subsurface/core/dive.c
Berthold Stoeger 4374605c12 undo: make adding of pictures undoable
This one is a bit hairy, because two things might happen if the
picture has a geo location:
- A dive gets a newly generated dive site set.
- The dive site of a dive is edited.
Therefore the undo command has to store keep track of that.
Oh my.

Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
2020-05-06 13:58:09 -07:00

3964 lines
106 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* dive.c */
/* maintains the internal dive list structure */
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include "dive.h"
#include "gettext.h"
#include "subsurface-string.h"
#include "libdivecomputer.h"
#include "device.h"
#include "divelist.h"
#include "divesite.h"
#include "errorhelper.h"
#include "qthelper.h"
#include "membuffer.h"
#include "picture.h"
#include "tag.h"
#include "trip.h"
#include "structured_list.h"
#include "fulltext.h"
/* one could argue about the best place to have this variable -
* it's used in the UI, but it seems to make the most sense to have it
* here */
struct dive displayed_dive;
// For user visible text but still not translated
const char *divemode_text_ui[] = {
QT_TRANSLATE_NOOP("gettextFromC", "Open circuit"),
QT_TRANSLATE_NOOP("gettextFromC", "CCR"),
QT_TRANSLATE_NOOP("gettextFromC", "pSCR"),
QT_TRANSLATE_NOOP("gettextFromC", "Freedive")
};
// For writing/reading files.
const char *divemode_text[] = {"OC", "CCR", "PSCR", "Freedive"};
/*
* Adding a cylinder pressure sample field is not quite as trivial as it
* perhaps should be.
*
* We try to keep the same sensor index for the same sensor, so that even
* if the dive computer doesn't give pressure information for every sample,
* we don't move pressure information around between the different sensor
* indices.
*
* The "prepare_sample()" function will always copy the sensor indices
* from the previous sample, so the indices are pre-populated (but the
* pressures obviously are not)
*/
void add_sample_pressure(struct sample *sample, int sensor, int mbar)
{
int idx;
if (!mbar)
return;
/* Do we already have a slot for this sensor */
for (idx = 0; idx < MAX_SENSORS; idx++) {
if (sensor != sample->sensor[idx])
continue;
sample->pressure[idx].mbar = mbar;
return;
}
/* Pick the first unused index if we couldn't reuse one */
for (idx = 0; idx < MAX_SENSORS; idx++) {
if (sample->pressure[idx].mbar)
continue;
sample->sensor[idx] = sensor;
sample->pressure[idx].mbar = mbar;
return;
}
/* We do not have enough slots for the pressure samples. */
/* Should we warn the user about dropping pressure data? */
}
/*
* The legacy format for sample pressures has a single pressure
* for each sample that can have any sensor, plus a possible
* "o2pressure" that is fixed to the Oxygen sensor for a CCR dive.
*
* For more complex pressure data, we have to use explicit
* cylinder indices for each sample.
*
* This function returns a negative number for "no legacy mode",
* or a non-negative number that indicates the o2 sensor index.
*/
int legacy_format_o2pressures(const struct dive *dive, const struct divecomputer *dc)
{
int i, o2sensor;
o2sensor = (dc->divemode == CCR) ? get_cylinder_idx_by_use(dive, OXYGEN) : -1;
for (i = 0; i < dc->samples; i++) {
const struct sample *s = dc->sample + i;
int seen_pressure = 0, idx;
for (idx = 0; idx < MAX_SENSORS; idx++) {
int sensor = s->sensor[idx];
pressure_t p = s->pressure[idx];
if (!p.mbar)
continue;
if (sensor == o2sensor)
continue;
if (seen_pressure)
return -1;
seen_pressure = 1;
}
}
/*
* Use legacy mode: if we have no O2 sensor we return a
* positive sensor index that is guaranmteed to not match
* any sensor (we encode it as 8 bits).
*/
return o2sensor < 0 ? 256 : o2sensor;
}
int event_is_gaschange(const struct event *ev)
{
return ev->type == SAMPLE_EVENT_GASCHANGE ||
ev->type == SAMPLE_EVENT_GASCHANGE2;
}
bool event_is_divemodechange(const struct event *ev)
{
return same_string(ev->name, "modechange");
}
struct event *create_event(unsigned int time, int type, int flags, int value, const char *name)
{
int gas_index = -1;
struct event *ev;
unsigned int size, len = strlen(name);
size = sizeof(*ev) + len + 1;
ev = malloc(size);
if (!ev)
return NULL;
memset(ev, 0, size);
memcpy(ev->name, name, len);
ev->time.seconds = time;
ev->type = type;
ev->flags = flags;
ev->value = value;
/*
* Expand the events into a sane format. Currently
* just gas switches
*/
switch (type) {
case SAMPLE_EVENT_GASCHANGE2:
/* High 16 bits are He percentage */
ev->gas.mix.he.permille = (value >> 16) * 10;
/* Extension to the GASCHANGE2 format: cylinder index in 'flags' */
/* TODO: verify that gas_index < num_cylinders. */
if (flags > 0)
gas_index = flags-1;
/* Fallthrough */
case SAMPLE_EVENT_GASCHANGE:
/* Low 16 bits are O2 percentage */
ev->gas.mix.o2.permille = (value & 0xffff) * 10;
ev->gas.index = gas_index;
break;
}
return ev;
}
/* warning: does not test idx for validity */
struct event *create_gas_switch_event(struct dive *dive, struct divecomputer *dc, int seconds, int idx)
{
/* The gas switch event format is insane for historical reasons */
struct gasmix mix = get_cylinder(dive, idx)->gasmix;
int o2 = get_o2(mix);
int he = get_he(mix);
struct event *ev;
int value;
o2 = (o2 + 5) / 10;
he = (he + 5) / 10;
value = o2 + (he << 16);
ev = create_event(seconds, he ? SAMPLE_EVENT_GASCHANGE2 : SAMPLE_EVENT_GASCHANGE, 0, value, "gaschange");
ev->gas.index = idx;
ev->gas.mix = mix;
return ev;
}
struct event *clone_event_rename(const struct event *ev, const char *name)
{
return create_event(ev->time.seconds, ev->type, ev->flags, ev->value, name);
}
void add_event_to_dc(struct divecomputer *dc, struct event *ev)
{
struct event **p;
p = &dc->events;
/* insert in the sorted list of events */
while (*p && (*p)->time.seconds <= ev->time.seconds)
p = &(*p)->next;
ev->next = *p;
*p = ev;
}
struct event *add_event(struct divecomputer *dc, unsigned int time, int type, int flags, int value, const char *name)
{
struct event *ev = create_event(time, type, flags, value, name);
if (!ev)
return NULL;
add_event_to_dc(dc, ev);
remember_event(name);
return ev;
}
void add_gas_switch_event(struct dive *dive, struct divecomputer *dc, int seconds, int idx)
{
/* sanity check so we don't crash */
/* FIXME: The planner uses a dummy cylinder one past the official number of cylinders
* in the table to mark no-cylinder surface interavals. This is horrendous. Fix ASAP. */
//if (idx < 0 || idx >= dive->cylinders.nr) {
if (idx < 0 || idx >= dive->cylinders.nr + 1 || idx >= dive->cylinders.allocated) {
report_error("Unknown cylinder index: %d", idx);
return;
}
struct event *ev = create_gas_switch_event(dive, dc, seconds, idx);
add_event_to_dc(dc, ev);
}
/* Substitutes an event in a divecomputer for another. No reordering is performed! */
void swap_event(struct divecomputer *dc, struct event *from, struct event *to)
{
for (struct event **ep = &dc->events; *ep; ep = &(*ep)->next) {
if (*ep == from) {
to->next = from->next;
*ep = to;
from->next = NULL; // For good measure.
break;
}
}
}
bool same_event(const struct event *a, const struct event *b)
{
if (a->time.seconds != b->time.seconds)
return 0;
if (a->type != b->type)
return 0;
if (a->flags != b->flags)
return 0;
if (a->value != b->value)
return 0;
return !strcmp(a->name, b->name);
}
/* Remove given event from dive computer. Does *not* free the event. */
void remove_event_from_dc(struct divecomputer *dc, struct event *event)
{
for (struct event **ep = &dc->events; *ep; ep = &(*ep)->next) {
if (*ep == event) {
*ep = event->next;
event->next = NULL; // For good measure.
break;
}
}
}
/* since the name is an array as part of the structure (how silly is that?) we
* have to actually remove the existing event and replace it with a new one.
* WARNING, WARNING... this may end up freeing event in case that event is indeed
* WARNING, WARNING... part of this divecomputer on this dive! */
void update_event_name(struct dive *d, struct event *event, const char *name)
{
if (!d || !event)
return;
struct divecomputer *dc = get_dive_dc(d, dc_number);
if (!dc)
return;
struct event **removep = &dc->events;
struct event *remove;
while ((*removep)->next && !same_event(*removep, event))
removep = &(*removep)->next;
if (!same_event(*removep, event))
return;
remove = *removep;
*removep = (*removep)->next;
add_event(dc, event->time.seconds, event->type, event->flags, event->value, name);
free(remove);
invalidate_dive_cache(d);
}
void add_extra_data(struct divecomputer *dc, const char *key, const char *value)
{
struct extra_data **ed = &dc->extra_data;
while (*ed)
ed = &(*ed)->next;
*ed = malloc(sizeof(struct extra_data));
if (*ed) {
(*ed)->key = strdup(key);
(*ed)->value = strdup(value);
(*ed)->next = NULL;
}
}
/* Find the divemode at time 'time' (in seconds) into the dive. Sequentially step through the divemode-change events,
* saving the dive mode for each event. When the events occur AFTER 'time' seconds, the last stored divemode
* is returned. This function is self-tracking, relying on setting the event pointer 'evp' so that, in each iteration
* that calls this function, the search does not have to begin at the first event of the dive */
enum divemode_t get_current_divemode(const struct divecomputer *dc, int time, const struct event **evp, enum divemode_t *divemode)
{
const struct event *ev = *evp;
if (dc) {
if (*divemode == UNDEF_COMP_TYPE) {
*divemode = dc->divemode;
ev = get_next_event(dc->events, "modechange");
}
} else {
ev = NULL;
}
while (ev && ev->time.seconds < time) {
*divemode = (enum divemode_t) ev->value;
ev = get_next_event(ev->next, "modechange");
}
*evp = ev;
return *divemode;
}
struct gasmix get_gasmix_from_event(const struct dive *dive, const struct event *ev)
{
if (ev && event_is_gaschange(ev)) {
int index = ev->gas.index;
// FIXME: The planner uses one past cylinder-count to signify "surface air". Remove in due course.
