mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-30 22:20:21 +00:00
48f7828d10
Use more C++ style memory management for plot_info: Use std::vector for array data. Return the plot_info instead of filling an output parameter. Add a constructor/destructor pair so that the caller isn't bothered with memory management. The bulk of the commit is replacement of pointers with references, which is kind of gratuitous. But I started and then went on... Default initializiation of gas_pressures made it necessary to convert gas.c to c++, though with minimal changes to the code. Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
1674 lines
58 KiB
C++
1674 lines
58 KiB
C++
// SPDX-License-Identifier: GPL-2.0
|
||
/* profile.c */
|
||
/* creates all the necessary data for drawing the dive profile
|
||
*/
|
||
#include "ssrf.h"
|
||
#include "gettext.h"
|
||
#include <limits.h>
|
||
#include <string.h>
|
||
#include <assert.h>
|
||
#include <stdlib.h>
|
||
|
||
#include "dive.h"
|
||
#include "divelist.h"
|
||
#include "errorhelper.h"
|
||
#include "event.h"
|
||
#include "interpolate.h"
|
||
#include "sample.h"
|
||
#include "subsurface-string.h"
|
||
|
||
#include "profile.h"
|
||
#include "gaspressures.h"
|
||
#include "deco.h"
|
||
#include "errorhelper.h"
|
||
#include "libdivecomputer/parser.h"
|
||
#include "libdivecomputer/version.h"
|
||
#include "membuffer.h"
|
||
#include "qthelper.h"
|
||
#include "format.h"
|
||
|
||
//#define DEBUG_GAS 1
|
||
|
||
#define MAX_PROFILE_DECO 7200
|
||
|
||
extern "C" int ascent_velocity(int depth, int avg_depth, int bottom_time);
|
||
|
||
#ifdef DEBUG_PI
|
||
/* debugging tool - not normally used */
|
||
static void dump_pi(const struct plot_info &pi)
|
||
{
|
||
int i;
|
||
|
||
printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
|
||
" maxpressure:%d mintemp:%d maxtemp:%d\n",
|
||
pi.nr, pi.maxtime, pi.meandepth, pi.maxdepth,
|
||
pi.maxpressure, pi.mintemp, pi.maxtemp);
|
||
for (i = 0; i < pi.nr; i++) {
|
||
struct plot_data &entry = pi.entry[i];
|
||
printf(" entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n"
|
||
" time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n",
|
||
i, entry.sensor[0], entry.sec,
|
||
entry.pressure[0], entry.pressure[1],
|
||
entry.sec / 60, entry.sec % 60,
|
||
entry.temperature, entry.depth, entry.stopdepth, entry.stoptime, entry.ndl, entry.smoothed,
|
||
entry.pressures.o2, entry.pressures.he, entry.pressures.n2,
|
||
entry.pressures.o2 + entry.pressures.he + entry.pressures.n2);
|
||
}
|
||
printf(" }\n");
|
||
}
|
||
#endif
|
||
|
||
template<typename T>
|
||
static T round_up(T x, T y)
|
||
{
|
||
return ((x + y - 1) / y) * y;
|
||
}
|
||
|
||
template<typename T>
|
||
static T div_up(T x, T y)
|
||
{
|
||
return (x + y - 1) / y;
|
||
}
|
||
|
||
plot_info::plot_info()
|
||
{
|
||
}
|
||
|
||
plot_info::~plot_info()
|
||
{
|
||
}
|
||
|
||
/*
|
||
* When showing dive profiles, we scale things to the
|
||
* current dive. However, we don't scale past less than
|
||
* 30 minutes or 90 ft, just so that small dives show
|
||
* up as such unless zoom is enabled.
|
||
*/
|
||
int get_maxtime(const struct plot_info &pi)
|
||
{
|
||
int seconds = pi.maxtime;
|
||
int min = prefs.zoomed_plot ? 30 : 30 * 60;
|
||
return std::max(min, seconds);
|
||
}
|
||
|
||
/* get the maximum depth to which we want to plot */
|
||
int get_maxdepth(const struct plot_info &pi)
|
||
{
|
||
/* 3m to spare */
|
||
int mm = pi.maxdepth + 3000;
|
||
return prefs.zoomed_plot ? mm : std::max(30000, mm);
|
||
}
|
||
|
||
/* UNUSED! */
|
||
static int get_local_sac(struct plot_info &pi, int idx1, int idx2, struct dive *dive) __attribute__((unused));
|
||
|
||
/* Get local sac-rate (in ml/min) between entry1 and entry2 */
|
||
static int get_local_sac(struct plot_info &pi, int idx1, int idx2, struct dive *dive)
|
||
{
|
||
int index = 0;
|
||
cylinder_t *cyl;
|
||
struct plot_data &entry1 = pi.entry[idx1];
|
||
struct plot_data &entry2 = pi.entry[idx2];
|
||
int duration = entry2.sec - entry1.sec;
|
||
int depth, airuse;
|
||
pressure_t a, b;
|
||
double atm;
|
||
|
||
if (duration <= 0)
|
||
return 0;
|
||
a.mbar = get_plot_pressure(pi, idx1, 0);
|
||
b.mbar = get_plot_pressure(pi, idx2, 0);
|
||
if (!b.mbar || a.mbar <= b.mbar)
|
||
return 0;
|
||
|
||
/* Mean pressure in ATM */
|
||
depth = (entry1.depth + entry2.depth) / 2;
|
||
atm = depth_to_atm(depth, dive);
|
||
|
||
cyl = get_cylinder(dive, index);
|
||
|
||
airuse = gas_volume(cyl, a) - gas_volume(cyl, b);
|
||
|
||
/* milliliters per minute */
|
||
return lrint(airuse / atm * 60 / duration);
|
||
}
|
||
|
||
static velocity_t velocity(int speed)
|
||
{
|
||
velocity_t v;
|
||
|
||
if (speed < -304) /* ascent faster than -60ft/min */
|
||
v = CRAZY;
|
||
else if (speed < -152) /* above -30ft/min */
|
||
v = FAST;
|
||
else if (speed < -76) /* -15ft/min */
|
||
v = MODERATE;
|
||
else if (speed < -25) /* -5ft/min */
|
||
v = SLOW;
|
||
else if (speed < 25) /* very hard to find data, but it appears that the recommendations
|
||
for descent are usually about 2x ascent rate; still, we want
|
||
stable to mean stable */
|
||
v = STABLE;
|
||
else if (speed < 152) /* between 5 and 30ft/min is considered slow */
|
||
v = SLOW;
|
||
else if (speed < 304) /* up to 60ft/min is moderate */
|
||
v = MODERATE;
|
||
else if (speed < 507) /* up to 100ft/min is fast */
|
||
v = FAST;
|
||
else /* more than that is just crazy - you'll blow your ears out */
|
||
v = CRAZY;
|
||
|
||
return v;
|
||
}
|
||
|
||
static void analyze_plot_info(struct plot_info &pi)
|
||
{
|
||
/* Smoothing function: 5-point triangular smooth */
|
||
for (size_t i = 2; i < pi.entry.size(); i++) {
|
||
struct plot_data &entry = pi.entry[i];
|
||
int depth;
|
||
|
||
if (i + 2 < pi.entry.size()) {
|
||
depth = pi.entry[i-2].depth + 2 * pi.entry[i-1].depth + 3 * pi.entry[i].depth + 2 * pi.entry[i+1].depth + pi.entry[i+2].depth;
|
||
entry.smoothed = (depth + 4) / 9;
|
||
}
|
||
/* vertical velocity in mm/sec */
|
||
/* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
|
||
if (pi.entry[i].sec - pi.entry[i-1].sec) {
|
||
entry.speed = (pi.entry[i+0].depth - pi.entry[i-1].depth) / (pi.entry[i].sec - pi.entry[i-1].sec);
|
||
entry.velocity = velocity(entry.speed);
|
||
/* if our samples are short and we aren't too FAST*/
|
||
if (pi.entry[i].sec - pi.entry[i-1].sec < 15 && entry.velocity < FAST) {
|
||
int past = -2;
|
||
while (i + past > 0 && pi.entry[i].sec - pi.entry[i+past].sec < 15)
|
||
past--;
|
||
entry.velocity = velocity((pi.entry[i].depth - pi.entry[i+past].depth) /
|
||
(pi.entry[i].sec - pi.entry[i+past].sec));
|
||
}
|
||
} else {
|
||
entry.velocity = STABLE;
|
||
entry.speed = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* If the event has an explicit cylinder index,
|
||
* we return that. If it doesn't, we return the best
|
||
* match based on the gasmix.
|
||
*
|
||
* Some dive computers give cylinder indices, some
|
||
* give just the gas mix.
|
||
*/
|
||
int get_cylinder_index(const struct dive *dive, const struct event *ev)
|
||
{
|
||
int best;
|
||
struct gasmix mix;
|
||
|
||
if (ev->gas.index >= 0)
|
||
return ev->gas.index;
|
||
|
||
/*
|
||
* This should no longer happen!
|
||
*
|
||
* We now match up gas change events with their cylinders at dive
|
||
* event fixup time.
