1).mm; entry.end = dive->mbar_to_depth(lrint(dive->depth_to_mbarf(entry.depth) * (1000 - fhe) / 1000.0)); entry.ead = dive->mbar_to_depth(lrint(dive->depth_to_mbarf(entry.depth) * fn2 / (double)N2_IN_AIR)); entry.eadd = dive->mbar_to_depth(lrint(dive->depth_to_mbarf(entry.depth) * (entry.pressures.o2 / amb_pressure * O2_DENSITY + entry.pressures.n2 / amb_pressure * N2_DENSITY + entry.pressures.he / amb_pressure * HE_DENSITY) / (O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000)); entry.density = gas_density(entry.pressures); if (entry.mod < 0) entry.mod = 0; if (entry.ead < 0) entry.ead = 0; if (entry.end < 0) entry.end = 0; if (entry.eadd < 0) entry.eadd = 0; } } static void fill_o2_values(const struct dive *dive, const struct divecomputer *dc, struct plot_info &pi) /* In the samples from each dive computer, there may be uninitialised oxygen * sensor or setpoint values, e.g. when events were inserted into the dive log * or if the dive computer does not report o2 values with every sample. But * for drawing the profile a complete series of valid o2 pressure values is * required. This function takes the oxygen sensor data and setpoint values * from the structures of plotinfo and replaces the zero values with their * last known values so that the oxygen sensor data are complete and ready * for plotting. This function called by: create_plot_info_new() */ { int i, j; pressure_t last_sensor[3], o2pressure; pressure_t amb_pressure; for (i = 0; i < pi.nr; i++) { struct plot_data &entry = pi.entry[i]; if (dc->divemode == CCR || (dc->divemode == PSCR && dc->no_o2sensors)) { if (i == 0) { // For 1st iteration, initialise the last_sensor values for (j = 0; j < dc->no_o2sensors; j++) last_sensor[j].mbar = entry.o2sensor[j].mbar; } else { // Now re-insert the missing oxygen pressure values for (j = 0; j < dc->no_o2sensors; j++) if (entry.o2sensor[j].mbar) last_sensor[j].mbar = entry.o2sensor[j].mbar; else entry.o2sensor[j].mbar = last_sensor[j].mbar; } // having initialised the empty o2 sensor values for this point on the profile, amb_pressure.mbar = dive->depth_to_mbar(entry.depth); o2pressure.mbar = calculate_ccr_po2(entry, dc); // ...calculate the po2 based on the sensor data entry.o2pressure.mbar = std::min(o2pressure.mbar, amb_pressure.mbar); } else { entry.o2pressure.mbar = 0; // initialise po2 to zero for dctype = OC } } } #ifdef DEBUG_GAS /* A CCR debug function that writes the cylinder pressure and the oxygen values to the file debug_print_profiledata.dat: * Called in create_plot_info_new() */ static void debug_print_profiledata(struct plot_info &pi) { FILE *f1; struct plot_data *entry; int i; if (!(f1 = fopen("debug_print_profiledata.dat", "w"))) { printf("File open error for: debug_print_profiledata.dat\n"); } else { fprintf(f1, "id t1 gas gasint t2 t3 dil dilint t4 t5 setpoint sensor1 sensor2 sensor3 t6 po2 fo2\n"); for (i = 0; i < pi.nr; i++) { struct plot_data &entry = pi.entry[i]; fprintf(f1, "%d gas=%8d %8d ; dil=%8d %8d ; o2_sp= %d %d %d %d PO2= %f\n", i, get_plot_sensor_pressure(pi, i), get_plot_interpolated_pressure(pi, i), O2CYLINDER_PRESSURE(entry), INTERPOLATED_O2CYLINDER_PRESSURE(entry), entry.o2pressure.mbar, entry.o2sensor[0].mbar, entry.o2sensor[1].mbar, entry.o2sensor[2].mbar, entry.pressures.o2); } fclose(f1); } } #endif /* * Create a plot-info with smoothing and ranged min/max * * This also makes sure that we have extra empty events on both * sides, so that you can do end-points without having to worry * about it. * * The old data will be freed. */ struct plot_info create_plot_info_new(const