if (index == dive->cylinders.nr)
return gasmix_air;
if (index >= 0 && index < dive->cylinders.nr)
return get_cylinder(dive, index)->gasmix;
return ev->gas.mix;
}
return gasmix_air;
}
// we need this to be uniq. oh, and it has no meaning whatsoever
// - that's why we have the silly initial number and increment by 3 :-)
int dive_getUniqID()
{
static int maxId = 83529;
maxId += 3;
return maxId;
}
struct dive *alloc_dive(void)
{
struct dive *dive;
dive = malloc(sizeof(*dive));
if (!dive)
exit(1);
memset(dive, 0, sizeof(*dive));
dive->id = dive_getUniqID();
return dive;
}
static void free_dc(struct divecomputer *dc);
static void free_dc_contents(struct divecomputer *dc);
/* copy an element in a list of dive computer extra data */
static void copy_extra_data(struct extra_data *sed, struct extra_data *ded)
{
ded->key = copy_string(sed->key);
ded->value = copy_string(sed->value);
}
/* this is very different from the copy_divecomputer later in this file;
* this function actually makes full copies of the content */
static void copy_dc(const struct divecomputer *sdc, struct divecomputer *ddc)
{
*ddc = *sdc;
ddc->model = copy_string(sdc->model);
ddc->serial = copy_string(sdc->serial);
ddc->fw_version = copy_string(sdc->fw_version);
copy_samples(sdc, ddc);
copy_events(sdc, ddc);
STRUCTURED_LIST_COPY(struct extra_data, sdc->extra_data, ddc->extra_data, copy_extra_data);
}
static void dc_cylinder_renumber(struct dive *dive, struct divecomputer *dc, const int mapping[]);
/* copy dive computer list and renumber the cylinders
* space for the first divecomputer is provided by the
* caller, the remainder is allocated */
static void copy_dc_renumber(struct dive *d, const struct divecomputer *sdc, struct divecomputer *ddc, const int cylinders_map[])
{
for (;;) {
copy_dc(sdc, ddc);
dc_cylinder_renumber(d, ddc, cylinders_map);
if (!sdc->next)
break;
sdc = sdc->next;
ddc->next = calloc(1, sizeof(struct divecomputer));
ddc = ddc->next;
}
ddc->next = NULL;
}
/* The first divecomputer is embedded in the dive structure. Free its data but not
* the structure itself. For all remainding dcs in the list, free data *and* structures. */
void free_dive_dcs(struct divecomputer *dc)
{
free_dc_contents(dc);
STRUCTURED_LIST_FREE(struct divecomputer, dc->next, free_dc);
}
static void free_dive_structures(struct dive *d)
{
if (!d)
return;
fulltext_unregister(d);
/* free the strings */
free(d->buddy);
free(d->divemaster);
free(d->notes);
free(d->suit);
/* free tags, additional dive computers, and pictures */
taglist_free(d->tag_list);
free_dive_dcs(&d->dc);
clear_cylinder_table(&d->cylinders);
free(d->cylinders.cylinders);
clear_weightsystem_table(&d->weightsystems);
free(d->weightsystems.weightsystems);
clear_picture_table(&d->pictures);
free(d->pictures.pictures);
}
void free_dive(struct dive *d)
{
free_dive_structures(d);
free(d);
}
/* copy_dive makes duplicates of many components of a dive;
* in order not to leak memory, we need to free those .
* copy_dive doesn't play with the divetrip and forward/backward pointers
* so we can ignore those */
void clear_dive(struct dive *d)
{
if (!d)
return;
free_dive_structures(d);
memset(d, 0, sizeof(struct dive));
}
/* make a true copy that is independent of the source dive;
* all data structures are duplicated, so the copy can be modified without
* any impact on the source */
static void copy_dive_nodc(const struct dive *s, struct dive *d)
{
clear_dive(d);
/* simply copy things over, but then make actual copies of the
* relevant components that are referenced through pointers,
* so all the strings and the structured lists */
*d = *s;
memset(&d->cylinders, 0, sizeof(d->cylinders));
memset(&d->weightsystems, 0, sizeof(d->weightsystems));
memset(&d->pictures, 0, sizeof(d->pictures));
d->full_text = NULL;
invalidate_dive_cache(d);
d->buddy = copy_string(s->buddy);
d->divemaster = copy_string(s->divemaster);
d->notes = copy_string(s->notes);
d->suit = copy_string(s->suit);
copy_cylinders(&s->cylinders, &d->cylinders);
copy_weights(&s->weightsystems, &d->weightsystems);
copy_pictures(&s->pictures, &d->pictures);
d->tag_list = taglist_copy(s->tag_list);
}
void copy_dive(const struct dive *s, struct dive *d)
{
copy_dive_nodc(s, d);
// Copy the first dc explicitly, then the list of subsequent dc's
copy_dc(&s->dc, &d->dc);
STRUCTURED_LIST_COPY(struct divecomputer, s->dc.next, d->dc.next, copy_dc);
}
static void copy_dive_onedc(const struct dive *s, const struct divecomputer *sdc, struct dive *d)
{
copy_dive_nodc(s, d);
copy_dc(sdc, &d->dc);
d->dc.next = NULL;
}
/* make a clone of the source dive and clean out the source dive;
* this is specifically so we can create a dive in the displayed_dive and then
* add it to the divelist.
* Note the difference to copy_dive() / clean_dive() */
struct dive *move_dive(struct dive *s)
{
struct dive *dive = alloc_dive();
*dive = *s; // so all the pointers in dive point to the things s pointed to
memset(s, 0, sizeof(struct dive)); // and now the pointers in s are gone
return dive;
}
#define CONDITIONAL_COPY_STRING(_component) \
if (what._component) \
d->_component = copy_string(s->_component)
// copy elements, depending on bits in what that are set
void selective_copy_dive(const struct dive *s, struct dive *d, struct dive_components what, bool clear)
{
if (clear)
clear_dive(d);
CONDITIONAL_COPY_STRING(notes);
CONDITIONAL_COPY_STRING(divemaster);
CONDITIONAL_COPY_STRING(buddy);
CONDITIONAL_COPY_STRING(suit);
if (what.rating)
d->rating = s->rating;
if (what.visibility)
d->visibility = s->visibility;
if (what.divesite) {
unregister_dive_from_dive_site(d);
add_dive_to_dive_site(d, s->dive_site);
}
if (what.tags)
d->tag_list = taglist_copy(s->tag_list);
if (what.cylinders)
copy_cylinder_types(s, d);
if (what.weights)
copy_weights(&s->weightsystems, &d->weightsystems);
}
#undef CONDITIONAL_COPY_STRING
struct event *clone_event(const struct event *src_ev)
{
struct event *ev;
if (!src_ev)
return NULL;
size_t size = sizeof(*src_ev) + strlen(src_ev->name) + 1;
ev = (struct event*) malloc(size);
if (!ev)
exit(1);
memcpy(ev, src_ev, size);
ev->next = NULL;
return ev;
}
/* copies all events in this dive computer */
void copy_events(const struct divecomputer *s, struct divecomputer *d)
{
const struct event *ev;
struct event **pev;
if (!s || !d)
return;
ev = s->events;
pev = &d->events;
while (ev != NULL) {
struct event *new_ev = clone_event(ev);
*pev = new_ev;
pev = &new_ev->next;
ev = ev->next;
}
*pev = NULL;
}
/* copies all events from all dive computers before a given time
this is used when editing a dive in the planner to preserve the events
of the old dive */
void copy_events_until(const struct dive *sd, struct dive *dd, int time)
{
if (!sd || !dd)
return;
const struct divecomputer *s = &sd->dc;
struct divecomputer *d = &dd->dc;
while (s && d) {
const struct event *ev;
ev = s->events;
while (ev != NULL) {
// Don't add events the planner knows about
if (ev->time.seconds < time && !event_is_gaschange(ev) && !event_is_divemodechange(ev))
add_event(d, ev->time.seconds, ev->type, ev->flags, ev->value, ev->name);
ev = ev->next;
}
s = s->next;
d = d->next;
}
}
int nr_cylinders(const struct dive *dive)
{
return dive->cylinders.nr;
}
int nr_weightsystems(const struct dive *dive)
{
return dive->weightsystems.nr;
}
void copy_used_cylinders(const struct dive *s, struct dive *d, bool used_only)
{
int i;
if (!s || !d)
return;
clear_cylinder_table(&d->cylinders);
for (i = 0; i < s->cylinders.nr; i++) {
if (!used_only || is_cylinder_used(s, i) || get_cylinder(s, i)->cylinder_use == NOT_USED)
add_cloned_cylinder(&d->cylinders, *get_cylinder(s, i));
}
}
void copy_samples(const struct divecomputer *s, struct divecomputer *d)
{
/* instead of carefully copying them one by one and calling add_sample
* over and over again, let's just copy the whole blob */
if (!s || !d)
return;
int nr = s->samples;
d->samples = nr;
d->alloc_samples = nr;
// We expect to be able to read the memory in the other end of the pointer
// if its a valid pointer, so don't expect malloc() to return NULL for
// zero-sized malloc, do it ourselves.
d->sample = NULL;
if(!nr)
return;
d->sample = malloc(nr * sizeof(struct sample));
if (d->sample)
memcpy(d->sample, s->sample, nr * sizeof(struct sample));
}
/* make room for num samples; if not enough space is available, the sample
* array is reallocated and the existing samples are copied. */
void alloc_samples(struct divecomputer *dc, int num)
{
if (num > dc->alloc_samples) {
dc->alloc_samples = (num * 3) / 2 + 10;
dc->sample = realloc(dc->sample, dc->alloc_samples * sizeof(struct sample));
if (!dc->sample)
dc->samples = dc->alloc_samples = 0;
}
}
void free_samples(struct divecomputer *dc)
{
if (dc) {
free(dc->sample);
dc->sample = 0;
dc->samples = 0;
dc->alloc_samples = 0;
}
}
struct sample *prepare_sample(struct divecomputer *dc)
{
if (dc) {
int nr = dc->samples;
struct sample *sample;
alloc_samples(dc, nr + 1);
if (!dc->sample)
return NULL;
sample = dc->sample + nr;
memset(sample, 0, sizeof(*sample));
// Copy the sensor numbers - but not the pressure values
// from the previous sample if any.
if (nr) {
for (int idx = 0; idx < MAX_SENSORS; idx++)
sample->sensor[idx] = sample[-1].sensor[idx];
}
// Init some values with -1
sample->bearing.degrees = -1;
sample->ndl.seconds = -1;
return sample;
}
return NULL;
}
void finish_sample(struct divecomputer *dc)
{
dc->samples++;
}
/*
* So when we re-calculate maxdepth and meandepth, we will
* not override the old numbers if they are close to the
* new ones.