|
||
*/
|
||
report_info("Still looking up cylinder based on gas mix in get_cylinder_index()!");
|
||
|
||
mix = get_gasmix_from_event(dive, ev);
|
||
best = find_best_gasmix_match(mix, &dive->cylinders);
|
||
return best < 0 ? 0 : best;
|
||
}
|
||
|
||
struct event *get_next_event_mutable(struct event *event, const char *name)
|
||
{
|
||
if (!name || !*name)
|
||
return NULL;
|
||
while (event) {
|
||
if (same_string(event->name, name))
|
||
return event;
|
||
event = event->next;
|
||
}
|
||
return event;
|
||
}
|
||
|
||
const struct event *get_next_event(const struct event *event, const char *name)
|
||
{
|
||
return get_next_event_mutable((struct event *)event, name);
|
||
}
|
||
|
||
static int count_events(const struct divecomputer *dc)
|
||
{
|
||
int result = 0;
|
||
struct event *ev = dc->events;
|
||
while (ev != NULL) {
|
||
result++;
|
||
ev = ev->next;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
static size_t set_setpoint(struct plot_info &pi, size_t i, int setpoint, int end)
|
||
{
|
||
while (i < pi.entry.size()) {
|
||
struct plot_data &entry = pi.entry[i];
|
||
if (entry.sec > end)
|
||
break;
|
||
entry.o2pressure.mbar = setpoint;
|
||
i++;
|
||
}
|
||
return i;
|
||
}
|
||
|
||
static void check_setpoint_events(const struct dive *, const struct divecomputer *dc, struct plot_info &pi)
|
||
{
|
||
size_t i = 0;
|
||
pressure_t setpoint;
|
||
setpoint.mbar = 0;
|
||
const struct event *ev = get_next_event(dc->events, "SP change");
|
||
|
||
if (!ev)
|
||
return;
|
||
|
||
do {
|
||
i = set_setpoint(pi, i, setpoint.mbar, ev->time.seconds);
|
||
setpoint.mbar = ev->value;
|
||
ev = get_next_event(ev->next, "SP change");
|
||
} while (ev);
|
||
set_setpoint(pi, i, setpoint.mbar, INT_MAX);
|
||
}
|
||
|
||
static void calculate_max_limits_new(const struct dive *dive, const struct divecomputer *given_dc, struct plot_info &pi, bool in_planner)
|
||
{
|
||
const struct divecomputer *dc = &(dive->dc);
|
||
bool seen = false;
|
||
bool found_sample_beyond_last_event = false;
|
||
int maxdepth = dive->maxdepth.mm;
|
||
int maxtime = 0;
|
||
int maxpressure = 0, minpressure = INT_MAX;
|
||
int maxhr = 0, minhr = INT_MAX;
|
||
int mintemp = dive->mintemp.mkelvin;
|
||
int maxtemp = dive->maxtemp.mkelvin;
|
||
int cyl;
|
||
|
||
/* Get the per-cylinder maximum pressure if they are manual */
|
||
for (cyl = 0; cyl < dive->cylinders.nr; cyl++) {
|
||
int mbar_start = get_cylinder(dive, cyl)->start.mbar;
|
||
int mbar_end = get_cylinder(dive, cyl)->end.mbar;
|
||
if (mbar_start > maxpressure)
|
||
maxpressure = mbar_start;
|
||
if (mbar_end && mbar_end < minpressure)
|
||
minpressure = mbar_end;
|
||
}
|
||
|
||
/* Then do all the samples from all the dive computers */
|
||
do {
|
||
if (dc == given_dc)
|
||
seen = true;
|
||
int i = dc->samples;
|
||
int lastdepth = 0;
|
||
struct sample *s = dc->sample;
|
||
struct event *ev;
|
||
|
||
/* Make sure we can fit all events */
|
||
ev = dc->events;
|
||
while (ev) {
|
||
if (ev->time.seconds > maxtime)
|
||
maxtime = ev->time.seconds;
|
||
ev = ev->next;
|
||
}
|
||
|
||
while (--i >= 0) {
|
||
int depth = s->depth.mm;
|
||
int temperature = s->temperature.mkelvin;
|
||
int heartbeat = s->heartbeat;
|
||
|
||
for (int sensor = 0; sensor < MAX_SENSORS; ++sensor) {
|
||
int pressure = s->pressure[sensor].mbar;
|
||
if (pressure && pressure < minpressure)
|
||
minpressure = pressure;
|
||
if (pressure > maxpressure)
|
||
maxpressure = pressure;
|
||
}
|
||
|
||
if (!mintemp && temperature < mintemp)
|
||
mintemp = temperature;
|
||
if (temperature > maxtemp)
|
||
maxtemp = temperature;
|
||
|
||
if (heartbeat > maxhr)
|
||
maxhr = heartbeat;
|
||
if (heartbeat && heartbeat < minhr)
|
||
minhr = heartbeat;
|
||
|
||
if (depth > maxdepth)
|
||
maxdepth = s->depth.mm;
|
||
/* Make sure that we get the first sample beyond the last event.
|
||
* If maxtime is somewhere in the middle of the last segment,
|
||
* populate_plot_entries() gets confused leading to display artifacts. */
|
||
if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD || in_planner || !found_sample_beyond_last_event) &&
|
||
s->time.seconds > maxtime) {
|
||
found_sample_beyond_last_event = true;
|
||
maxtime = s->time.seconds;
|
||
}
|
||
lastdepth = depth;
|
||
s++;
|
||
}
|
||
|
||
dc = dc->next;
|
||
if (dc == NULL && !seen) {
|
||
dc = given_dc;
|
||
seen = true;
|
||
}
|
||
} while (dc != NULL);
|
||
|
||
if (minpressure > maxpressure)
|
||
minpressure = 0;
|
||
if (minhr > maxhr)
|
||
minhr = maxhr;
|
||
|
||
pi.maxdepth = maxdepth;
|
||
pi.maxtime = maxtime;
|
||
pi.maxpressure = maxpressure;
|
||
pi.minpressure = minpressure;
|
||
pi.minhr = minhr;
|
||
pi.maxhr = maxhr;
|
||
pi.mintemp = mintemp;
|
||
pi.maxtemp = maxtemp;
|
||
}
|
||
|
||
static plot_data &add_entry(struct plot_info &pi)
|
||
{
|
||
pi.entry.emplace_back();
|
||
pi.pressures.resize(pi.pressures.size() + pi.nr_cylinders);
|
||
return pi.entry.back();
|
||
}
|
||
|
||
/* copy the previous entry (we know this exists), update time and depth
|
||
* and zero out the sensor pressure (since this is a synthetic entry)
|
||
* increment the entry pointer and the count of synthetic entries. */
|
||
static void insert_entry(struct plot_info &pi, int time, int depth, int sac)
|
||
{
|
||
struct plot_data &entry = add_entry(pi);
|
||
struct plot_data &prev = pi.entry[pi.entry.size() - 2];
|
||
entry = prev;
|
||
entry.sec = time;
|
||
entry.depth = depth;
|
||
entry.running_sum = prev.running_sum + (time - prev.sec) * (depth + prev.depth) / 2;
|
||
entry.sac = sac;
|
||
entry.ndl = -1;
|
||
entry.bearing = -1;
|
||
}
|
||
|
||
static void populate_plot_entries(const struct dive *dive, const struct divecomputer *dc, struct plot_info &pi)
|
||
{
|
||
struct event *ev = dc->events;
|
||
|
||
pi.nr_cylinders = dive->cylinders.nr;
|
||
|
||
/*
|
||
* To avoid continuous reallocation, allocate the expected number of entries.
|
||
* We want to have a plot_info event at least every 10s (so "maxtime/10+1"),
|
||
* but samples could be more dense than that (so add in dc->samples). We also
|
||
* need to have one for every event (so count events and add that) and
|
||
* additionally we want two surface events around the whole thing (thus the
|
||
* additional 4). There is also one extra space for a final entry
|
||
* that has time > maxtime (because there can be surface samples
|
||
* past "maxtime" in the original sample data)
|
||
*/
|
||
size_t nr = dc->samples + 6 + pi.maxtime / 10 + count_events(dc);
|
||
pi.entry.reserve(nr);
|
||
pi.pressures.reserve(nr * pi.nr_cylinders);
|
||
|
||
// The two extra events at the start
|
||
pi.entry.resize(2);
|
||
pi.pressures.resize(pi.nr_cylinders * 2);
|
||
|
||
int lastdepth = 0;
|
||
int lasttime = 0;
|
||
int lasttemp = 0;
|
||
/* skip events at time = 0 */
|
||
while (ev && ev->time.seconds == 0)
|
||
ev = ev->next;
|
||
for (int i = 0; i < dc->samples; i++) {
|
||
const struct sample &sample = dc->sample[i];
|
||
int time = sample.time.seconds;
|
||
int offset, delta;
|
||
int depth = sample.depth.mm;
|
||
int sac = sample.sac.mliter;
|
||
|
||
/* Add intermediate plot entries if required */
|
||
delta = time - lasttime;
|
||
if (delta <= 0) {
|
||
time = lasttime;
|
||
delta = 1; // avoid divide by 0
|
||
}
|
||
for (offset = 10; offset < delta; offset += 10) {
|
||
if (lasttime + offset > pi.maxtime)
|
||
break;
|
||
|
||
/* Add events if they are between plot entries */
|
||
while (ev && (int)ev->time.seconds < lasttime + offset) {
|
||
insert_entry(pi, ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta), sac);
|
||
ev = ev->next;
|
||
}
|
||
|
||
/* now insert the time interpolated entry */
|
||
insert_entry(pi, lasttime + offset, interpolate(lastdepth, depth, offset, delta), sac);
|
||
|
||
/* skip events that happened at this time */
|
||
while (ev && (int)ev->time.seconds == lasttime + offset)
|
||
ev = ev->next;
|
||
}
|
||
|
||
/* Add events if they are between plot entries */
|
||
while (ev && (int)ev->time.seconds < time) {
|
||
insert_entry(pi, ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta), sac);
|
||
ev = ev->next;
|
||
}
|
||
|
||
plot_data &entry = add_entry(pi);
|
||
plot_data &prev = pi.entry[pi.entry.size() - 2];
|
||
entry.sec = time;
|
||
entry.depth = depth;
|
||
|
||
entry.running_sum = prev.running_sum + (time - prev.sec) * (depth + prev.depth) / 2;
|
||
entry.stopdepth = sample.stopdepth.mm;
|
||
entry.stoptime = sample.stoptime.seconds;
|
||
entry.ndl = sample.ndl.seconds;
|
||
entry.tts = sample.tts.seconds;
|
||
entry.in_deco = sample.in_deco;
|
||
entry.cns = sample.cns;
|
||
if (dc->divemode == CCR || (dc->divemode == PSCR && dc->no_o2sensors)) {
|
||
entry.o2pressure.mbar = entry.o2setpoint.mbar = sample.setpoint.mbar; // for rebreathers
|
||
int i;
|
||
for (i = 0; i < MAX_O2_SENSORS; i++)
|
||
entry.o2sensor[i].mbar = sample.o2sensor[i].mbar;
|
||
} else {
|
||
entry.pressures.o2 = sample.setpoint.mbar / 1000.0;
|
||
}
|
||
if (sample.pressure[0].mbar && sample.sensor[0] != NO_SENSOR)
|
||
set_plot_pressure_data(pi, pi.entry.size() - 1, SENSOR_PR, sample.sensor[0], sample.pressure[0].mbar);
|
||
if (sample.pressure[1].mbar && sample.sensor[1] != NO_SENSOR)
|
||
set_plot_pressure_data(pi, pi.entry.size() - 1, SENSOR_PR, sample.sensor[1], sample.pressure[1].mbar);
|
||
if (sample.temperature.mkelvin)
|
||
entry.temperature = lasttemp = sample.temperature.mkelvin;
|
||
else
|
||
entry.temperature = lasttemp;
|
||
entry.heartbeat = sample.heartbeat;
|
||
entry.bearing = sample.bearing.degrees;
|
||
entry.sac = sample.sac.mliter;
|
||
if (sample.rbt.seconds)
|
||
entry.rbt = sample.rbt.seconds;
|
||
/* skip events that happened at this time */
|
||
while (ev && (int)ev->time.seconds == time)
|
||
ev = ev->next;
|
||
lasttime = time;
|
||
lastdepth = depth;
|
||
|
||
if (time > pi.maxtime)
|
||
break;
|
||
}
|
||
|
||
/* Add any remaining events */
|
||
while (ev) {
|
||
int time = ev->time.seconds;
|
||
|
||
if (time > lasttime) {
|
||
insert_entry(pi, ev->time.seconds, 0, 0);
|
||
lasttime = time;
|
||
}
|
||
ev = ev->next;
|
||
}
|
||
|
||
/* Add two final surface events */
|
||
add_entry(pi).sec = lasttime + 1;
|
||
add_entry(pi).sec = lasttime + 2;
|
||
pi.nr = (int)pi.entry.size();
|
||
}
|
||
|
||
/*
|
||
* Calculate the sac rate between the two plot entries 'first' and 'last'.