struct dive *dive, const struct divecomputer *dc, const struct deco_state *planner_ds) { struct deco_state plot_deco_state; bool in_planner = planner_ds != NULL; divelog.dives.init_decompression(&plot_deco_state, dive, in_planner); plot_info pi; calculate_max_limits_new(dive, dc, pi, in_planner); auto [o2, he, o2max ] = dive->get_maximal_gas(); if (dc->divemode == FREEDIVE) { pi.dive_type = plot_info::FREEDIVING; } else if (he > 0) { pi.dive_type = plot_info::TRIMIX; } else { if (o2) pi.dive_type = plot_info::NITROX; else pi.dive_type = plot_info::AIR; } populate_plot_entries(dive, dc, pi); check_setpoint_events(dive, dc, pi); /* Populate setpoints */ setup_gas_sensor_pressure(dive, dc, pi); /* Try to populate our gas pressure knowledge */ for (int cyl = 0; cyl < pi.nr_cylinders; cyl++) populate_pressure_information(dive, dc, pi, cyl); fill_o2_values(dive, dc, pi); /* .. and insert the O2 sensor data having 0 values. */ calculate_sac(dive, dc, pi); /* Calculate sac */ calculate_deco_information(&plot_deco_state, planner_ds, dive, dc, pi); /* and ceiling information, using gradient factor values in Preferences) */ calculate_gas_information_new(dive, dc, pi); /* Calculate gas partial pressures */ #ifdef DEBUG_GAS debug_print_profiledata(pi); #endif pi.meandepth = dive->dcs[0].meandepth.mm; analyze_plot_info(pi); return pi; } static std::vector plot_string(const struct dive *d, const struct plot_info &pi, int idx) { int pressurevalue, mod, ead, end, eadd; const char *depth_unit, *pressure_unit, *temp_unit, *vertical_speed_unit; double depthvalue, tempvalue, speedvalue, sacvalue; int decimals, cyl; const char *unit; const struct plot_data &entry = pi.entry[idx]; std::vector res; depthvalue = get_depth_units(entry.depth, NULL, &depth_unit); res.push_back(casprintf_loc(translate("gettextFromC", "@: %d:%02d"), FRACTION_TUPLE(entry.sec, 60))); res.push_back(casprintf_loc(translate("gettextFromC", "D: %.1f%s"), depthvalue, depth_unit)); for (cyl = 0; cyl < pi.nr_cylinders; cyl++) { int mbar = get_plot_pressure(pi, idx, cyl); if (!mbar) continue; struct gasmix mix = d->get_cylinder(cyl)->gasmix; pressurevalue = get_pressure_units(mbar, &pressure_unit); res.push_back(casprintf_loc(translate("gettextFromC", "P: %d%s (%s)"), pressurevalue, pressure_unit, mix.name().c_str())); } if (entry.temperature) { tempvalue = get_temp_units(entry.temperature, &temp_unit); res.push_back(casprintf_loc(translate("gettextFromC", "T: %.1f%s"), tempvalue, temp_unit)); } speedvalue = get_vertical_speed_units(abs(entry.speed), NULL, &vertical_speed_unit); /* Ascending speeds are positive, descending are negative */ if (entry.speed > 0) speedvalue *= -1; res.push_back(casprintf_loc(translate("gettextFromC", "V: %.1f%s"), speedvalue, vertical_speed_unit)); sacvalue = get_volume_units(entry.sac, &decimals, &unit); if (entry.sac && prefs.show_sac) res.push_back(casprintf_loc(translate("gettextFromC", "SAC: %.*f%s/min"), decimals, sacvalue, unit)); if (entry.cns) res.push_back(casprintf_loc(translate("gettextFromC", "CNS: %u%%"), entry.cns)); if (prefs.pp_graphs.po2 && entry.pressures.o2 > 0) { res.push_back(casprintf_loc(translate("gettextFromC", "pO₂: %.2fbar"), entry.pressures.o2)); if (entry.scr_OC_pO2.mbar) res.push_back(casprintf_loc(translate("gettextFromC", "SCR ΔpO₂: %.2fbar"), entry.scr_OC_pO2.mbar/1000.0 - entry.pressures.o2)); } if (prefs.pp_graphs.pn2 && entry.pressures.n2 > 0) res.push_back(casprintf_loc(translate("gettextFromC", "pN₂: %.2fbar"), entry.pressures.n2)); if (prefs.pp_graphs.phe && entry.pressures.he > 