*
* Why? Because a dive computer may well actually track the
* max. depth and mean depth at finer granularity than the
* samples it stores. So it's possible that the max and mean
* have been reported more correctly originally.
*
* Only if the values calculated from the samples are clearly
* different do we override the normal depth values.
*
* This considers 1m to be "clearly different". That's
* a totally random number.
*/
static void update_depth(depth_t *depth, int new)
{
if (new) {
int old = depth->mm;
if (abs(old - new) > 1000)
depth->mm = new;
}
}
static void update_temperature(temperature_t *temperature, int new)
{
if (new) {
int old = temperature->mkelvin;
if (abs(old - new) > 1000)
temperature->mkelvin = new;
}
}
/*
* Calculate how long we were actually under water, and the average
* depth while under water.
*
* This ignores any surface time in the middle of the dive.
*/
void fixup_dc_duration(struct divecomputer *dc)
{
int duration, i;
int lasttime, lastdepth, depthtime;
duration = 0;
lasttime = 0;
lastdepth = 0;
depthtime = 0;
for (i = 0; i < dc->samples; i++) {
struct sample *sample = dc->sample + i;
int time = sample->time.seconds;
int depth = sample->depth.mm;
/* We ignore segments at the surface */
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
duration += time - lasttime;
depthtime += (time - lasttime) * (depth + lastdepth) / 2;
}
lastdepth = depth;
lasttime = time;
}
if (duration) {
dc->duration.seconds = duration;
dc->meandepth.mm = (depthtime + duration / 2) / duration;
}
}
/* Which cylinders had gas used? */
#define SOME_GAS 5000
static bool cylinder_used(const cylinder_t *cyl)
{
int start_mbar, end_mbar;
start_mbar = cyl->start.mbar ?: cyl->sample_start.mbar;
end_mbar = cyl->end.mbar ?: cyl->sample_end.mbar;
// More than 5 bar used? This matches statistics.c
// heuristics
return start_mbar > end_mbar + SOME_GAS;
}
/* Get list of used cylinders. Returns the number of used cylinders. */
static int get_cylinder_used(const struct dive *dive, bool used[])
{
int i, num = 0;
for (i = 0; i < dive->cylinders.nr; i++) {
used[i] = cylinder_used(get_cylinder(dive, i));
if (used[i])
num++;
}
return num;
}
/* Are there any used cylinders which we do not know usage about? */
static bool has_unknown_used_cylinders(const struct dive *dive, const struct divecomputer *dc,
const bool used_cylinders[], int num)
{
int idx;
const struct event *ev;
bool *used_and_unknown = malloc(dive->cylinders.nr * sizeof(bool));
memcpy(used_and_unknown, used_cylinders, dive->cylinders.nr * sizeof(bool));
/* We know about using the O2 cylinder in a CCR dive */
if (dc->divemode == CCR) {
int o2_cyl = get_cylinder_idx_by_use(dive, OXYGEN);
if (o2_cyl >= 0 && used_and_unknown[o2_cyl]) {
used_and_unknown[o2_cyl] = false;
num--;
}
}
/* We know about the explicit first cylinder (or first) */
idx = explicit_first_cylinder(dive, dc);
if (used_and_unknown[idx]) {
used_and_unknown[idx] = false;
num--;
}
/* And we have possible switches to other gases */
ev = get_next_event(dc->events, "gaschange");
while (ev && num > 0) {
idx = get_cylinder_index(dive, ev);
if (idx >= 0 && used_and_unknown[idx]) {
used_and_unknown[idx] = false;
num--;
}
ev = get_next_event(ev->next, "gaschange");
}
free(used_and_unknown);
return num > 0;
}
void per_cylinder_mean_depth(const struct dive *dive, struct divecomputer *dc, int *mean, int *duration)
{
int i;
int *depthtime;
uint32_t lasttime = 0;
int lastdepth = 0;
int idx = 0;
bool *used_cylinders;
int num_used_cylinders;
if (dive->cylinders.nr <= 0)
return;
for (i = 0; i < dive->cylinders.nr; i++)
mean[i] = duration[i] = 0;
if (!dc)
return;
/*
* There is no point in doing per-cylinder information
* if we don't actually know about the usage of all the
* used cylinders.
*/
used_cylinders = malloc(dive->cylinders.nr * sizeof(bool));
num_used_cylinders = get_cylinder_used(dive, used_cylinders);
if (has_unknown_used_cylinders(dive, dc, used_cylinders, num_used_cylinders)) {
/*
* If we had more than one used cylinder, but
* do not know usage of them, we simply cannot
* account mean depth to them.
*/
if (num_used_cylinders > 1) {
free(used_cylinders);
return;
}
/*
* For a single cylinder, use the overall mean
* and duration
*/
for (i = 0; i < dive->cylinders.nr; i++) {
if (used_cylinders[i]) {
mean[i] = dc->meandepth.mm;
duration[i] = dc->duration.seconds;
}
}
free(used_cylinders);
return;
}
free(used_cylinders);
if (!dc->samples)
fake_dc(dc);
const struct event *ev = get_next_event(dc->events, "gaschange");
depthtime = malloc(dive->cylinders.nr * sizeof(*depthtime));
memset(depthtime, 0, dive->cylinders.nr * sizeof(*depthtime));
for (i = 0; i < dc->samples; i++) {
struct sample *sample = dc->sample + i;
uint32_t time = sample->time.seconds;
int depth = sample->depth.mm;
/* Make sure to move the event past 'lasttime' */
while (ev && lasttime >= ev->time.seconds) {
idx = get_cylinder_index(dive, ev);
ev = get_next_event(ev->next, "gaschange");
}
/* Do we need to fake a midway sample at an event? */
if (ev && time > ev->time.seconds) {
int newtime = ev->time.seconds;
int newdepth = interpolate(lastdepth, depth, newtime - lasttime, time - lasttime);
time = newtime;
depth = newdepth;
i--;
}
/* We ignore segments at the surface */
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
duration[idx] += time - lasttime;
depthtime[idx] += (time - lasttime) * (depth + lastdepth) / 2;
}
lastdepth = depth;
lasttime = time;
}
for (i = 0; i < dive->cylinders.nr; i++) {
if (duration[i])
mean[i] = (depthtime[i] + duration[i] / 2) / duration[i];
}
free(depthtime);
}
static void update_min_max_temperatures(struct dive *dive, temperature_t temperature)
{
if (temperature.mkelvin) {
if (!dive->maxtemp.mkelvin || temperature.mkelvin > dive->maxtemp.mkelvin)
dive->maxtemp = temperature;
if (!dive->mintemp.mkelvin || temperature.mkelvin < dive->mintemp.mkelvin)
dive->mintemp = temperature;
}
}
/*
* If the cylinder tank pressures are within half a bar
* (about 8 PSI) of the sample pressures, we consider it
* to be a rounding error, and throw them away as redundant.
*/
static int same_rounded_pressure(pressure_t a, pressure_t b)
{
return abs(a.mbar - b.mbar) <= 500;
}
/* Some dive computers (Cobalt) don't start the dive with cylinder 0 but explicitly
* tell us what the first gas is with a gas change event in the first sample.
* Sneakily we'll use a return value of 0 (or FALSE) when there is no explicit
* first cylinder - in which case cylinder 0 is indeed the first cylinder.
* We likewise return 0 if the event concerns a cylinder that doesn't exist.
* If the dive has no cylinders, -1 is returned. */
int explicit_first_cylinder(const struct dive *dive, const struct divecomputer *dc)
{
int res = 0;
if (!dive->cylinders.nr)
return -1;
if (dc) {
const struct event *ev = get_next_event(dc->events, "gaschange");
if (ev && ((dc->sample && ev->time.seconds == dc->sample[0].time.seconds) || ev->time.seconds <= 1))
res = get_cylinder_index(dive, ev);
else if (dc->divemode == CCR)
res = MAX(get_cylinder_idx_by_use(dive, DILUENT), 0);
}
return res < dive->cylinders.nr ? res : 0;
}
/* this gets called when the dive mode has changed (so OC vs. CC)
* there are two places we might have setpoints... events or in the samples
*/
void update_setpoint_events(const struct dive *dive, struct divecomputer *dc)
{
struct event *ev;
int new_setpoint = 0;
if (dc->divemode == CCR)
new_setpoint = prefs.defaultsetpoint;
if (dc->divemode == OC &&
(same_string(dc->model, "Shearwater Predator") ||
same_string(dc->model, "Shearwater Petrel") ||
same_string(dc->model, "Shearwater Nerd"))) {
// make sure there's no setpoint in the samples
// this is an irreversible change - so switching a dive to OC
// by mistake when it's actually CCR is _bad_
// So we make sure, this comes from a Predator or Petrel and we only remove
// pO2 values we would have computed anyway.
const struct event *ev = get_next_event(dc->events, "gaschange");
struct gasmix gasmix = get_gasmix_from_event(dive, ev);
const struct event *next = get_next_event(ev, "gaschange");
for (int i = 0; i < dc->samples; i++) {
struct gas_pressures pressures;
if (next && dc->sample[i].time.seconds >= next->time.seconds) {
ev = next;
gasmix = get_gasmix_from_event(dive, ev);
next = get_next_event(ev, "gaschange");
}
fill_pressures(&pressures, calculate_depth_to_mbar(dc->sample[i].depth.mm, dc->surface_pressure, 0), gasmix ,0, dc->divemode);
if (abs(dc->sample[i].setpoint.mbar - (int)(1000 * pressures.o2)) <= 50)
dc->sample[i].setpoint.mbar = 0;
}
}
// an "SP change" event at t=0 is currently our marker for OC vs CCR
// this will need to change to a saner setup, but for now we can just
// check if such an event is there and adjust it, or add that event
ev = get_next_event_mutable(dc->events, "SP change");
if (ev && ev->time.seconds == 0) {
ev->value = new_setpoint;
} else {
if (!add_event(dc, 0, SAMPLE_EVENT_PO2, 0, new_setpoint, "SP change"))
fprintf(stderr, "Could not add setpoint change event\n");
}
}
/*
* See if the size/workingpressure looks like some standard cylinder
* size, eg "AL80".
*
* NOTE! We don't take compressibility into account when naming
* cylinders. That makes a certain amount of sense, since the
* cylinder name is independent from the gasmix, and different
* gasmixes have different compressibility.