|
||
*
|
||
* Everything in between has a cylinder pressure for at least some of the cylinders.
|
||
*/
|
||
static int sac_between(const struct dive *dive, const struct plot_info &pi, int first, int last, const char gases[])
|
||
{
|
||
int i, airuse;
|
||
double pressuretime;
|
||
|
||
if (first == last)
|
||
return 0;
|
||
|
||
/* Get airuse for the set of cylinders over the range */
|
||
airuse = 0;
|
||
for (i = 0; i < pi.nr_cylinders; i++) {
|
||
pressure_t a, b;
|
||
cylinder_t *cyl;
|
||
int cyluse;
|
||
|
||
if (!gases[i])
|
||
continue;
|
||
|
||
a.mbar = get_plot_pressure(pi, first, i);
|
||
b.mbar = get_plot_pressure(pi, last, i);
|
||
cyl = get_cylinder(dive, i);
|
||
cyluse = gas_volume(cyl, a) - gas_volume(cyl, b);
|
||
if (cyluse > 0)
|
||
airuse += cyluse;
|
||
}
|
||
if (!airuse)
|
||
return 0;
|
||
|
||
/* Calculate depthpressure integrated over time */
|
||
pressuretime = 0.0;
|
||
do {
|
||
const struct plot_data &entry = pi.entry[first];
|
||
const struct plot_data &next = pi.entry[first + 1];
|
||
int depth = (entry.depth + next.depth) / 2;
|
||
int time = next.sec - entry.sec;
|
||
double atm = depth_to_atm(depth, dive);
|
||
|
||
pressuretime += atm * time;
|
||
} while (++first < last);
|
||
|
||
/* Turn "atmseconds" into "atmminutes" */
|
||
pressuretime /= 60;
|
||
|
||
/* SAC = mliter per minute */
|
||
return lrint(airuse / pressuretime);
|
||
}
|
||
|
||
/* Is there pressure data for all gases? */
|
||
static bool all_pressures(const struct plot_info &pi, int idx, const char gases[])
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < pi.nr_cylinders; i++) {
|
||
if (gases[i] && !get_plot_pressure(pi, idx, i))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Which of the set of gases have pressure data? Returns false if none of them. */
|
||
static bool filter_pressures(const struct plot_info &pi, int idx, const char gases_in[], char gases_out[])
|
||
{
|
||
int i;
|
||
bool has_pressure = false;
|
||
|
||
for (i = 0; i < pi.nr_cylinders; i++) {
|
||
gases_out[i] = gases_in[i] && get_plot_pressure(pi, idx, i);
|
||
has_pressure |= gases_out[i];
|
||
}
|
||
|
||
return has_pressure;
|
||
}
|
||
|
||
/*
|
||
* Try to do the momentary sac rate for this entry, averaging over one
|
||
* minute. This is premature optimization, but instead of allocating
|
||
* an array of gases, the caller passes in scratch memory in the last
|
||
* argument.
|
||
*/
|
||
static void fill_sac(const struct dive *dive, struct plot_info &pi, int idx, const char gases_in[], char gases[])
|
||
{
|
||
struct plot_data &entry = pi.entry[idx];
|
||
int first, last;
|
||
int time;
|
||
|
||
if (entry.sac)
|
||
return;
|
||
|
||
/*
|
||
* We may not have pressure data for all the cylinders,
|
||
* but we'll calculate the SAC for the ones we do have.
|
||
*/
|
||
if (!filter_pressures(pi, idx, gases_in, gases))
|
||
return;
|
||
|
||
/*
|
||
* Try to go back 30 seconds to get 'first'.
|
||
* Stop if the cylinder pressure data set changes.
|
||
*/
|
||
first = idx;
|
||
time = entry.sec - 30;
|
||
while (idx > 0) {
|
||
const struct plot_data &entry = pi.entry[idx];
|
||
const struct plot_data &prev = pi.entry[idx - 1];
|
||
|
||
if (prev.depth < SURFACE_THRESHOLD && entry.depth < SURFACE_THRESHOLD)
|
||
break;
|
||
if (prev.sec < time)
|
||
break;
|
||
if (!all_pressures(pi, idx - 1, gases))
|
||
break;
|
||
idx--;
|
||
first = idx;
|
||
}
|
||
|
||
/* Now find an entry a minute after the first one */
|
||
last = first;
|
||
time = pi.entry[first].sec + 60;
|
||
while (++idx < pi.nr) {
|
||
const struct plot_data &entry = pi.entry[last];
|
||
const struct plot_data &next = pi.entry[last + 1];
|
||
if (next.depth < SURFACE_THRESHOLD && entry.depth < SURFACE_THRESHOLD)
|
||
break;
|
||
if (next.sec > time)
|
||
break;
|
||
if (!all_pressures(pi, idx + 1, gases))
|
||
break;
|
||
last = idx;
|
||
}
|
||
|
||
/* Ok, now calculate the SAC between 'first' and 'last' */
|
||
entry.sac = sac_between(dive, pi, first, last, gases);
|
||
}
|
||
|
||
/*
|
||
* Create a bitmap of cylinders that match our current gasmix
|
||
*/
|
||
static void matching_gases(const struct dive *dive, struct gasmix gasmix, char gases[])
|
||
{
|
||
for (int i = 0; i < dive->cylinders.nr; i++)
|
||
gases[i] = same_gasmix(gasmix, get_cylinder(dive, i)->gasmix);
|
||
}
|
||
|
||
static void calculate_sac(const struct dive *dive, const struct divecomputer *dc, struct plot_info &pi)
|
||
{
|
||
struct gasmix gasmix = gasmix_invalid;
|
||
const struct event *ev = NULL;
|
||
|
||
std::vector<char> gases(pi.nr_cylinders, false);
|
||
|
||
/* This might be premature optimization, but let's allocate the gas array for
|
||
* the fill_sac function only once an not once per sample */
|
||
std::vector<char> gases_scratch(pi.nr_cylinders);
|
||
|
||
for (int i = 0; i < pi.nr; i++) {
|
||
const struct plot_data &entry = pi.entry[i];
|
||
struct gasmix newmix = get_gasmix(dive, dc, entry.sec, &ev, gasmix);
|
||
if (!same_gasmix(newmix, gasmix)) {
|
||
gasmix = newmix;
|
||
matching_gases(dive, newmix, gases.data());
|
||
}
|
||
|
||
fill_sac(dive, pi, i, gases.data(), gases_scratch.data());
|
||
}
|
||
}
|
||
|
||
static void populate_secondary_sensor_data(const struct divecomputer *dc, struct plot_info &pi)
|
||
{
|
||
std::vector<int> seen(pi.nr_cylinders, 0);
|
||
for (int idx = 0; idx < pi.nr; ++idx)
|
||
for (int c = 0; c < pi.nr_cylinders; ++c)
|
||
if (get_plot_pressure_data(pi, idx, SENSOR_PR, c))
|
||
++seen[c]; // Count instances so we can differentiate a real sensor from just start and end pressure
|
||
int idx = 0;
|
||
/* We should try to see if it has interesting pressure data here */
|
||
for (int i = 0; i < dc->samples && idx < pi.nr; i++) {
|
||
const struct sample &sample = dc->sample[i];
|
||
for (; idx < pi.nr; ++idx) {
|
||
if (idx == pi.nr - 1 || pi.entry[idx].sec >= sample.time.seconds)
|
||
// We've either found the entry at or just after the sample's time,
|
||
// or this is the last entry so use for the last sensor readings if there are any.