0) res.push_back(casprintf_loc(translate("gettextFromC", "pHe: %.2fbar"), entry.pressures.he)); if (prefs.mod && entry.mod > 0) { mod = lrint(get_depth_units(entry.mod, NULL, &depth_unit)); res.push_back(casprintf_loc(translate("gettextFromC", "MOD: %d%s"), mod, depth_unit)); } eadd = lrint(get_depth_units(entry.eadd, NULL, &depth_unit)); if (prefs.ead) { switch (pi.dive_type) { case plot_info::NITROX: if (entry.ead > 0) { ead = lrint(get_depth_units(entry.ead, NULL, &depth_unit)); res.push_back(casprintf_loc(translate("gettextFromC", "EAD: %d%s"), ead, depth_unit)); res.push_back(casprintf_loc(translate("gettextFromC", "EADD: %d%s / %.1fg/ℓ"), eadd, depth_unit, entry.density)); break; } case plot_info::TRIMIX: if (entry.end > 0) { end = lrint(get_depth_units(entry.end, NULL, &depth_unit)); res.push_back(casprintf_loc(translate("gettextFromC", "END: %d%s"), end, depth_unit)); res.push_back(casprintf_loc(translate("gettextFromC", "EADD: %d%s / %.1fg/ℓ"), eadd, depth_unit, entry.density)); break; } case plot_info::AIR: if (entry.density > 0) { res.push_back(casprintf_loc(translate("gettextFromC", "Density: %.1fg/ℓ"), entry.density)); } case plot_info::FREEDIVING: /* nothing */ break; } } if (entry.stopdepth) { depthvalue = get_depth_units(entry.stopdepth, NULL, &depth_unit); if (entry.ndl > 0) { /* this is a safety stop as we still have ndl */ if (entry.stoptime) res.push_back(casprintf_loc(translate("gettextFromC", "Safety stop: %umin @ %.0f%s"), div_up(entry.stoptime, 60), depthvalue, depth_unit)); else res.push_back(casprintf_loc(translate("gettextFromC", "Safety stop: unknown time @ %.0f%s"), depthvalue, depth_unit)); } else { /* actual deco stop */ if (entry.stoptime) res.push_back(casprintf_loc(translate("gettextFromC", "Deco: %umin @ %.0f%s"), div_up(entry.stoptime, 60), depthvalue, depth_unit)); else res.push_back(casprintf_loc(translate("gettextFromC", "Deco: unknown time @ %.0f%s"), depthvalue, depth_unit)); } } else if (entry.in_deco) { res.push_back(translate("gettextFromC", "In deco")); } else if (entry.ndl >= 0) { res.push_back(casprintf_loc(translate("gettextFromC", "NDL: %umin"), div_up(entry.ndl, 60))); } if (entry.tts) res.push_back(casprintf_loc(translate("gettextFromC", "TTS: %umin"), div_up(entry.tts, 60))); if (entry.stopdepth_calc && entry.stoptime_calc) { depthvalue = get_depth_units(entry.stopdepth_calc, NULL, &depth_unit); res.push_back(casprintf_loc(translate("gettextFromC", "Deco: %umin @ %.0f%s (calc)"), div_up(entry.stoptime_calc, 60), depthvalue, depth_unit)); } else if (entry.in_deco_calc) { /* This means that we have no NDL left, * and we have no deco stop, * so if we just accend to the surface slowly * (ascent_mm_per_step / ascent_s_per_step) * everything will be ok. */ res.push_back(translate("gettextFromC", "In deco (calc)")); } else if (prefs.calcndltts && entry.ndl_calc != 0) { if(entry.ndl_calc < MAX_PROFILE_DECO) res.push_back(casprintf_loc(translate("gettextFromC", "NDL: %umin (calc)"), div_up(entry.ndl_calc, 60))); else res.push_back(translate("gettextFromC", "NDL: >2h (calc)")); } if (entry.tts_calc) { if (entry.tts_calc < MAX_PROFILE_DECO) res.push_back(casprintf_loc(translate("gettextFromC", "TTS: %umin (calc)"), div_up(entry.tts_calc, 60))); else res.push_back(translate("gettextFromC", "TTS: >2h (calc)")); } if (entry.rbt) res.push_back(casprintf_loc(translate("gettextFromC", "RBT: %umin"), div_up(entry.rbt, 60))); if (prefs.decoinfo) { if (entry.current_gf > 0.0) res.push_back(casprintf_loc(translate("gettextFromC", "GF %d%%"), (int)(100.0 * entry.current_gf))); if (entry.surface_gf > 0.0) res.push_back(casprintf_loc(translate("gettextFromC", "Surface GF %.0f%%"), entry.surface_gf)); if (entry.ceiling) { depthvalue = get_depth_units(entry.ceiling, NULL, &depth_unit); res.push_back(casprintf_loc(translate("gettextFromC", "Calculated ceiling %.1f%s"), depthvalue, depth_unit)); if (prefs.calcalltissues) { int k; for (k = 0; k < 16; k++) { if (entry.ceilings[k]) { depthvalue = get_depth_units(entry.ceilings[k], NULL, &depth_unit); res.push_back(casprintf_loc(translate("gettextFromC", "Tissue %.0fmin: %.1f%s"), buehlmann_N2_t_halflife[k], depthvalue, depth_unit)); } } } } } if (entry.icd_warning) res.push_back(translate("gettextFromC", "ICD in leading tissue")); if (entry.heartbeat && prefs.hrgraph) res.push_back(casprintf_loc(translate("gettextFromC", "heart rate: %d"), entry.heartbeat)); if (entry.bearing >= 0) res.push_back(casprintf_loc(translate("gettextFromC", "bearing: %d"), entry.bearing)); if (entry.running_sum) { depthvalue = get_depth_units(entry.running_sum / entry.sec, NULL, &depth_unit); res.push_back(casprintf_loc(translate("gettextFromC", "mean depth to here %.1f%s"), depthvalue, depth_unit)); } return res; } std::pair> get_plot_details_new(const struct dive *d, const struct plot_info &pi, int time) { /* The two first and the two last plot entries do not have useful data */ if (pi.entry.size() <= 4) return { 0, {} }; // binary search for sample index auto it = std::lower_bound(pi.entry.begin() + 2, pi.entry.end() - 3, time, [] (const plot_data &d, int time) { return d.sec < time; }); int idx = it - pi.entry.begin(); auto strings = plot_string(d, pi, idx); return std::make_pair(idx, strings); } /* Compare two plot_data entries and writes the results into a set of strings */ std::vector compare_samples(const struct dive *d, const struct plot_info &pi, int idx1, int idx2, bool sum) { std::string space(" "); const char *depth_unit, *pressure_unit, *vertical_speed_unit; double depthvalue, speedvalue; std::vector res; if (idx1 < 0 || idx2 < 0) return res; if (pi.entry[idx1].sec > pi.entry[idx2].sec) { int tmp = idx2; idx2 = idx1; idx1 = tmp; } else if (pi.entry[idx1].sec == pi.entry[idx2].sec) { return res; } const struct plot_data &start = pi.entry[idx1]; const struct plot_data &stop = pi.entry[idx2]; int avg_speed = 0; int max_asc_speed = 0; int max_desc_speed = 0; int delta_depth = abs(start.depth - stop.depth); int delta_time = abs(start.sec - stop.sec); int avg_depth = 0; int max_depth = 0; int min_depth = INT_MAX; int last_sec = start.sec; volume_t cylinder_volume = { .mliter = 0, }; std::vector start_pressures(pi.nr_cylinders, 0); std::vector last_pressures(pi.nr_cylinders, 0); std::vector bar_used(pi.nr_cylinders, 0); std::vector volumes_used(pi.nr_cylinders, 0); std::vector cylinder_is_used(pi.nr_cylinders, false); for (int i = idx1; i < idx2; ++i) { const struct plot_data &data = pi.entry[i]; if (sum) avg_speed += abs(data.speed) * (data.sec - last_sec); else avg_speed += data.speed * (data.sec - last_sec); avg_depth += data.depth * (data.sec - last_sec); if (data.speed > max_desc_speed) max_desc_speed = data.speed; if (data.speed < max_asc_speed) max_asc_speed = data.speed; if (data.depth < min_depth) min_depth = data.depth; if (data.depth > max_depth) max_depth = data.depth; for (int cylinder_index = 0; cylinder_index < pi.nr_cylinders; cylinder_index++) { int next_pressure = get_plot_pressure(pi, i, cylinder_index); if (next_pressure && !start_pressures[cylinder_index]) start_pressures[cylinder_index] = next_pressure; if (start_pressures[cylinder_index]) { if (last_pressures[cylinder_index]) { bar_used[cylinder_index] += last_pressures[cylinder_index] - next_pressure; const cylinder_t *cyl = d->get_cylinder(cylinder_index); // TODO: Implement addition/subtraction on units.h types volumes_used[cylinder_index] += cyl->gas_volume((pressure_t){ last_pressures[cylinder_index] }).mliter - cyl->gas_volume((pressure_t){ next_pressure }).mliter; } // check if the gas in this cylinder is being used if (next_pressure < start_pressures[cylinder_index] - 1000 && !cylinder_is_used[cylinder_index]) { cylinder_is_used[cylinder_index] = true; } } last_pressures[cylinder_index] = next_pressure; } last_sec = data.sec; } avg_depth /= stop.sec - start.sec; avg_speed /= stop.sec - start.sec; std::string l = casprintf_loc(translate("gettextFromC", "ΔT:%d:%02dmin"), delta_time / 60, delta_time % 60); depthvalue = get_depth_units(delta_depth, NULL, &depth_unit); l += space + casprintf_loc(translate("gettextFromC", "ΔD:%.1f%s"), depthvalue, depth_unit); depthvalue = get_depth_units(min_depth, NULL, &depth_unit); l += space + casprintf_loc(translate("gettextFromC", "↓D:%.1f%s"), depthvalue, depth_unit); depthvalue = get_depth_units(max_depth, NULL, &depth_unit); l += space + casprintf_loc(translate("gettextFromC", "↑D:%.1f%s"), depthvalue, depth_unit); depthvalue = get_depth_units(avg_depth, NULL, &depth_unit); l += space + casprintf_loc(translate("gettextFromC", "øD:%.1f%s"), depthvalue, depth_unit); res.push_back(l); speedvalue = get_vertical_speed_units(abs(max_desc_speed), NULL, &vertical_speed_unit); l = casprintf_loc(translate("gettextFromC", "↓V:%.2f%s"), speedvalue, vertical_speed_unit); speedvalue = get_vertical_speed_units(abs(max_asc_speed), NULL, &vertical_speed_unit); l += space + casprintf_loc(translate("gettextFromC", "↑V:%.2f%s"), speedvalue, vertical_speed_unit); speedvalue = get_vertical_speed_units(abs(avg_speed), NULL, &vertical_speed_unit); l += space + casprintf_loc(translate("gettextFromC", "øV:%.2f%s"), speedvalue, vertical_speed_unit); int total_bar_used = 0; int total_volume_used = 0; bool cylindersizes_are_identical = true; bool sac_is_determinable = true; for (int cylinder_index = 0; cylinder_index < pi.nr_cylinders; cylinder_index++) { if (cylinder_is_used[cylinder_index]) { total_bar_used += bar_used[cylinder_index]; total_volume_used += volumes_used[cylinder_index]; const cylinder_t *cyl = d->get_cylinder(cylinder_index); if (cyl->type.size.mliter) { if (cylinder_volume.mliter && cylinder_volume.mliter != cyl->type.size.mliter) { cylindersizes_are_identical = false; } else { cylinder_volume.mliter = cyl->type.size.mliter; } } else { sac_is_determinable = false; } } } // No point printing 'bar used' if we know it's meaningless because cylinders of different size were used if (cylindersizes_are_identical && total_bar_used) { int pressurevalue = get_pressure_units(total_bar_used, &pressure_unit); l += space + casprintf_loc(translate("gettextFromC", "ΔP:%d%s"), pressurevalue, pressure_unit); } // We can't calculate the SAC if the volume for some of the cylinders used is unknown if (sac_is_determinable && total_volume_used) { int volume_precision; const char *volume_unit; /* Mean pressure in ATM */ double atm = d->depth_to_atm(avg_depth); /* milliliters per minute */ int sac = lrint(total_volume_used / atm * 60 / delta_time); double volume_value = get_volume_units(sac, &volume_precision, &volume_unit); l += space + casprintf_loc(translate("gettextFromC", "SAC:%.*f%s/min"), volume_precision, volume_value, volume_unit); } res.push_back(l); return res; }