*/
static void match_standard_cylinder(cylinder_type_t *type)
{
double cuft, bar;
int psi, len;
const char *fmt;
char buffer[40], *p;
/* Do we already have a cylinder description? */
if (type->description)
return;
bar = type->workingpressure.mbar / 1000.0;
cuft = ml_to_cuft(type->size.mliter);
cuft *= bar_to_atm(bar);
psi = to_PSI(type->workingpressure);
switch (psi) {
case 2300 ... 2500: /* 2400 psi: LP tank */
fmt = "LP%d";
break;
case 2600 ... 2700: /* 2640 psi: LP+10% */
fmt = "LP%d";
break;
case 2900 ... 3100: /* 3000 psi: ALx tank */
fmt = "AL%d";
break;
case 3400 ... 3500: /* 3442 psi: HP tank */
fmt = "HP%d";
break;
case 3700 ... 3850: /* HP+10% */
fmt = "HP%d+";
break;
default:
return;
}
len = snprintf(buffer, sizeof(buffer), fmt, (int)lrint(cuft));
p = malloc(len + 1);
if (!p)
return;
memcpy(p, buffer, len + 1);
type->description = p;
}
/*
* There are two ways to give cylinder size information:
* - total amount of gas in cuft (depends on working pressure and physical size)
* - physical size
*
* where "physical size" is the one that actually matters and is sane.
*
* We internally use physical size only. But we save the workingpressure
* so that we can do the conversion if required.
*/
static void sanitize_cylinder_type(cylinder_type_t *type)
{
/* If we have no working pressure, it had *better* be just a physical size! */
if (!type->workingpressure.mbar)
return;
/* No size either? Nothing to go on */
if (!type->size.mliter)
return;
/* Ok, we have both size and pressure: try to match a description */
match_standard_cylinder(type);
}
static void sanitize_cylinder_info(struct dive *dive)
{
int i;
for (i = 0; i < dive->cylinders.nr; i++) {
sanitize_gasmix(&get_cylinder(dive, i)->gasmix);
sanitize_cylinder_type(&get_cylinder(dive, i)->type);
}
}
/* some events should never be thrown away */
static bool is_potentially_redundant(const struct event *event)
{
if (!strcmp(event->name, "gaschange"))
return false;
if (!strcmp(event->name, "bookmark"))
return false;
if (!strcmp(event->name, "heading"))
return false;
return true;
}
/* match just by name - we compare the details in the code that uses this helper */
static struct event *find_previous_event(struct divecomputer *dc, struct event *event)
{
struct event *ev = dc->events;
struct event *previous = NULL;
if (empty_string(event->name))
return NULL;
while (ev && ev != event) {
if (same_string(ev->name, event->name))
previous = ev;
ev = ev->next;
}
return previous;
}
pressure_t calculate_surface_pressure(const struct dive *dive)
{
const struct divecomputer *dc;
pressure_t res;
int sum = 0, nr = 0;
for_each_dc (dive, dc) {
if (dc->surface_pressure.mbar) {
sum += dc->surface_pressure.mbar;
nr++;
}
}
res.mbar = nr ? (sum + nr / 2) / nr : 0;
return res;
}
static void fixup_surface_pressure(struct dive *dive)
{
dive->surface_pressure = calculate_surface_pressure(dive);
}
/* if the surface pressure in the dive data is redundant to the calculated
* value (i.e., it was added by running fixup on the dive) return 0,
* otherwise return the surface pressure given in the dive */
pressure_t un_fixup_surface_pressure(const struct dive *d)
{
pressure_t res = d->surface_pressure;
if (res.mbar && res.mbar == calculate_surface_pressure(d).mbar)
res.mbar = 0;
return res;
}
static void fixup_water_salinity(struct dive *dive)
{
struct divecomputer *dc;
int sum = 0, nr = 0;
for_each_dc (dive, dc) {
if (dc->salinity) {
if (dc->salinity < 500)
dc->salinity += FRESHWATER_SALINITY;
sum += dc->salinity;
nr++;
}
}
if (nr)
dive->salinity = (sum + nr / 2) / nr;
}
int get_dive_salinity(const struct dive *dive)
{
return dive->user_salinity ? dive->user_salinity : dive->salinity;
}
static void fixup_meandepth(struct dive *dive)
{
struct divecomputer *dc;
int sum = 0, nr = 0;
for_each_dc (dive, dc) {
if (dc->meandepth.mm) {
sum += dc->meandepth.mm;
nr++;
}
}
if (nr)
dive->meandepth.mm = (sum + nr / 2) / nr;
}
static void fixup_duration(struct dive *dive)
{
struct divecomputer *dc;
duration_t duration = { };
for_each_dc (dive, dc)
duration.seconds = MAX(duration.seconds, dc->duration.seconds);
dive->duration.seconds = duration.seconds;
}
/*
* What do the dive computers say the water temperature is?
* (not in the samples, but as dc property for dcs that support that)
*/
unsigned int dc_watertemp(const struct divecomputer *dc)
{
int sum = 0, nr = 0;
do {
if (dc->watertemp.mkelvin) {
sum += dc->watertemp.mkelvin;
nr++;
}
} while ((dc = dc->next) != NULL);
if (!nr)
return 0;
return (sum + nr / 2) / nr;
}
static void fixup_watertemp(struct dive *dive)
{
if (!dive->watertemp.mkelvin)
dive->watertemp.mkelvin = dc_watertemp(&dive->dc);
}
/*
* What do the dive computers say the air temperature is?
*/
unsigned int dc_airtemp(const struct divecomputer *dc)
{
int sum = 0, nr = 0;
do {
if (dc->airtemp.mkelvin) {
sum += dc->airtemp.mkelvin;
nr++;
}
} while ((dc = dc->next) != NULL);
if (!nr)
return 0;
return (sum + nr / 2) / nr;
}
static void fixup_airtemp(struct dive *dive)
{
if (!dive->airtemp.mkelvin)
dive->airtemp.mkelvin = dc_airtemp(&dive->dc);
}
/* if the air temperature in the dive data is redundant to the one in its
* first divecomputer (i.e., it was added by running fixup on the dive)
* return 0, otherwise return the air temperature given in the dive */
static temperature_t un_fixup_airtemp(const struct dive *a)
{
temperature_t res = a->airtemp;
if (a->airtemp.mkelvin && a->airtemp.mkelvin == dc_airtemp(&a->dc))
res.mkelvin = 0;
return res;
}
/*
* events are stored as a linked list, so the concept of
* "consecutive, identical events" is somewhat hard to
* implement correctly (especially given that on some dive
* computers events are asynchronous, so they can come in
* between what would be the non-constant sample rate).
*
* So what we do is that we throw away clearly redundant
* events that are fewer than 61 seconds apart (assuming there
* is no dive computer with a sample rate of more than 60
* seconds... that would be pretty pointless to plot the
* profile with)
*
* We first only mark the events for deletion so that we
* still know when the previous event happened.
*/
static void fixup_dc_events(struct divecomputer *dc)
{
struct event *event;
event = dc->events;
while (event) {
struct event *prev;
if (is_potentially_redundant(event)) {
prev = find_previous_event(dc, event);
if (prev && prev->value == event->value &&
prev->flags == event->flags &&
event->time.seconds - prev->time.seconds < 61)
event->deleted = true;
}
event = event->next;
}
event = dc->events;
while (event) {
if (event->next && event->next->deleted) {
struct event *nextnext = event->next->next;
free(event->next);
event->next = nextnext;
} else {
event = event->next;
}
}
}
static int interpolate_depth(struct divecomputer *dc, int idx, int lastdepth, int lasttime, int now)
{
int i;
int nextdepth = lastdepth;
int nexttime = now;
for (i = idx+1; i < dc->samples; i++) {
struct sample *sample = dc->sample + i;
if (sample->depth.mm < 0)
continue;
nextdepth = sample->depth.mm;
nexttime = sample->time.seconds;
break;
}
return interpolate(lastdepth, nextdepth, now-lasttime, nexttime-lasttime);
}
static void fixup_dc_depths(struct dive *dive, struct divecomputer *dc)
{
int i;
int maxdepth = dc->maxdepth.mm;
int lasttime = 0, lastdepth = 0;
for (i = 0; i < dc->samples; i++) {
struct sample *sample = dc->sample + i;
int time = sample->time.seconds;
int depth = sample->depth.mm;
if (depth < 0) {
depth = interpolate_depth(dc, i, lastdepth, lasttime, time);
sample->depth.mm = depth;
}
if (depth > SURFACE_THRESHOLD) {
if (depth > maxdepth)
maxdepth = depth;
}
lastdepth = depth;
lasttime = time;
if (sample->cns > dive->maxcns)
dive->maxcns = sample->cns;
}
update_depth(&dc->maxdepth, maxdepth);
if (maxdepth > dive->maxdepth.mm)
dive->maxdepth.mm = maxdepth;
}
static void fixup_dc_ndl(struct divecomputer *dc)
{
int i;
for (i = 0; i < dc->samples; i++) {
struct sample *sample = dc->sample + i;
if (sample->ndl.seconds != 0)
break;
if (sample->ndl.seconds == 0)
sample->ndl.seconds = -1;
}
}
static void fixup_dc_temp(struct dive *dive, struct divecomputer *dc)
{
int i;
int mintemp = 0, lasttemp = 0;
for (i = 0; i < dc->samples; i++) {
struct sample *sample = dc->sample + i;
int temp = sample->temperature.mkelvin;
if (temp) {
/*
* If we have consecutive identical
* temperature readings, throw away
* the redundant ones.
*/
if (lasttemp == temp)
sample->temperature.mkelvin = 0;
else
lasttemp = temp;
if (!mintemp || temp < mintemp)
mintemp = temp;
}
update_min_max_temperatures(dive, sample->temperature);
}
update_temperature(&dc->watertemp, mintemp);
update_min_max_temperatures(dive, dc->watertemp);
}
/* Remove redundant pressure information */
static void simplify_dc_pressures(struct divecomputer *dc)
{
int i;
int lastindex[2] = { -1, -1 };
int lastpressure[2] = { 0 };
for (i = 0; i < dc->samples; i++) {
int j;
struct sample *sample = dc->sample + i;
for (j = 0; j < MAX_SENSORS; j++) {
int pressure = sample->pressure[j].mbar;
int index = sample->sensor[j];
if (index == lastindex[j]) {
/* Remove duplicate redundant pressure information */
if (pressure == lastpressure[j])
sample->pressure[j].mbar = 0;
}
lastindex[j] = index;
lastpressure[j] = pressure;
}
}
}
/* Do we need a sensor -> cylinder mapping? */
static void fixup_start_pressure(struct dive *dive, int idx, pressure_t p)
{
if (idx >= 0 && idx < dive->cylinders.nr) {
cylinder_t *cyl = get_cylinder(dive, idx);
if (p.mbar && !cyl->sample_start.mbar)
cyl->sample_start = p;
}
}
static void fixup_end_pressure(struct dive *dive, int idx, pressure_t p)
{
if (idx >= 0 && idx < dive->cylinders.nr) {
cylinder_t *cyl = get_cylinder(dive, idx);
if (p.mbar && !cyl->sample_end.mbar)
cyl->sample_end = p;
}
}
/*
* Check the cylinder pressure sample information and fill in the
* overall cylinder pressures from those.