|
||
break;
|
||
}
|
||
for (int s = 0; s < MAX_SENSORS; ++s)
|
||
// Copy sensor data if available, but don't add if this dc already has sensor data
|
||
if (sample.sensor[s] != NO_SENSOR && seen[sample.sensor[s]] < 3 && sample.pressure[s].mbar)
|
||
set_plot_pressure_data(pi, idx, SENSOR_PR, sample.sensor[s], sample.pressure[s].mbar);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* This adds a pressure entry to the plot_info based on the gas change
|
||
* information and the manually filled in pressures.
|
||
*/
|
||
static void add_plot_pressure(struct plot_info &pi, int time, int cyl, pressure_t p)
|
||
{
|
||
for (int i = 0; i < pi.nr; i++) {
|
||
if (i == pi.nr - 1 || pi.entry[i].sec >= time) {
|
||
set_plot_pressure_data(pi, i, SENSOR_PR, cyl, p.mbar);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void setup_gas_sensor_pressure(const struct dive *dive, const struct divecomputer *dc, struct plot_info &pi)
|
||
{
|
||
int i;
|
||
const struct event *ev;
|
||
|
||
if (pi.nr_cylinders == 0)
|
||
return;
|
||
|
||
/* FIXME: The planner uses a dummy one-past-end cylinder for surface air! */
|
||
int num_cyl = pi.nr_cylinders + 1;
|
||
std::vector<int> seen(num_cyl, 0);
|
||
std::vector<int> first(num_cyl, 0);
|
||
std::vector<int> last(num_cyl, INT_MAX);
|
||
const struct divecomputer *secondary;
|
||
|
||
int prev = explicit_first_cylinder(dive, dc);
|
||
prev = prev >= 0 ? prev : 0;
|
||
seen[prev] = 1;
|
||
|
||
for (ev = get_next_event(dc->events, "gaschange"); ev != NULL; ev = get_next_event(ev->next, "gaschange")) {
|
||
int cyl = ev->gas.index;
|
||
int sec = ev->time.seconds;
|
||
|
||
if (cyl < 0)
|
||
continue; // unknown cylinder
|
||
if (cyl >= num_cyl) {
|
||
report_info("setup_gas_sensor_pressure(): invalid cylinder idx %d", cyl);
|
||
continue;
|
||
}
|
||
|
||
last[prev] = sec;
|
||
prev = cyl;
|
||
|
||
last[cyl] = sec;
|
||
if (!seen[cyl]) {
|
||
// The end time may be updated by a subsequent cylinder change
|
||
first[cyl] = sec;
|
||
seen[cyl] = 1;
|
||
}
|
||
}
|
||
last[prev] = INT_MAX;
|
||
|
||
// Fill in "seen[]" array - mark cylinders we're not interested
|
||
// in as negative.
|
||
for (i = 0; i < pi.nr_cylinders; i++) {
|
||
const cylinder_t *cyl = get_cylinder(dive, i);
|
||
int start = cyl->start.mbar;
|
||
int end = cyl->end.mbar;
|
||
|
||
/*
|
||
* Fundamentally uninteresting?
|
||
*
|
||
* A dive computer with no pressure data isn't interesting
|
||
* to plot pressures for even if we've seen it..
|
||
*/
|
||
if (!start || !end || start == end) {
|
||
seen[i] = -1;
|
||
continue;
|
||
}
|
||
|
||
/* If we've seen it, we're definitely interested */
|
||
if (seen[i])
|
||
continue;
|
||
|
||
/* If it's only mentioned by other dc's, ignore it */
|
||
for_each_dc(dive, secondary) {
|
||
if (has_gaschange_event(dive, secondary, i)) {
|
||
seen[i] = -1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < pi.nr_cylinders; i++) {
|
||
if (seen[i] >= 0) {
|
||
const cylinder_t *cyl = get_cylinder(dive, i);
|
||
|
||
add_plot_pressure(pi, first[i], i, cyl->start);
|
||
add_plot_pressure(pi, last[i], i, cyl->end);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Here, we should try to walk through all the dive computers,
|
||
* and try to see if they have sensor data different from the
|
||
* current dive computer (dc).
|
||
*/
|
||
secondary = &dive->dc;
|
||
do {
|
||
if (secondary == dc)
|
||
continue;
|
||
populate_secondary_sensor_data(secondary, pi);
|
||
} while ((secondary = secondary->next) != NULL);
|
||
}
|
||
|
||
/* calculate DECO STOP / TTS / NDL */
|
||
static void calculate_ndl_tts(struct deco_state *ds, const struct dive *dive, struct plot_data &entry, struct gasmix gasmix,
|
||
double surface_pressure, enum divemode_t divemode, bool in_planner)
|
||
{
|
||
/* should this be configurable? */
|
||
/* ascent speed up to first deco stop */
|
||
const int ascent_s_per_step = 1;
|
||
const int ascent_s_per_deco_step = 1;
|
||
/* how long time steps in deco calculations? */
|
||
const int time_stepsize = 60;
|
||
const int deco_stepsize = M_OR_FT(3, 10);
|
||
/* at what depth is the current deco-step? */
|
||
int next_stop = round_up(deco_allowed_depth(
|
||
tissue_tolerance_calc(ds, dive, depth_to_bar(entry.depth, dive), in_planner),
|
||
surface_pressure, dive, 1), deco_stepsize);
|
||
int ascent_depth = entry.depth;
|
||
/* at what time should we give up and say that we got enuff NDL? */
|
||
/* If iterating through a dive, entry.tts_calc needs to be reset */
|
||
entry.tts_calc = 0;
|
||
|
||
/* If we don't have a ceiling yet, calculate ndl. Don't try to calculate
|
||
* a ndl for lower values than 3m it would take forever */
|
||
if (next_stop == 0) {
|
||
if (entry.depth < 3000) {
|
||
entry.ndl = MAX_PROFILE_DECO;
|
||
return;
|
||
}
|
||
/* stop if the ndl is above max_ndl seconds, and call it plenty of time */
|
||
while (entry.ndl_calc < MAX_PROFILE_DECO &&
|
||
deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry.depth, dive), in_planner),
|
||
surface_pressure, dive, 1) <= 0
|
||
) {
|
||
entry.ndl_calc += time_stepsize;
|
||
add_segment(ds, depth_to_bar(entry.depth, dive),
|
||
gasmix, time_stepsize, entry.o2pressure.mbar, divemode, prefs.bottomsac, in_planner);
|
||
}
|
||
/* we don't need to calculate anything else */
|
||
return;
|
||
}
|
||
|
||
/* We are in deco */
|
||
entry.in_deco_calc = true;
|
||
|
||
/* Add segments for movement to stopdepth */
|
||
for (; ascent_depth > next_stop; ascent_depth -= ascent_s_per_step * ascent_velocity(ascent_depth, entry.running_sum / entry.sec, 0), entry.tts_calc += ascent_s_per_step) {
|
||
add_segment(ds, depth_to_bar(ascent_depth, dive),
|
||
gasmix, ascent_s_per_step, entry.o2pressure.mbar, divemode, prefs.decosac, in_planner);
|
||
next_stop = round_up(deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(ascent_depth, dive), in_planner),
|
||
surface_pressure, dive, 1), deco_stepsize);
|
||
}
|
||
ascent_depth = next_stop;
|
||
|
||
/* And how long is the current deco-step? */
|
||
entry.stoptime_calc = 0;
|
||
entry.stopdepth_calc = next_stop;
|
||
next_stop -= deco_stepsize;
|
||
|
||
/* And how long is the total TTS */
|
||
while (next_stop >= 0) {
|
||
/* save the time for the first stop to show in the graph */
|
||
if (ascent_depth == entry.stopdepth_calc)
|
||
entry.stoptime_calc += time_stepsize;
|
||
|
||
entry.tts_calc += time_stepsize;
|
||
if (entry.tts_calc > MAX_PROFILE_DECO)
|
||
break;
|
||
add_segment(ds, depth_to_bar(ascent_depth, dive),
|
||
gasmix, time_stepsize, entry.o2pressure.mbar, divemode, prefs.decosac, in_planner);
|
||
|
||
if (deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(ascent_depth,dive), in_planner), surface_pressure, dive, 1) <= next_stop) {
|
||
/* move to the next stop and add the travel between stops */
|
||
for (; ascent_depth > next_stop; ascent_depth -= ascent_s_per_deco_step * ascent_velocity(ascent_depth, entry.running_sum / entry.sec, 0), entry.tts_calc += ascent_s_per_deco_step)
|
||
add_segment(ds, depth_to_bar(ascent_depth, dive),
|
||
gasmix, ascent_s_per_deco_step, entry.o2pressure.mbar, divemode, prefs.decosac, in_planner);
|
||
ascent_depth = next_stop;
|
||
next_stop -= deco_stepsize;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Let's try to do some deco calculations.
