// SPDX-License-Identifier: GPL-2.0 #include "qt-models/diveplotdatamodel.h" #include "qt-models/diveplannermodel.h" #include "core/profile.h" #include "core/divelist.h" #include "core/color.h" DivePlotDataModel::DivePlotDataModel(QObject *parent) : QAbstractTableModel(parent), dcNr(0) { init_plot_info(&pInfo); memset(&plot_deco_state, 0, sizeof(struct deco_state)); } DivePlotDataModel::~DivePlotDataModel() { free_plot_info_data(&pInfo); } int DivePlotDataModel::columnCount(const QModelIndex&) const { return COLUMNS; } QVariant DivePlotDataModel::data(const QModelIndex &index, int role) const { if ((!index.isValid()) || (index.row() >= pInfo.nr) || pInfo.entry == 0) return QVariant(); plot_data item = pInfo.entry[index.row()]; if (role == Qt::DisplayRole) { switch (index.column()) { case DEPTH: return item.depth; case TIME: return item.sec; case PRESSURE: return get_plot_sensor_pressure(&pInfo, index.row(), 0); case TEMPERATURE: return item.temperature; case COLOR: return item.velocity; case USERENTERED: return false; case SENSOR_PRESSURE: return get_plot_sensor_pressure(&pInfo, index.row(), 0); case INTERPOLATED_PRESSURE: return get_plot_interpolated_pressure(&pInfo, index.row(), 0); case CEILING: return item.ceiling; case SAC: return item.sac; case PN2: return item.pressures.n2; case PHE: return item.pressures.he; case PO2: return item.pressures.o2; case O2SETPOINT: return item.o2setpoint.mbar / 1000.0; case CCRSENSOR1: return item.o2sensor[0].mbar / 1000.0; case CCRSENSOR2: return item.o2sensor[1].mbar / 1000.0; case CCRSENSOR3: return item.o2sensor[2].mbar / 1000.0; case SCR_OC_PO2: return item.scr_OC_pO2.mbar / 1000.0; case HEARTBEAT: return item.heartbeat; case AMBPRESSURE: return AMB_PERCENTAGE; case GFLINE: return item.gfline; case INSTANT_MEANDEPTH: return item.running_sum; } } if (role == Qt::DisplayRole && index.column() >= TISSUE_1 && index.column() <= TISSUE_16) { return item.ceilings[index.column() - TISSUE_1]; } if (role == Qt::DisplayRole && index.column() >= PERCENTAGE_1 && index.column() <= PERCENTAGE_16) { return item.percentages[index.column() - PERCENTAGE_1]; } if (role == Qt::BackgroundRole) { switch (index.column()) { case COLOR: return getColor((color_index_t)(VELOCITY_COLORS_START_IDX + item.velocity)); } } return QVariant(); } const plot_info &DivePlotDataModel::data() const { return pInfo; } int DivePlotDataModel::rowCount(const QModelIndex&) const { return pInfo.nr; } QVariant DivePlotDataModel::headerData(int section, Qt::Orientation orientation, int role) const { if (orientation != Qt::Horizontal) return QVariant(); if (role != Qt::DisplayRole) return QVariant(); switch (section) { case DEPTH: return tr("Depth"); case TIME: return tr("Time"); case PRESSURE: return tr("Pressure"); case TEMPERATURE: return tr("Temperature"); case COLOR: return tr("Color"); case USERENTERED: return tr("User entered"); case SENSOR_PRESSURE: return tr("Pressure S"); case INTERPOLATED_PRESSURE: return tr("Pressure I"); case CEILING: return tr("Ceiling"); case SAC: return tr("SAC"); case PN2: return tr("pN₂"); case PHE: return tr("pHe"); case PO2: return tr("pO₂"); case O2SETPOINT: return tr("Setpoint"); case CCRSENSOR1: return tr("Sensor 1"); case CCRSENSOR2: return tr("Sensor 2"); case CCRSENSOR3: return tr("Sensor 3"); case AMBPRESSURE: return tr("Ambient pressure"); case HEARTBEAT: return tr("Heart rate"); case GFLINE: return tr("Gradient factor"); case INSTANT_MEANDEPTH: return tr("Mean depth @ s"); } if (role == Qt::DisplayRole && section >= TISSUE_1 && section <= TISSUE_16) { return QString("Ceiling: %1").arg(section - TISSUE_1); } if (role == Qt::DisplayRole && section >= PERCENTAGE_1 && section <= PERCENTAGE_16) { return QString("Tissue: %1").arg(section - PERCENTAGE_1); } return QVariant(); } void DivePlotDataModel::clear() { if (rowCount() != 0) { beginRemoveRows(QModelIndex(), 0, rowCount() - 1); pInfo.nr = 0; free(pInfo.entry); free(pInfo.pressures); pInfo.entry = nullptr; pInfo.pressures = nullptr; dcNr = -1; endRemoveRows(); } } void DivePlotDataModel::setDive(dive *d, const plot_info &info) { beginResetModel(); dcNr = dc_number; free(pInfo.entry); free(pInfo.pressures); pInfo = info; pInfo.entry = (plot_data *)malloc(sizeof(plot_data) * pInfo.nr); memcpy(pInfo.entry, info.entry, sizeof(plot_data) * pInfo.nr); pInfo.pressures = (plot_pressure_data *)malloc(sizeof(plot_pressure_data) * pInfo.nr_cylinders * pInfo.nr); memcpy(pInfo.pressures, info.pressures, sizeof(plot_pressure_data) * pInfo.nr_cylinders * pInfo.nr); endResetModel(); } unsigned int DivePlotDataModel::dcShown() const { return dcNr; } #define MAX_PPGAS_FUNC(GAS, GASFUNC) \ double DivePlotDataModel::GASFUNC() \ { \ double ret = -1; \ for (int i = 0, count = rowCount(); i < count; i++) { \ if (pInfo.entry[i].pressures.GAS > ret) \ ret = pInfo.entry[i].pressures.GAS; \ } \ return ret; \ } MAX_PPGAS_FUNC(he, pheMax); MAX_PPGAS_FUNC(n2, pn2Max); MAX_PPGAS_FUNC(o2, po2Max); void DivePlotDataModel::emitDataChanged() { emit dataChanged(QModelIndex(), QModelIndex()); } #ifndef SUBSURFACE_MOBILE void DivePlotDataModel::calculateDecompression() { struct divecomputer *dc = select_dc(&displayed_dive); init_decompression(&plot_deco_state, &displayed_dive); calculate_deco_information(&plot_deco_state, &(DivePlannerPointsModel::instance()->final_deco_state), &displayed_dive, dc, &pInfo, false); dataChanged(index(0, CEILING), index(pInfo.nr - 1, TISSUE_16)); } #endif