*
* We ignore surface samples for tank pressure information.
*
* At the beginning of the dive, let the cylinder cool down
* if the diver starts off at the surface. And at the end
* of the dive, there may be surface pressures where the
* diver has already turned off the air supply (especially
* for computers like the Uemis Zurich that end up saving
* quite a bit of samples after the dive has ended).
*/
static void fixup_dive_pressures(struct dive *dive, struct divecomputer *dc)
{
int i;
/* Walk the samples from the beginning to find starting pressures.. */
for (i = 0; i < dc->samples; i++) {
int idx;
struct sample *sample = dc->sample + i;
if (sample->depth.mm < SURFACE_THRESHOLD)
continue;
for (idx = 0; idx < MAX_SENSORS; idx++)
fixup_start_pressure(dive, sample->sensor[idx], sample->pressure[idx]);
}
/* ..and from the end for ending pressures */
for (i = dc->samples; --i >= 0; ) {
int idx;
struct sample *sample = dc->sample + i;
if (sample->depth.mm < SURFACE_THRESHOLD)
continue;
for (idx = 0; idx < MAX_SENSORS; idx++)
fixup_end_pressure(dive, sample->sensor[idx], sample->pressure[idx]);
}
simplify_dc_pressures(dc);
}
/*
* Match a gas change event against the cylinders we have
*/
static bool validate_gaschange(struct dive *dive, struct event *event)
{
int index;
int o2, he, value;
/* We'll get rid of the per-event gasmix, but for now sanitize it */
if (gasmix_is_air(event->gas.mix))
event->gas.mix.o2.permille = 0;
/* Do we already have a cylinder index for this gasmix? */
if (event->gas.index >= 0)
return true;
index = find_best_gasmix_match(event->gas.mix, &dive->cylinders);
if (index < 0 || index >= dive->cylinders.nr)
return false;
/* Fix up the event to have the right information */
event->gas.index = index;
event->gas.mix = get_cylinder(dive, index)->gasmix;
/* Convert to odd libdivecomputer format */
o2 = get_o2(event->gas.mix);
he = get_he(event->gas.mix);
o2 = (o2 + 5) / 10;
he = (he + 5) / 10;
value = o2 + (he << 16);
event->value = value;
if (he)
event->type = SAMPLE_EVENT_GASCHANGE2;
return true;
}
/* Clean up event, return true if event is ok, false if it should be dropped as bogus */
static bool validate_event(struct dive *dive, struct event *event)
{
if (event_is_gaschange(event))
return validate_gaschange(dive, event);
return true;
}
static void fixup_dc_gasswitch(struct dive *dive, struct divecomputer *dc)
{
struct event **evp, *event;
evp = &dc->events;
while ((event = *evp) != NULL) {
if (validate_event(dive, event)) {
evp = &event->next;
continue;
}
/* Delete this event and try the next one */
*evp = event->next;
}
}
static void fixup_no_o2sensors(struct divecomputer *dc)
{
// Its only relevant to look for sensor values on CCR and PSCR dives without any no_o2sensors recorded.
if (dc->no_o2sensors != 0 || !(dc->divemode == CCR || dc->divemode == PSCR))
return;
for (int i = 0; i < dc->samples; i++) {
int nsensor = 0;
struct sample *s = dc->sample + i;
// How many o2 sensors can we find in this sample?
if (s->o2sensor[0].mbar)
nsensor++;
if (s->o2sensor[1].mbar)
nsensor++;
if (s->o2sensor[2].mbar)
nsensor++;
// If we fond more than the previous found max, record it.
if (nsensor > dc->no_o2sensors)
dc->no_o2sensors = nsensor;
// Already found the maximum posible amount.
if (nsensor == 3)
return;
}
}
static void fixup_dive_dc(struct dive *dive, struct divecomputer *dc)
{
/* Add device information to table */
if (dc->deviceid && (dc->serial || dc->fw_version))
create_device_node(dc->model, dc->deviceid, dc->serial, dc->fw_version, "");
/* Fixup duration and mean depth */
fixup_dc_duration(dc);
/* Fix up sample depth data */
fixup_dc_depths(dive, dc);
/* Fix up first sample ndl data */
fixup_dc_ndl(dc);
/* Fix up dive temperatures based on dive computer samples */
fixup_dc_temp(dive, dc);
/* Fix up gas switch events */
fixup_dc_gasswitch(dive, dc);
/* Fix up cylinder pressures based on DC info */
fixup_dive_pressures(dive, dc);
fixup_dc_events(dc);
/* Fixup CCR / PSCR dives with o2sensor values, but without no_o2sensors */
fixup_no_o2sensors(dc);
}
struct dive *fixup_dive(struct dive *dive)
{
int i;
struct divecomputer *dc;
sanitize_cylinder_info(dive);
dive->maxcns = dive->cns;
/*
* Use the dive's temperatures for minimum and maximum in case
* we do not have temperatures recorded by DC.
*/
update_min_max_temperatures(dive, dive->watertemp);
for_each_dc (dive, dc)
fixup_dive_dc(dive, dc);
fixup_water_salinity(dive);
if (!dive->surface_pressure.mbar)
fixup_surface_pressure(dive);
fixup_meandepth(dive);
fixup_duration(dive);
fixup_watertemp(dive);
fixup_airtemp(dive);
for (i = 0; i < dive->cylinders.nr; i++) {
cylinder_t *cyl = get_cylinder(dive, i);
add_cylinder_description(&cyl->type);
if (same_rounded_pressure(cyl->sample_start, cyl->start))
cyl->start.mbar = 0;
if (same_rounded_pressure(cyl->sample_end, cyl->end))
cyl->end.mbar = 0;
}
update_cylinder_related_info(dive);
for (i = 0; i < dive->weightsystems.nr; i++) {
weightsystem_t *ws = &dive->weightsystems.weightsystems[i];
add_weightsystem_description(ws);
}
/* we should always have a uniq ID as that gets assigned during alloc_dive(),
* but we want to make sure... */
if (!dive->id)
dive->id = dive_getUniqID();
return dive;
}
/* Don't pick a zero for MERGE_MIN() */
#define MERGE_MAX(res, a, b, n) res->n = MAX(a->n, b->n)
#define MERGE_MIN(res, a, b, n) res->n = (a->n) ? (b->n) ? MIN(a->n, b->n) : (a->n) : (b->n)
#define MERGE_TXT(res, a, b, n, sep) res->n = merge_text(a->n, b->n, sep)
#define MERGE_NONZERO(res, a, b, n) res->n = a->n ? a->n : b->n
struct sample *add_sample(const struct sample *sample, int time, struct divecomputer *dc)
{
struct sample *p = prepare_sample(dc);
if (p) {
*p = *sample;
p->time.seconds = time;
finish_sample(dc);
}
return p;
}
/*
* This is like add_sample(), but if the distance from the last sample
* is excessive, we add two surface samples in between.
*
* This is so that if you merge two non-overlapping dives, we make sure
* that the time in between the dives is at the surface, not some "last
* sample that happened to be at a depth of 1.2m".
*/
static void merge_one_sample(const struct sample *sample, int time, struct divecomputer *dc)
{
int last = dc->samples - 1;
if (last >= 0) {
struct sample *prev = dc->sample + last;
int last_time = prev->time.seconds;
int last_depth = prev->depth.mm;
/*
* Only do surface events if the samples are more than
* a minute apart, and shallower than 5m
*/
if (time > last_time + 60 && last_depth < 5000) {
struct sample surface = { 0 };
/* Init a few values from prev sample to avoid useless info in XML */
surface.bearing.degrees = prev->bearing.degrees;
surface.ndl.seconds = prev->ndl.seconds;
add_sample(&surface, last_time + 20, dc);
add_sample(&surface, time - 20, dc);
}
}
add_sample(sample, time, dc);
}
static void renumber_last_sample(struct divecomputer *dc, const int mapping[]);
static void sample_renumber(struct sample *s, int i, const int mapping[]);
/*
* Merge samples. Dive 'a' is "offset" seconds before Dive 'b'
*/
static void merge_samples(struct divecomputer *res,
const struct divecomputer *a, const struct divecomputer *b,
const int *cylinders_map_a, const int *cylinders_map_b,
int offset)
{
int asamples = a->samples;
int bsamples = b->samples;
struct sample *as = a->sample;
struct sample *bs = b->sample;
/*
* We want a positive sample offset, so that sample
* times are always positive. So if the samples for
* 'b' are before the samples for 'a' (so the offset
* is negative), we switch a and b around, and use
* the reverse offset.
*/
if (offset < 0) {
const int *cylinders_map_tmp;
offset = -offset;
asamples = bsamples;
bsamples = a->samples;
as = bs;
bs = a->sample;
cylinders_map_tmp = cylinders_map_a;
cylinders_map_a = cylinders_map_b;
cylinders_map_b = cylinders_map_tmp;
}
for (;;) {
int j;
int at, bt;
struct sample sample = { .bearing.degrees = -1, .ndl.seconds = -1 };
if (!res)
return;
at = asamples ? as->time.seconds : -1;
bt = bsamples ? bs->time.seconds + offset : -1;
/* No samples? All done! */
if (at < 0 && bt < 0)
return;
/* Only samples from a? */
if (bt < 0) {
add_sample_a:
merge_one_sample(as, at, res);
renumber_last_sample(res, cylinders_map_a);
as++;
asamples--;
continue;
}
/* Only samples from b? */
if (at < 0) {
add_sample_b:
merge_one_sample(bs, bt, res);
renumber_last_sample(res, cylinders_map_b);
bs++;
bsamples--;
continue;
}
if (at < bt)
goto add_sample_a;
if (at > bt)
goto add_sample_b;
/* same-time sample: add a merged sample. Take the non-zero ones */
sample = *bs;
sample_renumber(&sample, 0, cylinders_map_b);
if (as->depth.mm)
sample.depth = as->depth;
if (as->temperature.mkelvin)
sample.temperature = as->temperature;
for (j = 0; j < MAX_SENSORS; ++j) {
int sensor_id;
sensor_id = cylinders_map_a[as->sensor[j]];
if (sensor_id < 0)
continue;
if (as->pressure[j].mbar)
sample.pressure[j] = as->pressure[j];
if (as->sensor[j])
sample.sensor[j] = sensor_id;
}
if (as->cns)
sample.cns = as->cns;
if (as->setpoint.mbar)
sample.setpoint = as->setpoint;
if (as->ndl.seconds)
sample.ndl = as->ndl;
if (as->stoptime.seconds)
sample.stoptime = as->stoptime;
if (as->stopdepth.mm)
sample.stopdepth = as->stopdepth;
if (as->in_deco)
sample.in_deco = true;
merge_one_sample(&sample, at, res);
as++;
bs++;
asamples--;
bsamples--;
}
}
/*
* Does the extradata key/value pair already exist in the
* supplied dive computer data?
