subsurface/core/units.h
Berthold Stoeger 0e9eee0a7f core: return floating point from to_PSI() functions
Dive data are stored internally using integral types using
appropriately fine units (mm, mbar, mkelvin, etc.). These
are converted with functions defined in units.h for display
(m, bar, C, etc.). Usually floating points are returned by
these functions, to retain the necessary precision. There
is one exception: the to_PSI() and mbar_to_PSI() functions.

For consistency, make these functions likewise return floats.
This will be needed for the rework of the profile-axes.
The plan is to use the conversion functions to make the
axes aware of the displayed values. This in turn will be
necessary to place the ticks at sensible distances. However,
the conversions need to be precise, which is not the
case for the current to_PSI() functions.

Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
2021-12-17 11:54:23 -08:00

358 lines
8.7 KiB
C

// SPDX-License-Identifier: GPL-2.0
#ifndef UNITS_H
#define UNITS_H
#include <math.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#ifdef __cplusplus
extern "C" {
#else
#include <stdbool.h>
#endif
#define FRACTION(n, x) ((unsigned)(n) / (x)), ((unsigned)(n) % (x))
#define O2_IN_AIR 209 // permille
#define N2_IN_AIR 781
#define O2_DENSITY 1331 // mg/Liter
#define N2_DENSITY 1165
#define HE_DENSITY 166
#define SURFACE_PRESSURE 1013 // mbar
#define ZERO_C_IN_MKELVIN 273150 // mKelvin
#ifdef __cplusplus
#define M_OR_FT(_m, _f) ((prefs.units.length == units::METERS) ? ((_m) * 1000) : (feet_to_mm(_f)))
#else
#define M_OR_FT(_m, _f) ((prefs.units.length == METERS) ? ((_m) * 1000) : (feet_to_mm(_f)))
#endif
/* Salinity is expressed in weight in grams per 10l */
#define SEAWATER_SALINITY 10300
#define EN13319_SALINITY 10200
#define BRACKISH_SALINITY 10100
#define FRESHWATER_SALINITY 10000
#include <stdint.h>
/*
* Some silly typedefs to make our units very explicit.
*
* Also, the units are chosen so that values can be expressible as
* integers, so that we never have FP rounding issues. And they
* are small enough that converting to/from imperial units doesn't
* really matter.
*
* We also strive to make '0' a meaningless number saying "not
* initialized", since many values are things that may not have
* been reported (eg cylinder pressure or temperature from dive
* computers that don't support them). But for some of the values
* 0 doesn't works as a flag for not initialized. Examples are
* compass bearing (bearing_t) or NDL (duration_t).
* Therefore some types have a default value which is -1 and has to
* be set at certain points in the code.
*
* Thus "millibar" for pressure, for example, or "millikelvin" for
* temperatures. Doing temperatures in celsius or fahrenheit would
* make for loss of precision when converting from one to the other,
* and using millikelvin is SI-like but also means that a temperature
* of '0' is clearly just a missing temperature or cylinder pressure.
*
* Also strive to use units that can not possibly be mistaken for a
* valid value in a "normal" system without conversion. If the max
* depth of a dive is '20000', you probably didn't convert from mm on
* output, or if the max. depth gets reported as "0.2ft" it was either
* a really boring dive, or there was some missing input conversion,
* and a 60-ft dive got recorded as 60mm.
*
* Doing these as "structs containing value" means that we always
* have to explicitly write out those units in order to get at the
* actual value. So there is hopefully little fear of using a value
* in millikelvin as Fahrenheit by mistake.
*
* We don't actually use these all yet, so maybe they'll change, but
* I made a number of types as guidelines.
*/
typedef int64_t timestamp_t;
typedef struct
{
int32_t seconds; // durations up to 34 yrs
} duration_t;
static const duration_t zero_duration = { 0 };
typedef struct
{
int32_t seconds; // offsets up to +/- 34 yrs
} offset_t;
typedef struct
{
int32_t mm;
} depth_t; // depth to 2000 km
typedef struct
{
int32_t mbar; // pressure up to 2000 bar
} pressure_t;
typedef struct
{
uint16_t mbar;
} o2pressure_t; // pressure up to 65 bar
typedef struct
{
int16_t degrees;
} bearing_t; // compass bearing
typedef struct
{
uint32_t mkelvin; // up to 4 MK (temperatures in K are always positive)
} temperature_t;
typedef struct
{
uint64_t mkelvin; // up to 18446744073 MK (temperatures in K are always positive)
} temperature_sum_t;
typedef struct
{
int mliter;
} volume_t;
typedef struct
{
int permille;
} fraction_t;
typedef struct
{
int grams;
} weight_t;
typedef struct
{
int udeg;
} degrees_t;
typedef struct pos {