|
||
*/
|
||
static void calculate_deco_information(struct deco_state *ds, const struct deco_state *planner_ds, const struct dive *dive,
|
||
const struct divecomputer *dc, struct plot_info &pi)
|
||
{
|
||
int i, count_iteration = 0;
|
||
double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : get_surface_pressure_in_mbar(dive, true)) / 1000.0;
|
||
bool first_iteration = true;
|
||
int prev_deco_time = 10000000, time_deep_ceiling = 0;
|
||
bool in_planner = planner_ds != NULL;
|
||
|
||
if (!in_planner) {
|
||
ds->deco_time = 0;
|
||
ds->first_ceiling_pressure.mbar = 0;
|
||
} else {
|
||
ds->deco_time = planner_ds->deco_time;
|
||
ds->first_ceiling_pressure = planner_ds->first_ceiling_pressure;
|
||
}
|
||
deco_state_cache cache_data_initial;
|
||
lock_planner();
|
||
/* For VPM-B outside the planner, cache the initial deco state for CVA iterations */
|
||
if (decoMode(in_planner) == VPMB) {
|
||
cache_data_initial.cache(ds);
|
||
}
|
||
/* For VPM-B outside the planner, iterate until deco time converges (usually one or two iterations after the initial)
|
||
* Set maximum number of iterations to 10 just in case */
|
||
|
||
while ((abs(prev_deco_time - ds->deco_time) >= 30) && (count_iteration < 10)) {
|
||
int last_ndl_tts_calc_time = 0, first_ceiling = 0, current_ceiling, last_ceiling = 0, final_tts = 0 , time_clear_ceiling = 0;
|
||
if (decoMode(in_planner) == VPMB)
|
||
ds->first_ceiling_pressure.mbar = depth_to_mbar(first_ceiling, dive);
|
||
struct gasmix gasmix = gasmix_invalid;
|
||
const struct event *ev = NULL, *evd = NULL;
|
||
enum divemode_t current_divemode = UNDEF_COMP_TYPE;
|
||
|
||
for (i = 1; i < pi.nr; i++) {
|
||
struct plot_data &entry = pi.entry[i];
|
||
struct plot_data &prev = pi.entry[i - 1];
|
||
int j, t0 = prev.sec, t1 = entry.sec;
|
||
int time_stepsize = 20, max_ceiling = -1;
|
||
|
||
current_divemode = get_current_divemode(dc, entry.sec, &evd, ¤t_divemode);
|
||
gasmix = get_gasmix(dive, dc, t1, &ev, gasmix);
|
||
entry.ambpressure = depth_to_bar(entry.depth, dive);
|
||
entry.gfline = get_gf(ds, entry.ambpressure, dive) * (100.0 - AMB_PERCENTAGE) + AMB_PERCENTAGE;
|
||
if (t0 > t1) {
|
||
report_info("non-monotonous dive stamps %d %d", t0, t1);
|
||
int xchg = t1;
|
||
t1 = t0;
|
||
t0 = xchg;
|
||
}
|
||
if (t0 != t1 && t1 - t0 < time_stepsize)
|
||
time_stepsize = t1 - t0;
|
||
for (j = t0 + time_stepsize; j <= t1; j += time_stepsize) {
|
||
int depth = interpolate(prev.depth, entry.depth, j - t0, t1 - t0);
|
||
add_segment(ds, depth_to_bar(depth, dive),
|
||
gasmix, time_stepsize, entry.o2pressure.mbar, current_divemode, entry.sac, in_planner);
|
||
entry.icd_warning = ds->icd_warning;
|
||
if ((t1 - j < time_stepsize) && (j < t1))
|
||
time_stepsize = t1 - j;
|
||
}
|
||
if (t0 == t1) {
|
||
entry.ceiling = prev.ceiling;
|
||
} else {
|
||
/* Keep updating the VPM-B gradients until the start of the ascent phase of the dive. */
|
||
if (decoMode(in_planner) == VPMB && last_ceiling >= first_ceiling && first_iteration == true) {
|
||
nuclear_regeneration(ds, t1);
|
||
vpmb_start_gradient(ds);
|
||
/* For CVA iterations, calculate next gradient */
|
||
if (!first_iteration || in_planner)
|
||
vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0, in_planner);
|
||
}
|
||
entry.ceiling = deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry.depth, dive), in_planner), surface_pressure, dive, !prefs.calcceiling3m);
|
||
if (prefs.calcceiling3m)
|
||
current_ceiling = deco_allowed_depth(tissue_tolerance_calc(ds, dive, depth_to_bar(entry.depth, dive), in_planner), surface_pressure, dive, true);
|
||
else
|
||
current_ceiling = entry.ceiling;
|
||
last_ceiling = current_ceiling;
|
||
/* If using VPM-B, take first_ceiling_pressure as the deepest ceiling */
|
||
if (decoMode(in_planner) == VPMB) {
|
||
if (current_ceiling >= first_ceiling ||
|
||
(time_deep_ceiling == t0 && entry.depth == prev.depth)) {
|
||
time_deep_ceiling = t1;
|
||
first_ceiling = current_ceiling;
|
||
ds->first_ceiling_pressure.mbar = depth_to_mbar(first_ceiling, dive);
|
||
if (first_iteration) {
|
||
nuclear_regeneration(ds, t1);
|
||
vpmb_start_gradient(ds);
|
||
/* For CVA calculations, deco time = dive time remaining is a good guess,
|
||
but we want to over-estimate deco_time for the first iteration so it
|
||
converges correctly, so add 30min*/
|
||
if (!in_planner)
|
||
ds->deco_time = pi.maxtime - t1 + 1800;
|
||
vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0, in_planner);
|
||
}
|
||
}
|
||
// Use the point where the ceiling clears as the end of deco phase for CVA calculations
|
||
if (current_ceiling > 0)
|
||
time_clear_ceiling = 0;
|
||
else if (time_clear_ceiling == 0 && t1 > time_deep_ceiling)
|
||
time_clear_ceiling = t1;
|
||
}
|
||
}
|
||
entry.surface_gf = 0.0;
|
||
entry.current_gf = 0.0;
|
||
for (j = 0; j < 16; j++) {
|
||
double m_value = ds->buehlmann_inertgas_a[j] + entry.ambpressure / ds->buehlmann_inertgas_b[j];
|
||
double surface_m_value = ds->buehlmann_inertgas_a[j] + surface_pressure / ds->buehlmann_inertgas_b[j];
|
||
entry.ceilings[j] = deco_allowed_depth(ds->tolerated_by_tissue[j], surface_pressure, dive, 1);
|
||
if (entry.ceilings[j] > max_ceiling)
|
||
max_ceiling = entry.ceilings[j];
|
||
double current_gf = (ds->tissue_inertgas_saturation[j] - entry.ambpressure) / (m_value - entry.ambpressure);
|
||
entry.percentages[j] = ds->tissue_inertgas_saturation[j] < entry.ambpressure ?
|
||
lrint(ds->tissue_inertgas_saturation[j] / entry.ambpressure * AMB_PERCENTAGE) :
|
||
lrint(AMB_PERCENTAGE + current_gf * (100.0 - AMB_PERCENTAGE));
|
||
if (current_gf > entry.current_gf)
|
||
entry.current_gf = current_gf;
|
||
double surface_gf = 100.0 * (ds->tissue_inertgas_saturation[j] - surface_pressure) / (surface_m_value - surface_pressure);
|
||
if (surface_gf > entry.surface_gf)
|
||
entry.surface_gf = surface_gf;
|
||
}
|
||
|
||
// In the planner, if the ceiling is violated, add an event.
|
||
// TODO: This *really* shouldn't be done here. This is a contract
|
||
// between the planner and the profile that the planner uses a dive
|
||
// that can be trampled upon. But ultimately, the ceiling-violation
|
||
// marker should be handled differently!
|
||
// Don't scream if we violate the ceiling by a few cm.
|
||
if (in_planner && !pi.waypoint_above_ceiling &&
|
||
entry.depth < max_ceiling - 100 && entry.sec > 0) {
|
||
struct dive *non_const_dive = (struct dive *)dive; // cast away const!
|
||
add_event(&non_const_dive->dc, entry.sec, SAMPLE_EVENT_CEILING, -1, max_ceiling / 1000,
|
||
translate("gettextFromC", "planned waypoint above ceiling"));
|
||
pi.waypoint_above_ceiling = true;
|
||
}
|
||
|
||
/* should we do more calculations?
|
||
* We don't for print-mode because this info doesn't show up there
|
||
* If the ceiling hasn't cleared by the last data point, we need tts for VPM-B CVA calculation
|
||
* It is not necessary to do these calculation on the first VPMB iteration, except for the last data point */
|
||
if ((prefs.calcndltts && (decoMode(in_planner) != VPMB || in_planner || !first_iteration)) ||
|
||
(decoMode(in_planner) == VPMB && !in_planner && i == pi.nr - 1)) {
|
||
/* only calculate ndl/tts on every 30 seconds */
|
||
if ((entry.sec - last_ndl_tts_calc_time) < 30 && i != pi.nr - 1) {
|
||
struct plot_data &prev_entry = pi.entry[i - 1];
|
||
entry.stoptime_calc = prev_entry.stoptime_calc;
|
||
entry.stopdepth_calc = prev_entry.stopdepth_calc;
|
||
entry.tts_calc = prev_entry.tts_calc;
|
||
entry.ndl_calc = prev_entry.ndl_calc;
|
||
continue;
|
||
}
|
||
last_ndl_tts_calc_time = entry.sec;
|
||
|
||
/* We are going to mess up deco state, so store it for later restore */
|
||
deco_state_cache cache_data;
|
||
cache_data.cache(ds);
|
||
calculate_ndl_tts(ds, dive, entry, gasmix, surface_pressure, current_divemode, in_planner);
|
||
if (decoMode(in_planner) == VPMB && !in_planner && i == pi.nr - 1)
|
||
final_tts = entry.tts_calc;
|
||
/* Restore "real" deco state for next real time step */
|
||
cache_data.restore(ds, decoMode(in_planner) == VPMB);
|
||
}
|
||
}
|
||
if (decoMode(in_planner) == VPMB && !in_planner) {
|
||
int this_deco_time;
|
||
prev_deco_time = ds->deco_time;
|
||
// Do we need to update deco_time?
|
||
if (final_tts > 0)
|
||
ds->deco_time = last_ndl_tts_calc_time + final_tts - time_deep_ceiling;
|
||
else if (time_clear_ceiling > 0)
|
||
/* Consistent with planner, deco_time ends after ascending (20s @9m/min from 3m)
|
||
* at end of whole minute after clearing ceiling. The deepest ceiling when planning a dive
|
||
* comes typically 10-60s after the end of the bottom time, so add 20s to the calculated
|
||
* deco time. */
|
||
ds->deco_time = round_up(time_clear_ceiling - time_deep_ceiling + 20, 60) + 20;
|
||
vpmb_next_gradient(ds, ds->deco_time, surface_pressure / 1000.0, in_planner);
|
||
final_tts = 0;
|
||
last_ndl_tts_calc_time = 0;
|
||
first_ceiling = 0;
|
||
first_iteration = false;
|
||
count_iteration ++;
|
||
this_deco_time = ds->deco_time;
|
||
cache_data_initial.restore(ds, true);
|
||
ds->deco_time = this_deco_time;
|
||
} else {
|
||
// With Buhlmann iterating isn't needed. This makes the while condition false.