*
* This is not hugely efficient (with the whole "do this for
* every value you merge" it's O(n**2)) but it's not like we
* have very many extra_data entries per dive computer anyway.
*/
static bool extra_data_exists(const struct extra_data *ed, const struct divecomputer *dc)
{
const struct extra_data *p;
for (p = dc->extra_data; p; p = p->next) {
if (strcmp(p->key, ed->key))
continue;
if (strcmp(p->value, ed->value))
continue;
return true;
}
return false;
}
/*
* Merge extra_data.
*
* The extra data from 'a' has already been copied into 'res'. So
* we really should just copy over the data from 'b' too.
*/
static void merge_extra_data(struct divecomputer *res,
const struct divecomputer *a, const struct divecomputer *b)
{
struct extra_data **ed, *src;
// Find the place to add things in the result
ed = &res->extra_data;
while (*ed)
ed = &(*ed)->next;
for (src = b->extra_data; src; src = src->next) {
if (extra_data_exists(src, a))
continue;
*ed = malloc(sizeof(struct extra_data));
if (!*ed)
break;
copy_extra_data(src, *ed);
ed = &(*ed)->next;
}
// Terminate the result list
*ed = NULL;
}
static char *merge_text(const char *a, const char *b, const char *sep)
{
char *res;
if (!a && !b)
return NULL;
if (!a || !*a)
return copy_string(b);
if (!b || !*b)
return strdup(a);
if (!strcmp(a, b))
return copy_string(a);
res = malloc(strlen(a) + strlen(b) + 32);
if (!res)
return (char *)a;
sprintf(res, "%s%s%s", a, sep, b);
return res;
}
#define SORT(a, b) \
if (a != b) \
return a < b ? -1 : 1
#define SORT_FIELD(a, b, field) SORT(a->field, b->field)
static int sort_event(const struct event *a, const struct event *b, int time_a, int time_b)
{
SORT(time_a, time_b);
SORT_FIELD(a, b, type);
SORT_FIELD(a, b, flags);
SORT_FIELD(a, b, value);
return strcmp(a->name, b->name);
}
static int same_gas(const struct event *a, const struct event *b)
{
if (a->type == b->type && a->flags == b->flags && a->value == b->value && !strcmp(a->name, b->name) &&
same_gasmix(a->gas.mix, b->gas.mix)) {
return true;
}
return false;
}
static void event_renumber(struct event *ev, const int mapping[]);
static void add_initial_gaschange(struct dive *dive, struct divecomputer *dc, int offset, int idx);
static void merge_events(struct dive *d, struct divecomputer *res,
const struct divecomputer *src1, const struct divecomputer *src2,
const int *cylinders_map1, const int *cylinders_map2,
int offset)
{
const struct event *a, *b;
struct event **p = &res->events;
const struct event *last_gas = NULL;
/* Always use positive offsets */
if (offset < 0) {
const struct divecomputer *tmp;
const int *cylinders_map_tmp;
offset = -offset;
tmp = src1;
src1 = src2;
src2 = tmp;
cylinders_map_tmp = cylinders_map1;
cylinders_map1 = cylinders_map2;
cylinders_map2 = cylinders_map_tmp;
}
a = src1->events;
b = src2->events;
while (a || b) {
int s;
const struct event *pick;
const int *cylinders_map;
int event_offset;
if (!b) {
*p = clone_event(a);
event_renumber(*p, cylinders_map1);
break;
}
if (!a) {
*p = clone_event(b);
(*p)->time.seconds += offset;
event_renumber(*p, cylinders_map2);
break;
}
s = sort_event(a, b, a->time.seconds, b->time.seconds + offset);
/* Identical events? Just skip one of them (we pick a) */
if (!s) {
a = a->next;
continue;
}
/* Otherwise, pick the one that sorts first */
if (s < 0) {
pick = a;
a = a->next;
event_offset = 0;
cylinders_map = cylinders_map1;
} else {
pick = b;
b = b->next;
event_offset = offset;
cylinders_map = cylinders_map2;
}
/*
* If that's a gas-change that matches the previous
* gas change, we'll just skip it
*/
if (event_is_gaschange(pick)) {
if (last_gas && same_gas(pick, last_gas))
continue;
last_gas = pick;
}
/* Add it to the target list */
*p = clone_event(pick);
(*p)->time.seconds += event_offset;
event_renumber(*p, cylinders_map);
p = &(*p)->next;
}
/* If the initial cylinder of a divecomputer was remapped, add a gas change event to that cylinder */
if (cylinders_map1[0] > 0)
add_initial_gaschange(d, res, 0, cylinders_map1[0]);
if (cylinders_map2[0] > 0)
add_initial_gaschange(d, res, offset, cylinders_map2[0]);
}
/* get_cylinder_idx_by_use(): Find the index of the first cylinder with a particular CCR use type.
* The index returned corresponds to that of the first cylinder with a cylinder_use that
* equals the appropriate enum value [oxygen, diluent, bailout] given by cylinder_use_type.
* A negative number returned indicates that a match could not be found.
* Call parameters: dive = the dive being processed
* cylinder_use_type = an enum, one of {oxygen, diluent, bailout} */
extern int get_cylinder_idx_by_use(const struct dive *dive, enum cylinderuse cylinder_use_type)
{
int cylinder_index;
for (cylinder_index = 0; cylinder_index < dive->cylinders.nr; cylinder_index++) {
if (get_cylinder(dive, cylinder_index)->cylinder_use == cylinder_use_type)
return cylinder_index; // return the index of the cylinder with that cylinder use type
}
return -1; // negative number means cylinder_use_type not found in list of cylinders
}
/* fill_pressures(): Compute partial gas pressures in bar from gasmix and ambient pressures, possibly for OC or CCR, to be
* extended to PSCT. This function does the calculations of gas pressures applicable to a single point on the dive profile.
* The structure "pressures" is used to return calculated gas pressures to the calling software.
* Call parameters: po2 = po2 value applicable to the record in calling function
* amb_pressure = ambient pressure applicable to the record in calling function
* *pressures = structure for communicating o2 sensor values from and gas pressures to the calling function.
* *mix = structure containing cylinder gas mixture information.
* divemode = the dive mode pertaining to this point in the dive profile.
* This function called by: calculate_gas_information_new() in profile.c; add_segment() in deco.c.
*/
void fill_pressures(struct gas_pressures *pressures, const double amb_pressure, struct gasmix mix, double po2, enum divemode_t divemode)
{
if ((divemode != OC) && po2) { // This is a rebreather dive where pressures->o2 is defined
if (po2 >= amb_pressure) {
pressures->o2 = amb_pressure;
pressures->n2 = pressures->he = 0.0;
} else {
pressures->o2 = po2;
if (get_o2(mix) == 1000) {
pressures->he = pressures->n2 = 0;
} else {
pressures->he = (amb_pressure - pressures->o2) * (double)get_he(mix) / (1000 - get_o2(mix));
pressures->n2 = amb_pressure - pressures->o2 - pressures->he;
}
}
} else {
if (divemode == PSCR) { /* The steady state approximation should be good enough */
pressures->o2 = get_o2(mix) / 1000.0 * amb_pressure - (1.0 - get_o2(mix) / 1000.0) * prefs.o2consumption / (prefs.bottomsac * prefs.pscr_ratio / 1000.0);
if (pressures->o2 < 0) // He's dead, Jim.
pressures->o2 = 0;
if (get_o2(mix) != 1000) {
pressures->he = (amb_pressure - pressures->o2) * get_he(mix) / (1000.0 - get_o2(mix));
pressures->n2 = (amb_pressure - pressures->o2) * (1000 - get_o2(mix) - get_he(mix)) / (1000.0 - get_o2(mix));
} else {
pressures->he = pressures->n2 = 0;
}
} else {
// Open circuit dives: no gas pressure values available, they need to be calculated
pressures->o2 = get_o2(mix) / 1000.0 * amb_pressure; // These calculations are also used if the CCR calculation above..
pressures->he = get_he(mix) / 1000.0 * amb_pressure; // ..returned a po2 of zero (i.e. o2 sensor data not resolvable)
pressures->n2 = (1000 - get_o2(mix) - get_he(mix)) / 1000.0 * amb_pressure;
}
}
}
/* Force an initial gaschange event to the (old) gas #0 */
static void add_initial_gaschange(struct dive *dive, struct divecomputer *dc, int offset, int idx)
{
/* if there is a gaschange event up to 30 sec after the initial event,
* refrain from adding the initial event */
const struct event *ev = dc->events;
while(ev && (ev = get_next_event(ev, "gaschange")) != NULL) {
if (ev->time.seconds > offset + 30)
break;
else if (ev->time.seconds > offset)
return;
ev = ev->next;
}
/* Old starting gas mix */
add_gas_switch_event(dive, dc, offset, idx);
}
static void sample_renumber(struct sample *s, int i, const int mapping[])
{
int j;
for (j = 0; j < MAX_SENSORS; j++) {
int sensor;
sensor = mapping[s->sensor[j]];
if (sensor == -1) {
// Remove sensor and gas pressure info
if (i == 0) {
s->sensor[j] = 0;
s->pressure[j].mbar = 0;
} else {
s->sensor[j] = s[-1].sensor[j];
s->pressure[j].mbar = s[-1].pressure[j].mbar;
}
} else {
s->sensor[j] = sensor;
}
}
}
static void renumber_last_sample(struct divecomputer *dc, const int mapping[])
{
int idx;
if (dc->samples <= 0)
return;
idx = dc->samples - 1;
sample_renumber(dc->sample + idx, idx, mapping);
}
static void event_renumber(struct event *ev, const int mapping[])
{
if (!event_is_gaschange(ev))
return;
if (ev->gas.index < 0)
return;
ev->gas.index = mapping[ev->gas.index];
}
static void dc_cylinder_renumber(struct dive *dive, struct divecomputer *dc, const int mapping[])
{
int i;
struct event *ev;
/* Remap or delete the sensor indices */
for (i = 0; i < dc->samples; i++)
sample_renumber(dc->sample + i, i, mapping);
/* Remap the gas change indices */
for (ev = dc->events; ev; ev = ev->next)
event_renumber(ev, mapping);
/* If the initial cylinder of a dive was remapped, add a gas change event to that cylinder */
if (mapping[0] > 0)
add_initial_gaschange(dive, dc, 0, mapping[0]);
}
/*
* If the cylinder indices change (due to merging dives or deleting
* cylinders in the middle), we need to change the indices in the
* dive computer data for this dive.