degrees_t lat, lon;
} location_t;
static const location_t zero_location = { { 0 }, { 0 }};
extern void parse_location(const char *, location_t *);
static inline bool has_location(const location_t *loc)
{
return loc->lat.udeg || loc->lon.udeg;
}
static inline bool same_location(const location_t *a, const location_t *b)
{
return (a->lat.udeg == b->lat.udeg) && (a->lon.udeg == b->lon.udeg);
}
static inline location_t create_location(double lat, double lon)
{
location_t location = {
{ (int) lrint(lat * 1000000) },
{ (int) lrint(lon * 1000000) }
};
return location;
}
static inline double udeg_to_radians(int udeg)
{
return (udeg * M_PI) / (1000000.0 * 180.0);
}
static inline double grams_to_lbs(int grams)
{
return grams / 453.6;
}
static inline int lbs_to_grams(double lbs)
{
return (int)lrint(lbs * 453.6);
}
static inline double ml_to_cuft(int ml)
{
return ml / 28316.8466;
}
static inline double cuft_to_l(double cuft)
{
return cuft * 28.3168466;
}
static inline double mm_to_feet(int mm)
{
return mm * 0.00328084;
}
static inline double m_to_mile(int m)
{
return m / 1609.344;
}
static inline unsigned long feet_to_mm(double feet)
{
return lrint(feet * 304.8);
}
static inline int to_feet(depth_t depth)
{
return (int)lrint(mm_to_feet(depth.mm));
}
static inline double mkelvin_to_C(int mkelvin)
{
return (mkelvin - ZERO_C_IN_MKELVIN) / 1000.0;
}
static inline double mkelvin_to_F(int mkelvin)
{
return mkelvin * 9 / 5000.0 - 459.670;
}
static inline unsigned long F_to_mkelvin(double f)
{
return lrint((f - 32) * 1000 / 1.8 + ZERO_C_IN_MKELVIN);
}
static inline unsigned long C_to_mkelvin(double c)
{
return lrint(c * 1000 + ZERO_C_IN_MKELVIN);
}
static inline unsigned long cC_to_mkelvin(double c)
{
return lrint(c * 10 + ZERO_C_IN_MKELVIN);
}
static inline double psi_to_bar(double psi)
{
return psi / 14.5037738;
}
static inline long psi_to_mbar(double psi)
{
return lrint(psi_to_bar(psi) * 1000);
}
static inline double to_PSI(pressure_t pressure)
{
return pressure.mbar * 0.0145037738;
}
static inline double bar_to_atm(double bar)
{
return bar / SURFACE_PRESSURE * 1000;
}
static inline double mbar_to_atm(int mbar)
{
return (double)mbar / SURFACE_PRESSURE;
}
static inline double mbar_to_PSI(int mbar)
{
pressure_t p = { mbar };
return to_PSI(p);
}
static inline int32_t altitude_to_pressure(int32_t altitude) // altitude in mm above sea level
{ // returns atmospheric pressure in mbar
return (int32_t) (1013.0 * exp(- altitude / 7800000.0));
}
static inline int32_t pressure_to_altitude(int32_t pressure) // pressure in mbar
{ // returns altitude in mm above sea level
return (int32_t) (log(1013.0 / pressure) * 7800000);
}
/*
* We keep our internal data in well-specified units, but
* the input and output may come in some random format. This
* keeps track of those units.
*/
/* turns out in Win32 PASCAL is defined as a calling convention */
/* NOTE: these enums are duplicated in mobile-widgets/qmlinterface.h */
struct units {
enum LENGTH {
METERS,
FEET
} length;
enum VOLUME {
LITER,
CUFT
} volume;
enum PRESSURE {
BAR,
PSI,
PASCALS
} pressure;
enum TEMPERATURE {
CELSIUS,
FAHRENHEIT,
KELVIN
} temperature;
enum WEIGHT {
KG,
LBS
} weight;
enum TIME {
SECONDS,
MINUTES
} vertical_speed_time;
enum DURATION {
MIXED,
MINUTES_ONLY,
ALWAYS_HOURS
} duration_units;
bool show_units_table;
};
/*
* We're going to default to SI units for input. Yes,
* technically the SI unit for pressure is Pascal, but
* we default to bar (10^5 pascal), which people
* actually use. Similarly, C instead of Kelvin.
* And kg instead of g.
*/
#define SI_UNITS \
{ \
.length = METERS, .volume = LITER, .pressure = BAR, .temperature = CELSIUS, .weight = KG, \
.vertical_speed_time = MINUTES, .duration_units = MIXED, .show_units_table = false \
}
#define IMPERIAL_UNITS \
{ \
.length = FEET, .volume = CUFT, .pressure = PSI, .temperature = FAHRENHEIT, .weight = LBS, \
.vertical_speed_time = MINUTES, .duration_units = MIXED, .show_units_table = false \
}
extern const struct units SI_units, IMPERIAL_units;
extern const struct units *get_units(void);
extern int get_pressure_units(int mb, const char **units);
extern double get_depth_units(int mm, int *frac, const char **units);
extern double get_volume_units(unsigned int ml, int *frac, const char **units);
extern double get_temp_units(unsigned int mk, const char **units);
extern double get_weight_units(unsigned int grams, int *frac, const char **units);
extern double get_vertical_speed_units(unsigned int mms, int *frac, const char **units);
extern depth_t units_to_depth(double depth);
extern int units_to_sac(double volume);
#ifdef __cplusplus
}
#endif
#endif