|
||
prev_deco_time = ds->deco_time = 0;
|
||
}
|
||
}
|
||
|
||
#if DECO_CALC_DEBUG & 1
|
||
dump_tissues(ds);
|
||
#endif
|
||
unlock_planner();
|
||
}
|
||
|
||
/* Sort the o2 pressure values. There are so few that a simple bubble sort
|
||
* will do */
|
||
|
||
void sort_o2_pressures(int *sensorn, int np, const struct plot_data &entry)
|
||
{
|
||
int smallest, position, old;
|
||
|
||
for (int i = 0; i < np - 1; i++) {
|
||
position = i;
|
||
smallest = entry.o2sensor[sensorn[i]].mbar;
|
||
for (int j = i+1; j < np; j++)
|
||
if (entry.o2sensor[sensorn[j]].mbar < smallest) {
|
||
position = j;
|
||
smallest = entry.o2sensor[sensorn[j]].mbar;
|
||
}
|
||
old = sensorn[i];
|
||
sensorn[i] = position;
|
||
sensorn[position] = old;
|
||
}
|
||
}
|
||
|
||
/* Function calculate_ccr_po2: This function takes information from one plot_data structure (i.e. one point on
|
||
* the dive profile), containing the oxygen sensor values of a CCR system and, for that plot_data structure,
|
||
* calculates the po2 value from the sensor data. If there are at least 3 sensors, sensors are voted out until
|
||
* their span is within diff_limit.
|
||
*/
|
||
static int calculate_ccr_po2(struct plot_data &entry, const struct divecomputer *dc)
|
||
{
|
||
int sump = 0, minp = 0, maxp = 0;
|
||
int sensorn[MAX_O2_SENSORS];
|
||
int i, np = 0;
|
||
|
||
for (i = 0; i < dc->no_o2sensors && i < MAX_O2_SENSORS; i++)
|
||
if (entry.o2sensor[i].mbar) { // Valid reading
|
||
sensorn[np++] = i;
|
||
sump += entry.o2sensor[i].mbar;
|
||
}
|
||
if (np == 0)
|
||
return entry.o2pressure.mbar;
|
||
else if (np == 1)
|
||
return entry.o2sensor[sensorn[0]].mbar;
|
||
|
||
maxp = np - 1;
|
||
sort_o2_pressures(sensorn, np, entry);
|
||
|
||
// This is the Shearwater voting logic: If there are still at least three sensors and one
|
||
// differs by more than 20% from the closest it is voted out.
|
||
while (maxp - minp > 1) {
|
||
if (entry.o2sensor[sensorn[minp + 1]].mbar - entry.o2sensor[sensorn[minp]].mbar >
|
||
sump / (maxp - minp + 1) / 5) {
|
||
sump -= entry.o2sensor[sensorn[minp]].mbar;
|
||
++minp;
|
||
continue;
|
||
}
|
||
if (entry.o2sensor[sensorn[maxp]].mbar - entry.o2sensor[sensorn[maxp - 1]].mbar >
|
||
sump / (maxp - minp +1) / 5) {
|
||
sump -= entry.o2sensor[sensorn[maxp]].mbar;
|
||
--maxp;
|
||
continue;
|
||
}
|
||
break;
|
||
}
|
||
|
||
return sump / (maxp - minp + 1);
|
||
|
||
}
|
||
|
||
static double gas_density(const struct gas_pressures &pressures)
|
||
{
|
||
return (pressures.o2 * O2_DENSITY + pressures.he * HE_DENSITY + pressures.n2 * N2_DENSITY) / 1000.0;
|
||
}
|
||
|
||
static void calculate_gas_information_new(const struct dive *dive, const struct divecomputer *dc, struct plot_info &pi)
|
||
{
|
||
int i;
|
||
double amb_pressure;
|
||
struct gasmix gasmix = gasmix_invalid;
|
||
const struct event *evg = NULL, *evd = NULL;
|
||
enum divemode_t current_divemode = UNDEF_COMP_TYPE;
|
||
|
||
for (i = 1; i < pi.nr; i++) {
|
||
double fn2, fhe;
|
||
struct plot_data &entry = pi.entry[i];
|
||
|
||
gasmix = get_gasmix(dive, dc, entry.sec, &evg, gasmix);
|
||
amb_pressure = depth_to_bar(entry.depth, dive);
|
||
current_divemode = get_current_divemode(dc, entry.sec, &evd, ¤t_divemode);
|
||
fill_pressures(&entry.pressures, amb_pressure, gasmix, (current_divemode == OC) ? 0.0 : entry.o2pressure.mbar / 1000.0, current_divemode);
|
||
fn2 = 1000.0 * entry.pressures.n2 / amb_pressure;
|
||
fhe = 1000.0 * entry.pressures.he / amb_pressure;
|
||
if (dc->divemode == PSCR) { // OC pO2 is calulated for PSCR with or without external PO2 monitoring.
|
||
struct gasmix gasmix2 = get_gasmix(dive, dc, entry.sec, &evg, gasmix);
|
||
entry.scr_OC_pO2.mbar = (int) depth_to_mbar(entry.depth, dive) * get_o2(gasmix2) / 1000;
|
||
}
|
||
|
||
/* Calculate MOD, EAD, END and EADD based on partial pressures calculated before
|
||
* so there is no difference in calculating between OC and CC
|
||
* END takes O₂ + N₂ (air) into account ("Narcotic" for trimix dives)
|
||
* EAD just uses N₂ ("Air" for nitrox dives) */
|
||
pressure_t modpO2 = { .mbar = (int)(prefs.modpO2 * 1000) };
|
||
entry.mod = gas_mod(gasmix, modpO2, dive, 1).mm;
|
||
entry.end = mbar_to_depth(lrint(depth_to_mbarf(entry.depth, dive) * (1000 - fhe) / 1000.0), dive);
|
||
entry.ead = mbar_to_depth(lrint(depth_to_mbarf(entry.depth, dive) * fn2 / (double)N2_IN_AIR), dive);
|
||
entry.eadd = mbar_to_depth(lrint(depth_to_mbarf(entry.depth, dive) *
|
||
(entry.pressures.o2 / amb_pressure * O2_DENSITY +
|
||
entry.pressures.n2 / amb_pressure * N2_DENSITY +
|
||
entry.pressures.he / amb_pressure * HE_DENSITY) /
|
||
(O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000), dive);
|
||
entry.density = gas_density(entry.pressures);
|
||
if (entry.mod < 0)
|
||
entry.mod = 0;
|
||
if (entry.ead < 0)
|
||
entry.ead = 0;
|
||
if (entry.end < 0)
|
||
entry.end = 0;
|
||
if (entry.eadd < 0)
|
||
entry.eadd = 0;
|
||
}
|
||
}
|
||
|
||
static void fill_o2_values(const struct dive *dive, const struct divecomputer *dc, struct plot_info &pi)
|
||
/* In the samples from each dive computer, there may be uninitialised oxygen
|
||
* sensor or setpoint values, e.g. when events were inserted into the dive log
|
||
* or if the dive computer does not report o2 values with every sample. But
|
||
* for drawing the profile a complete series of valid o2 pressure values is
|
||
* required. This function takes the oxygen sensor data and setpoint values
|
||
* from the structures of plotinfo and replaces the zero values with their
|
||
* last known values so that the oxygen sensor data are complete and ready
|
||
* for plotting. This function called by: create_plot_info_new() */
|
||
{
|
||
int i, j;
|
||
pressure_t last_sensor[3], o2pressure;
|
||
pressure_t amb_pressure;
|
||
|
||
for (i = 0; i < pi.nr; i++) {
|
||
struct plot_data &entry = pi.entry[i];
|
||
|
||
if (dc->divemode == CCR || (dc->divemode == PSCR && dc->no_o2sensors)) {
|
||
if (i == 0) { // For 1st iteration, initialise the last_sensor values
|
||
for (j = 0; j < dc->no_o2sensors; j++)
|
||
last_sensor[j].mbar = entry.o2sensor[j].mbar;
|
||
} else { // Now re-insert the missing oxygen pressure values
|
||
for (j = 0; j < dc->no_o2sensors; j++)
|
||
if (entry.o2sensor[j].mbar)
|
||
last_sensor[j].mbar = entry.o2sensor[j].mbar;
|
||
else
|
||
entry.o2sensor[j].mbar = last_sensor[j].mbar;
|
||
} // having initialised the empty o2 sensor values for this point on the profile,
|
||
amb_pressure.mbar = depth_to_mbar(entry.depth, dive);
|
||
o2pressure.mbar = calculate_ccr_po2(entry, dc); // ...calculate the po2 based on the sensor data
|
||
entry.o2pressure.mbar = std::min(o2pressure.mbar, amb_pressure.mbar);
|
||
} else {
|
||
entry.o2pressure.mbar = 0; // initialise po2 to zero for dctype = OC
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifdef DEBUG_GAS
|
||
/* A CCR debug function that writes the cylinder pressure and the oxygen values to the file debug_print_profiledata.dat:
|
||
* Called in create_plot_info_new()
|
||
*/
|
||
static void debug_print_profiledata(struct plot_info &pi)
|
||
{
|
||
FILE *f1;
|
||
struct plot_data *entry;
|
||
int i;
|
||
if (!(f1 = fopen("debug_print_profiledata.dat", "w"))) {
|
||
printf("File open error for: debug_print_profiledata.dat\n");
|
||
} else {
|
||
fprintf(f1, "id t1 gas gasint t2 t3 dil dilint t4 t5 setpoint sensor1 sensor2 sensor3 t6 po2 fo2\n");
|
||
for (i = 0; i < pi.nr; i++) {
|
||
struct plot_data &entry = pi.entry[i];
|
||
fprintf(f1, "%d gas=%8d %8d ; dil=%8d %8d ; o2_sp= %d %d %d %d PO2= %f\n", i, get_plot_sensor_pressure(pi, i),
|
||
get_plot_interpolated_pressure(pi, i), O2CYLINDER_PRESSURE(entry), INTERPOLATED_O2CYLINDER_PRESSURE(entry),
|
||
entry.o2pressure.mbar, entry.o2sensor[0].mbar, entry.o2sensor[1].mbar, entry.o2sensor[2].mbar, entry.pressures.o2);
|
||
}
|
||
fclose(f1);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/*
|
||
* Create a plot-info with smoothing and ranged min/max
|
||
*
|
||
* This also makes sure that we have extra empty events on both
|
||
* sides, so that you can do end-points without having to worry
|
||
* about it.