*
* Also note that we assume that the initial cylinder is cylinder 0,
* so if that got renamed, we need to create a fake gas change event
*/
void cylinder_renumber(struct dive *dive, int mapping[])
{
struct divecomputer *dc;
for_each_dc (dive, dc)
dc_cylinder_renumber(dive, dc, mapping);
}
int same_gasmix_cylinder(const cylinder_t *cyl, int cylid, const struct dive *dive, bool check_unused)
{
struct gasmix mygas = cyl->gasmix;
for (int i = 0; i < dive->cylinders.nr; i++) {
if (i == cylid)
continue;
struct gasmix gas2 = get_cylinder(dive, i)->gasmix;
if (gasmix_distance(mygas, gas2) == 0 && (is_cylinder_used(dive, i) || check_unused))
return i;
}
return -1;
}
static int pdiff(pressure_t a, pressure_t b)
{
return a.mbar && b.mbar && a.mbar != b.mbar;
}
static int different_manual_pressures(const cylinder_t *a, const cylinder_t *b)
{
return pdiff(a->start, b->start) || pdiff(a->end, b->end);
}
/*
* Can we find an exact match for a cylinder in another dive?
* Take the "already matched" map into account, so that we
* don't match multiple similar cylinders to one target.
*
* To match, the cylinders have to have the same gasmix and the
* same cylinder use (ie OC/Diluent/Oxygen), and if pressures
* have been added manually they need to match.
*/
static int match_cylinder(const cylinder_t *cyl, const struct dive *dive, const bool *used)
{
int i;
for (i = 0; i < dive->cylinders.nr; i++) {
const cylinder_t *target;
if (!used[i])
continue;
target = get_cylinder(dive, i);
if (!same_gasmix(cyl->gasmix, target->gasmix))
continue;
if (cyl->cylinder_use != target->cylinder_use)
continue;
if (different_manual_pressures(cyl, target))
continue;
/* open question: Should we check sizes too? */
return i;
}
return -1;
}
/*
* We matched things up so that they have the same gasmix and
* use, but we might want to fill in any missing cylinder details
* in 'a' if we had it from 'b'.
*/
static void merge_one_cylinder(struct cylinder_table *t, const cylinder_t *a, const cylinder_t *b)
{
cylinder_t *res = add_empty_cylinder(t);
res->type.size.mliter = a->type.size.mliter ?
a->type.size.mliter : b->type.size.mliter;
res->type.workingpressure.mbar = a->type.workingpressure.mbar ?
a->type.workingpressure.mbar : b->type.workingpressure.mbar;
res->type.description = !empty_string(a->type.description) ?
copy_string(a->type.description) : copy_string(b->type.description);
res->gasmix = a->gasmix;
res->start.mbar = a->start.mbar ?
a->start.mbar : b->start.mbar;
res->end.mbar = a->end.mbar ?
a->end.mbar : b->end.mbar;
if (a->sample_start.mbar && b->sample_start.mbar)
res->sample_start.mbar = a->sample_start.mbar > b->sample_start.mbar ? a->sample_start.mbar : b->sample_start.mbar;
else
res->sample_start.mbar = 0;
if (a->sample_end.mbar && b->sample_end.mbar)
res->sample_end.mbar = a->sample_end.mbar < b->sample_end.mbar ? a->sample_end.mbar : b->sample_end.mbar;
else
res->sample_end.mbar = 0;
res->depth = a->depth;
res->manually_added = a->manually_added;
res->gas_used.mliter = a->gas_used.mliter + b->gas_used.mliter;
res->deco_gas_used.mliter = a->deco_gas_used.mliter + b->deco_gas_used.mliter;
res->bestmix_o2 = a->bestmix_o2 && b->bestmix_o2;
res->bestmix_he = a->bestmix_he && b->bestmix_he;
}
/*
* Merging cylinder information is non-trivial, because the two dive computers
* may have different ideas of what the different cylinder indexing is.
*
* Logic: take all the cylinder information from the preferred dive ('a'), and
* then try to match each of the cylinders in the other dive by the gasmix that
* is the best match and hasn't been used yet.
*
* For each dive, a cylinder-renumbering table is returned.
*/
static void merge_cylinders(struct dive *res, const struct dive *a, const struct dive *b,
int mapping_a[], int mapping_b[])
{
int i;
bool *used_in_a = malloc(a->cylinders.nr * sizeof(bool));
bool *used_in_b = malloc(b->cylinders.nr * sizeof(bool));
/* First, clear all cylinders in destination */
clear_cylinder_table(&res->cylinders);
/* Calculate usage map of cylinders */
for (i = 0; i < a->cylinders.nr; i++) {
used_in_a[i] = is_cylinder_used(a, i);
mapping_a[i] = -1;
}
for (i = 0; i < b->cylinders.nr; i++) {
used_in_b[i] = is_cylinder_used(b, i);
mapping_b[i] = -1;
}
/* For each cylinder in 'b', try to match up things */
for (i = 0; i < b->cylinders.nr; i++) {
int j;
if (!used_in_b[i])
continue;
j = match_cylinder(get_cylinder(b, i), a, used_in_a);
if (j < 0)
continue;
/*
* If we had a successful match, we:
*
* - try to merge individual cylinder data from both cases
*
* - save that in the mapping table
*
* - remove it from the used array so that it will not be used later
*
* - mark as needing renumbering if the index changed
*/
mapping_b[i] = res->cylinders.nr;
mapping_a[j] = res->cylinders.nr;
used_in_a[i] = false;
used_in_b[j] = false;
merge_one_cylinder(&res->cylinders, get_cylinder(a, j), get_cylinder(b, i));
}
/* Now copy all the used cylinders from 'a' that are used but have not been matched */
for (i = 0; i < a->cylinders.nr; i++) {
if (used_in_a[i]) {
mapping_a[i] = res->weightsystems.nr;
add_cloned_cylinder(&res->cylinders, *get_cylinder(a, i));
}
}
/* Finally, copy all the used cylinders from 'b' that are used but have not been matched */
for (i = 0; i < b->cylinders.nr; i++) {
if (used_in_b[i]) {
mapping_b[i] = res->weightsystems.nr;
add_cloned_cylinder(&res->cylinders, *get_cylinder(b, i));
}
}
free(used_in_a);
free(used_in_b);
}
/* Check whether a weightsystem table contains a given weightsystem */
static bool has_weightsystem(const struct weightsystem_table *t, const weightsystem_t w)
{
int i;
for (i = 0; i < t->nr; i++) {
if (same_weightsystem(w, t->weightsystems[i]))
return true;
}
return false;
}
static void merge_equipment(struct dive *res, const struct dive *a, const struct dive *b)
{
int i;
for (i = 0; i < a->weightsystems.nr; i++) {
if (!has_weightsystem(&res->weightsystems, a->weightsystems.weightsystems[i]))
add_cloned_weightsystem(&res->weightsystems, a->weightsystems.weightsystems[i]);
}
for (i = 0; i < b->weightsystems.nr; i++) {
if (!has_weightsystem(&res->weightsystems, b->weightsystems.weightsystems[i]))
add_cloned_weightsystem(&res->weightsystems, b->weightsystems.weightsystems[i]);
}
}
static void merge_temperatures(struct dive *res, const struct dive *a, const struct dive *b)
{
temperature_t airtemp_a = un_fixup_airtemp(a);
temperature_t airtemp_b = un_fixup_airtemp(b);
res->airtemp = airtemp_a.mkelvin ? airtemp_a : airtemp_b;
MERGE_NONZERO(res, a, b, watertemp.mkelvin);
}
/*
* Pick a trip for a dive
*/
static struct dive_trip *get_preferred_trip(const struct dive *a, const struct dive *b)
{
dive_trip_t *atrip, *btrip;
/* If only one dive has a trip, choose that */
atrip = a->divetrip;
btrip = b->divetrip;
if (!atrip)
return btrip;
if (!btrip)
return atrip;
/* Both dives have a trip - prefer the non-autogenerated one */
if (atrip->autogen && !btrip->autogen)
return btrip;
if (!atrip->autogen && btrip->autogen)
return atrip;
/* Otherwise, look at the trip data and pick the "better" one */
if (!atrip->location)
return btrip;
if (!btrip->location)
return atrip;
if (!atrip->notes)
return btrip;
if (!btrip->notes)
return atrip;
/*
* Ok, so both have location and notes.
* Pick the earlier one.
*/
if (a->when < b->when)
return atrip;
return btrip;
}
#if CURRENTLY_NOT_USED
/*
* Sample 's' is between samples 'a' and 'b'. It is 'offset' seconds before 'b'.
*
* If 's' and 'a' are at the same time, offset is 0, and b is NULL.
*/
static int compare_sample(struct sample *s, struct sample *a, struct sample *b, int offset)
{
unsigned int depth = a->depth.mm;
int diff;
if (offset) {
unsigned int interval = b->time.seconds - a->time.seconds;
unsigned int depth_a = a->depth.mm;
unsigned int depth_b = b->depth.mm;
if (offset > interval)
return -1;
/* pick the average depth, scaled by the offset from 'b' */
depth = (depth_a * offset) + (depth_b * (interval - offset));
depth /= interval;
}
diff = s->depth.mm - depth;
if (diff < 0)
diff = -diff;
/* cut off at one meter difference */
if (diff > 1000)
diff = 1000;
return diff * diff;
}
/*
* Calculate a "difference" in samples between the two dives, given
* the offset in seconds between them. Use this to find the best
* match of samples between two different dive computers.