|
||
*
|
||
* The old data will be freed.
|
||
*/
|
||
struct plot_info create_plot_info_new(const struct dive *dive, const struct divecomputer *dc, const struct deco_state *planner_ds)
|
||
{
|
||
int o2, he, o2max;
|
||
struct deco_state plot_deco_state;
|
||
bool in_planner = planner_ds != NULL;
|
||
init_decompression(&plot_deco_state, dive, in_planner);
|
||
plot_info pi;
|
||
calculate_max_limits_new(dive, dc, pi, in_planner);
|
||
get_dive_gas(dive, &o2, &he, &o2max);
|
||
if (dc->divemode == FREEDIVE) {
|
||
pi.dive_type = plot_info::FREEDIVING;
|
||
} else if (he > 0) {
|
||
pi.dive_type = plot_info::TRIMIX;
|
||
} else {
|
||
if (o2)
|
||
pi.dive_type = plot_info::NITROX;
|
||
else
|
||
pi.dive_type = plot_info::AIR;
|
||
}
|
||
|
||
populate_plot_entries(dive, dc, pi);
|
||
|
||
check_setpoint_events(dive, dc, pi); /* Populate setpoints */
|
||
setup_gas_sensor_pressure(dive, dc, pi); /* Try to populate our gas pressure knowledge */
|
||
for (int cyl = 0; cyl < pi.nr_cylinders; cyl++)
|
||
populate_pressure_information(dive, dc, pi, cyl);
|
||
fill_o2_values(dive, dc, pi); /* .. and insert the O2 sensor data having 0 values. */
|
||
calculate_sac(dive, dc, pi); /* Calculate sac */
|
||
|
||
calculate_deco_information(&plot_deco_state, planner_ds, dive, dc, pi); /* and ceiling information, using gradient factor values in Preferences) */
|
||
|
||
calculate_gas_information_new(dive, dc, pi); /* Calculate gas partial pressures */
|
||
|
||
#ifdef DEBUG_GAS
|
||
debug_print_profiledata(pi);
|
||
#endif
|
||
|
||
pi.meandepth = dive->dc.meandepth.mm;
|
||
analyze_plot_info(pi);
|
||
return pi;
|
||
}
|
||
|
||
static std::vector<std::string> plot_string(const struct dive *d, const struct plot_info &pi, int idx)
|
||
{
|
||
int pressurevalue, mod, ead, end, eadd;
|
||
const char *depth_unit, *pressure_unit, *temp_unit, *vertical_speed_unit;
|
||
double depthvalue, tempvalue, speedvalue, sacvalue;
|
||
int decimals, cyl;
|
||
const char *unit;
|
||
const struct plot_data &entry = pi.entry[idx];
|
||
std::vector<std::string> res;
|
||
|
||
depthvalue = get_depth_units(entry.depth, NULL, &depth_unit);
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "@: %d:%02d"), FRACTION_TUPLE(entry.sec, 60)));
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "D: %.1f%s"), depthvalue, depth_unit));
|
||
for (cyl = 0; cyl < pi.nr_cylinders; cyl++) {
|
||
int mbar = get_plot_pressure(pi, idx, cyl);
|
||
if (!mbar)
|
||
continue;
|
||
struct gasmix mix = get_cylinder(d, cyl)->gasmix;
|
||
pressurevalue = get_pressure_units(mbar, &pressure_unit);
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "P: %d%s (%s)"), pressurevalue, pressure_unit, gasname(mix)));
|
||
}
|
||
if (entry.temperature) {
|
||
tempvalue = get_temp_units(entry.temperature, &temp_unit);
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "T: %.1f%s"), tempvalue, temp_unit));
|
||
}
|
||
speedvalue = get_vertical_speed_units(abs(entry.speed), NULL, &vertical_speed_unit);
|
||
/* Ascending speeds are positive, descending are negative */
|
||
if (entry.speed > 0)
|
||
speedvalue *= -1;
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "V: %.1f%s"), speedvalue, vertical_speed_unit));
|
||
sacvalue = get_volume_units(entry.sac, &decimals, &unit);
|
||
if (entry.sac && prefs.show_sac)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "SAC: %.*f%s/min"), decimals, sacvalue, unit));
|
||
if (entry.cns)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "CNS: %u%%"), entry.cns));
|
||
if (prefs.pp_graphs.po2 && entry.pressures.o2 > 0) {
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "pO₂: %.2fbar"), entry.pressures.o2));
|
||
if (entry.scr_OC_pO2.mbar)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "SCR ΔpO₂: %.2fbar"), entry.scr_OC_pO2.mbar/1000.0 - entry.pressures.o2));
|
||
}
|
||
if (prefs.pp_graphs.pn2 && entry.pressures.n2 > 0)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "pN₂: %.2fbar"), entry.pressures.n2));
|
||
if (prefs.pp_graphs.phe && entry.pressures.he > 0)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "pHe: %.2fbar"), entry.pressures.he));
|
||
if (prefs.mod && entry.mod > 0) {
|
||
mod = lrint(get_depth_units(entry.mod, NULL, &depth_unit));
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "MOD: %d%s"), mod, depth_unit));
|
||
}
|
||
eadd = lrint(get_depth_units(entry.eadd, NULL, &depth_unit));
|
||
|
||
if (prefs.ead) {
|
||
switch (pi.dive_type) {
|
||
case plot_info::NITROX:
|
||
if (entry.ead > 0) {
|
||
ead = lrint(get_depth_units(entry.ead, NULL, &depth_unit));
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "EAD: %d%s"), ead, depth_unit));
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "EADD: %d%s / %.1fg/ℓ"), eadd, depth_unit, entry.density));
|
||
break;
|
||
}
|
||
case plot_info::TRIMIX:
|
||
if (entry.end > 0) {
|
||
end = lrint(get_depth_units(entry.end, NULL, &depth_unit));
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "END: %d%s"), end, depth_unit));
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "EADD: %d%s / %.1fg/ℓ"), eadd, depth_unit, entry.density));
|
||
break;
|
||
}
|
||
case plot_info::AIR:
|
||
if (entry.density > 0) {
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "Density: %.1fg/ℓ"), entry.density));
|
||
}
|
||
case plot_info::FREEDIVING:
|
||
/* nothing */
|
||
break;
|
||
}
|
||
}
|
||
if (entry.stopdepth) {
|
||
depthvalue = get_depth_units(entry.stopdepth, NULL, &depth_unit);
|
||
if (entry.ndl > 0) {
|
||
/* this is a safety stop as we still have ndl */
|
||
if (entry.stoptime)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "Safety stop: %umin @ %.0f%s"), div_up(entry.stoptime, 60),
|
||
depthvalue, depth_unit));
|
||
else
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "Safety stop: unknown time @ %.0f%s"),
|
||
depthvalue, depth_unit));
|
||
} else {
|
||
/* actual deco stop */
|
||
if (entry.stoptime)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "Deco: %umin @ %.0f%s"), div_up(entry.stoptime, 60),
|
||
depthvalue, depth_unit));
|
||
else
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "Deco: unknown time @ %.0f%s"),
|
||
depthvalue, depth_unit));
|
||
}
|
||
} else if (entry.in_deco) {
|
||
res.push_back(translate("gettextFromC", "In deco"));
|
||
} else if (entry.ndl >= 0) {
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "NDL: %umin"), div_up(entry.ndl, 60)));
|
||
}
|
||
if (entry.tts)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "TTS: %umin"), div_up(entry.tts, 60)));
|
||
if (entry.stopdepth_calc && entry.stoptime_calc) {
|
||
depthvalue = get_depth_units(entry.stopdepth_calc, NULL, &depth_unit);
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "Deco: %umin @ %.0f%s (calc)"), div_up(entry.stoptime_calc, 60),
|
||
depthvalue, depth_unit));
|
||
} else if (entry.in_deco_calc) {
|
||
/* This means that we have no NDL left,
|
||
* and we have no deco stop,
|
||
* so if we just accend to the surface slowly
|
||
* (ascent_mm_per_step / ascent_s_per_step)
|
||
* everything will be ok. */
|
||
res.push_back(translate("gettextFromC", "In deco (calc)"));
|
||
} else if (prefs.calcndltts && entry.ndl_calc != 0) {
|
||
if(entry.ndl_calc < MAX_PROFILE_DECO)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "NDL: %umin (calc)"), div_up(entry.ndl_calc, 60)));
|
||
else
|
||
res.push_back(translate("gettextFromC", "NDL: >2h (calc)"));
|
||
}
|
||
if (entry.tts_calc) {
|
||
if (entry.tts_calc < MAX_PROFILE_DECO)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "TTS: %umin (calc)"), div_up(entry.tts_calc, 60)));
|
||
else
|
||
res.push_back(translate("gettextFromC", "TTS: >2h (calc)"));
|
||
}
|
||
if (entry.rbt)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "RBT: %umin"), div_up(entry.rbt, 60)));
|
||
if (prefs.decoinfo) {
|
||
if (entry.current_gf > 0.0)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "GF %d%%"), (int)(100.0 * entry.current_gf)));
|
||
if (entry.surface_gf > 0.0)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "Surface GF %.0f%%"), entry.surface_gf));
|
||
if (entry.ceiling) {
|
||
depthvalue = get_depth_units(entry.ceiling, NULL, &depth_unit);
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "Calculated ceiling %.1f%s"), depthvalue, depth_unit));
|
||
if (prefs.calcalltissues) {
|
||
int k;
|
||
for (k = 0; k < 16; k++) {
|
||
if (entry.ceilings[k]) {
|
||
depthvalue = get_depth_units(entry.ceilings[k], NULL, &depth_unit);
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "Tissue %.0fmin: %.1f%s"), buehlmann_N2_t_halflife[k], depthvalue, depth_unit));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (entry.icd_warning)
|
||
res.push_back(translate("gettextFromC", "ICD in leading tissue"));
|
||
if (entry.heartbeat && prefs.hrgraph)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "heart rate: %d"), entry.heartbeat));
|
||
if (entry.bearing >= 0)
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "bearing: %d"), entry.bearing));
|
||
if (entry.running_sum) {
|
||
depthvalue = get_depth_units(entry.running_sum / entry.sec, NULL, &depth_unit);
|
||
res.push_back(casprintf_loc(translate("gettextFromC", "mean depth to here %.1f%s"), depthvalue, depth_unit));
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
std::pair<int, std::vector<std::string>> get_plot_details_new(const struct dive *d, const struct plot_info &pi, int time)
|
||
{
|
||
/* The two first and the two last plot entries do not have useful data */
|
||
if (pi.entry.size() <= 4)
|
||
return { 0, {} };
|
||
|
||
// binary search for sample index
|
||
auto it = std::lower_bound(pi.entry.begin() + 2, pi.entry.end() - 3, time,
|
||
[] (const plot_data &d, int time)
|
||
{ return d.sec < time; });
|
||
int idx = it - pi.entry.begin();
|
||
|
||
auto strings = plot_string(d, pi, idx);
|
||
return std::make_pair(idx, strings);
|
||
}
|
||
|
||
/* Compare two plot_data entries and writes the results into a set of strings */
|
||
std::vector<std::string> compare_samples(const struct dive *d, const struct plot_info &pi, int idx1, int idx2, bool sum)
|
||
{
|
||
std::string space(" ");
|
||
const char *depth_unit, *pressure_unit, *vertical_speed_unit;
|
||
double depthvalue, speedvalue;
|
||
|
||
std::vector<std::string> res;
|
||
if (idx1 < 0 || idx2 < 0)
|
||
return res;
|
||
|
||
if (pi.entry[idx1].sec > pi.entry[idx2].sec) {
|
||
int tmp = idx2;
|
||
idx2 = idx1;
|
||
idx1 = tmp;
|
||
} else if (pi.entry[idx1].sec == pi.entry[idx2].sec) {
|
||
return res;
|
||
}
|
||
const struct plot_data &start = pi.entry[idx1];
|
||
const struct plot_data &stop = pi.entry[idx2];
|
||
|
||
int avg_speed = 0;
|
||
int max_asc_speed = 0;
|
||
int max_desc_speed = 0;
|
||
|
||
int delta_depth = abs(start.depth - stop.depth);
|
||
int delta_time = abs(start.sec - stop.sec);
|
||
int avg_depth = 0;
|
||
int max_depth = 0;
|
||
int min_depth = INT_MAX;
|
||
|
||
int last_sec = start.sec;
|
||
|
||
volume_t cylinder_volume = { .mliter = 0, };
|
||
std::vector<int> start_pressures(pi.nr_cylinders, 0);
|
||
std::vector<int> last_pressures(pi.nr_cylinders, 0);
|
||
std::vector<int> bar_used(pi.nr_cylinders, 0);
|
||
std::vector<int> volumes_used(pi.nr_cylinders, 0);
|
||
std::vector<char> cylinder_is_used(pi.nr_cylinders, false);
|
||
|
||
for (int i = idx1; i < idx2; ++i) {
|
||
const struct plot_data &data = pi.entry[i];
|
||
if (sum)
|
||
avg_speed += abs(data.speed) * (data.sec - last_sec);
|
||
else
|
||
avg_speed += data.speed * (data.sec - last_sec);
|
||
avg_depth += data.depth * (data.sec - last_sec);
|
||
|
||
if (data.speed > max_desc_speed)
|
||
max_desc_speed = data.speed;
|
||
if (data.speed < max_asc_speed)
|
||
max_asc_speed = data.speed;
|
||
|
||
if (data.depth < min_depth)
|
||
min_depth = data.depth;
|
||
if (data.depth > max_depth)
|
||
max_depth = data.depth;
|
||
|
||
for (int cylinder_index = 0; cylinder_index < pi.nr_cylinders; cylinder_index++) {
|
||
int next_pressure = get_plot_pressure(pi, i, cylinder_index);
|
||
if (next_pressure && !start_pressures[cylinder_index])
|
||
start_pressures[cylinder_index] = next_pressure;
|
||
|
||
if (start_pressures[cylinder_index]) {
|
||
if (last_pressures[cylinder_index]) {
|
||
bar_used[cylinder_index] += last_pressures[cylinder_index] - next_pressure;
|
||
|
||
cylinder_t *cyl = get_cylinder(d, cylinder_index);
|
||
|
||
volumes_used[cylinder_index] += gas_volume(cyl, (pressure_t){ last_pressures[cylinder_index] }) - gas_volume(cyl, (pressure_t){ next_pressure });
|
||
}
|
||
|
||
// check if the gas in this cylinder is being used
|
||
if (next_pressure < start_pressures[cylinder_index] - 1000 && !cylinder_is_used[cylinder_index]) {
|
||
cylinder_is_used[cylinder_index] = true;
|
||
}
|
||
}
|
||
|
||
last_pressures[cylinder_index] = next_pressure;
|
||
}
|
||
|
||
last_sec = data.sec;
|
||
}
|
||
|
||
avg_depth /= stop.sec - start.sec;
|
||
avg_speed /= stop.sec - start.sec;
|
||
|
||
std::string l = casprintf_loc(translate("gettextFromC", "ΔT:%d:%02dmin"), delta_time / 60, delta_time % 60);
|
||
|
||
depthvalue = get_depth_units(delta_depth, NULL, &depth_unit);
|
||
l += space + casprintf_loc(translate("gettextFromC", "ΔD:%.1f%s"), depthvalue, depth_unit);
|
||
|
||
depthvalue = get_depth_units(min_depth, NULL, &depth_unit);
|
||
l += space + casprintf_loc(translate("gettextFromC", "↓D:%.1f%s"), depthvalue, depth_unit);
|
||
|
||
depthvalue = get_depth_units(max_depth, NULL, &depth_unit);
|
||
l += space + casprintf_loc(translate("gettextFromC", "↑D:%.1f%s"), depthvalue, depth_unit);
|
||
|
||
depthvalue = get_depth_units(avg_depth, NULL, &depth_unit);
|
||
l += space + casprintf_loc(translate("gettextFromC", "øD:%.1f%s"), depthvalue, depth_unit);
|
||
res.push_back(l);
|
||
|
||
speedvalue = get_vertical_speed_units(abs(max_desc_speed), NULL, &vertical_speed_unit);
|
||
l = casprintf_loc(translate("gettextFromC", "↓V:%.2f%s"), speedvalue, vertical_speed_unit);
|
||
|
||
speedvalue = get_vertical_speed_units(abs(max_asc_speed), NULL, &vertical_speed_unit);
|
||
l += space + casprintf_loc(translate("gettextFromC", "↑V:%.2f%s"), speedvalue, vertical_speed_unit);
|
||
|
||
speedvalue = get_vertical_speed_units(abs(avg_speed), NULL, &vertical_speed_unit);
|
||
l += space + casprintf_loc(translate("gettextFromC", "øV:%.2f%s"), speedvalue, vertical_speed_unit);
|
||
|
||
int total_bar_used = 0;
|
||
int total_volume_used = 0;
|
||
bool cylindersizes_are_identical = true;
|
||
bool sac_is_determinable = true;
|
||
for (int cylinder_index = 0; cylinder_index < pi.nr_cylinders; cylinder_index++) {
|
||
if (cylinder_is_used[cylinder_index]) {
|
||
total_bar_used += bar_used[cylinder_index];
|
||
total_volume_used += volumes_used[cylinder_index];
|
||
|
||
cylinder_t *cyl = get_cylinder(d, cylinder_index);
|
||
if (cyl->type.size.mliter) {
|
||
if (cylinder_volume.mliter && cylinder_volume.mliter != cyl->type.size.mliter) {
|
||
cylindersizes_are_identical = false;
|
||
} else {
|
||
cylinder_volume.mliter = cyl->type.size.mliter;
|
||
}
|
||
} else {
|
||
sac_is_determinable = false;
|
||
}
|
||
}
|
||
}
|
||
|
||
// No point printing 'bar used' if we know it's meaningless because cylinders of different size were used
|
||
if (cylindersizes_are_identical && total_bar_used) {
|
||
int pressurevalue = get_pressure_units(total_bar_used, &pressure_unit);
|
||
l += space + casprintf_loc(translate("gettextFromC", "ΔP:%d%s"), pressurevalue, pressure_unit);
|
||
}
|
||
|
||
// We can't calculate the SAC if the volume for some of the cylinders used is unknown
|
||
if (sac_is_determinable && total_volume_used) {
|
||
int volume_precision;
|
||
const char *volume_unit;
|
||
|
||
/* Mean pressure in ATM */
|
||
double atm = depth_to_atm(avg_depth, d);
|
||
|
||
/* milliliters per minute */
|
||
int sac = lrint(total_volume_used / atm * 60 / delta_time);
|
||
double volume_value = get_volume_units(sac, &volume_precision, &volume_unit);
|
||
l += space + casprintf_loc(translate("gettextFromC", "SAC:%.*f%s/min"), volume_precision, volume_value, volume_unit);
|
||
}
|
||
res.push_back(l);
|
||
|
||
return res;
|
||
}
|