*/
static unsigned long sample_difference(struct divecomputer *a, struct divecomputer *b, int offset)
{
int asamples = a->samples;
int bsamples = b->samples;
struct sample *as = a->sample;
struct sample *bs = b->sample;
unsigned long error = 0;
int start = -1;
if (!asamples || !bsamples)
return 0;
/*
* skip the first sample - this way we know can always look at
* as/bs[-1] to look at the samples around it in the loop.
*/
as++;
bs++;
asamples--;
bsamples--;
for (;;) {
int at, bt, diff;
/* If we run out of samples, punt */
if (!asamples)
return INT_MAX;
if (!bsamples)
return INT_MAX;
at = as->time.seconds;
bt = bs->time.seconds + offset;
/* b hasn't started yet? Ignore it */
if (bt < 0) {
bs++;
bsamples--;
continue;
}
if (at < bt) {
diff = compare_sample(as, bs - 1, bs, bt - at);
as++;
asamples--;
} else if (at > bt) {
diff = compare_sample(bs, as - 1, as, at - bt);
bs++;
bsamples--;
} else {
diff = compare_sample(as, bs, NULL, 0);
as++;
bs++;
asamples--;
bsamples--;
}
/* Invalid comparison point? */
if (diff < 0)
continue;
if (start < 0)
start = at;
error += diff;
if (at - start > 120)
break;
}
return error;
}
/*
* Dive 'a' is 'offset' seconds before dive 'b'
*
* This is *not* because the dive computers clocks aren't in sync,
* it is because the dive computers may "start" the dive at different
* points in the dive, so the sample at time X in dive 'a' is the
* same as the sample at time X+offset in dive 'b'.
*
* For example, some dive computers take longer to "wake up" when
* they sense that you are under water (ie Uemis Zurich if it was off
* when the dive started). And other dive computers have different
* depths that they activate at, etc etc.
*
* If we cannot find a shared offset, don't try to merge.
*/
static int find_sample_offset(struct divecomputer *a, struct divecomputer *b)
{
int offset, best;
unsigned long max;
/* No samples? Merge at any time (0 offset) */
if (!a->samples)
return 0;
if (!b->samples)
return 0;
/*
* Common special-case: merging a dive that came from
* the same dive computer, so the samples are identical.
* Check this first, without wasting time trying to find
* some minimal offset case.
*/
best = 0;
max = sample_difference(a, b, 0);
if (!max)
return 0;
/*
* Otherwise, look if we can find anything better within
* a thirty second window..
*/
for (offset = -30; offset <= 30; offset++) {
unsigned long diff;
diff = sample_difference(a, b, offset);
if (diff > max)
continue;
best = offset;
max = diff;
}
return best;
}
#endif
/*
* Are a and b "similar" values, when given a reasonable lower end expected
* difference?
*
* So for example, we'd expect different dive computers to give different
* max. depth readings. You might have them on different arms, and they
* have different pressure sensors and possibly different ideas about
* water salinity etc.
*
* So have an expected minimum difference, but also allow a larger relative
* error value.
*/
static int similar(unsigned long a, unsigned long b, unsigned long expected)
{
if (!a && !b)
return 1;
if (a && b) {
unsigned long min, max, diff;
min = a;
max = b;
if (a > b) {
min = b;
max = a;
}
diff = max - min;
/* Smaller than expected difference? */
if (diff < expected)
return 1;
/* Error less than 10% or the maximum */
if (diff * 10 < max)
return 1;
}
return 0;
}
/*
* Match two dive computer entries against each other, and
* tell if it's the same dive. Return 0 if "don't know",
* positive for "same dive" and negative for "definitely
* not the same dive"
*/
int match_one_dc(const struct divecomputer *a, const struct divecomputer *b)
{
/* Not same model? Don't know if matching.. */
if (!a->model || !b->model)
return 0;
if (strcasecmp(a->model, b->model))
return 0;
/* Different device ID's? Don't know */
if (a->deviceid != b->deviceid)
return 0;
/* Do we have dive IDs? */
if (!a->diveid || !b->diveid)
return 0;
/*
* If they have different dive ID's on the same
* dive computer, that's a definite "same or not"
*/
return a->diveid == b->diveid && a->when == b->when ? 1 : -1;
}
/*
* Match every dive computer against each other to see if
* we have a matching dive.
*
* Return values:
* -1 for "is definitely *NOT* the same dive"
* 0 for "don't know"
* 1 for "is definitely the same dive"
*/
static int match_dc_dive(const struct divecomputer *a, const struct divecomputer *b)
{
do {
const struct divecomputer *tmp = b;
do {
int match = match_one_dc(a, tmp);
if (match)
return match;
tmp = tmp->next;
} while (tmp);
a = a->next;
} while (a);
return 0;
}
/*
* Do we want to automatically try to merge two dives that
* look like they are the same dive?
*
* This happens quite commonly because you download a dive
* that you already had, or perhaps because you maintained
* multiple dive logs and want to load them all together
* (possibly one of them was imported from another dive log
* application entirely).
*
* NOTE! We mainly look at the dive time, but it can differ
* between two dives due to a few issues:
*
* - rounding the dive date to the nearest minute in other dive
* applications
*
* - dive computers with "relative datestamps" (ie the dive
* computer doesn't actually record an absolute date at all,
* but instead at download-time synchronizes its internal
* time with real-time on the downloading computer)
*
* - using multiple dive computers with different real time on
* the same dive
*
* We do not merge dives that look radically different, and if
* the dates are *too* far off the user will have to join two
* dives together manually. But this tries to handle the sane
* cases.
*/
static int likely_same_dive(const struct dive *a, const struct dive *b)
{
int match, fuzz = 20 * 60;
/* don't merge manually added dives with anything */
if (same_string(a->dc.model, "manually added dive") ||
same_string(b->dc.model, "manually added dive"))
return 0;
/*
* Do some basic sanity testing of the values we
* have filled in during 'fixup_dive()'
*/
if (!similar(a->maxdepth.mm, b->maxdepth.mm, 1000) ||
(a->meandepth.mm && b->meandepth.mm && !similar(a->meandepth.mm, b->meandepth.mm, 1000)) ||
!a->duration.seconds || !b->duration.seconds ||
!similar(a->duration.seconds, b->duration.seconds, 5 * 60))
return 0;
/* See if we can get an exact match on the dive computer */
match = match_dc_dive(&a->dc, &b->dc);
if (match)
return match > 0;
/*
* Allow a time difference due to dive computer time
* setting etc. Check if they overlap.
*/
fuzz = MAX(a->duration.seconds, b->duration.seconds) / 2;
if (fuzz < 60)
fuzz = 60;
return (a->when <= b->when + fuzz) && (a->when >= b->when - fuzz);
}
/*
* This could do a lot more merging. Right now it really only
* merges almost exact duplicates - something that happens easily
* with overlapping dive downloads.
*
* If new dives are merged into the dive table, dive a is supposed to
* be the old dive and dive b is supposed to be the newly imported
* dive. If the flag "prefer_downloaded" is set, data of the latter
* will take priority over the former.
*
* Attn: The dive_site parameter of the dive will be set, but the caller
* still has to register the dive in the dive site!
*/
struct dive *try_to_merge(struct dive *a, struct dive *b, bool prefer_downloaded)
{
struct dive *res;
struct dive_site *site;
if (!likely_same_dive(a, b))
return NULL;
res = merge_dives(a, b, 0, prefer_downloaded, NULL, &site);
res->dive_site = site; /* Caller has to call add_dive_to_dive_site()! */
return res;
}
void free_events(struct event *ev)
{
while (ev) {
struct event *next = ev->next;
free(ev);
ev = next;
}
}
static void free_extra_data(struct extra_data *ed)
{
free((void *)ed->key);
free((void *)ed->value);
}
static void free_dc_contents(struct divecomputer *dc)
{
free(dc->sample);
free((void *)dc->model);
free((void *)dc->serial);
free((void *)dc->fw_version);
free_events(dc->events);
STRUCTURED_LIST_FREE(struct extra_data, dc->extra_data, free_extra_data);
}
static void free_dc(struct divecomputer *dc)
{
free_dc_contents(dc);
free(dc);
}
static int same_sample(struct sample *a, struct sample *b)
{
if (a->time.seconds != b->time.seconds)
return 0;
if (a->depth.mm != b->depth.mm)
return 0;
if (a->temperature.mkelvin != b->temperature.mkelvin)
return 0;
if (a->pressure[0].mbar != b->pressure[0].mbar)
return 0;
return a->sensor[0] == b->sensor[0];
}
static int same_dc(struct divecomputer *a, struct divecomputer *b)
{
int i;
const struct event *eva, *evb;
i = match_one_dc(a, b);
if (i)
return i > 0;
if (a->when && b->when && a->when != b->when)
return 0;
if (a->samples != b->samples)
return 0;
for (i = 0; i < a->samples; i++)
if (!same_sample(a->sample + i, b->sample + i))
return 0;
eva = a->events;
evb = b->events;
while (eva && evb) {
if (!same_event(eva, evb))
return 0;
eva = eva->next;
evb = evb->next;
}
return eva == evb;
}
static int might_be_same_device(const struct divecomputer *a, const struct divecomputer *b)
{
/* No dive computer model? That matches anything */
if (!a->model || !b->model)
return 1;
/* Otherwise at least the model names have to match */
if (strcasecmp(a->model, b->model))
return 0;
/* No device ID? Match */
if (!a->deviceid || !b->deviceid)
return 1;
return a->deviceid == b->deviceid;
}
static void remove_redundant_dc(struct divecomputer *dc, int prefer_downloaded)
{
do {
struct divecomputer **p = &dc->next;
/* Check this dc against all the following ones.. */
while (*p) {
struct divecomputer *check = *p;
if (same_dc(dc, check) || (prefer_downloaded && might_be_same_device(dc, check))) {
*p = check->next;
check->next = NULL;
free_dc(check);
continue;
}
p = &check->next;
}
/* .. and then continue down the chain, but we */
prefer_downloaded = 0;
dc = dc->next;
} while (dc);
}
static const struct divecomputer *find_matching_computer(const struct divecomputer *match, const struct divecomputer *list)
{
const struct divecomputer *p;
while ((p = list) != NULL) {
list = list->next;
if (might_be_same_device(match, p))
break;
}
return p;
}
static void copy_dive_computer(struct divecomputer *res, const struct divecomputer *a)
{
*res = *a;
res->model = copy_string(a->model);
res->serial = copy_string(a->serial);
res->fw_version = copy_string(a->fw_version);
STRUCTURED_LIST_COPY(struct extra_data, a->extra_data, res->extra_data, copy_extra_data);
res->samples = res->alloc_samples = 0;
res->sample = NULL;
res->events = NULL;
res->next = NULL;
}
/*
* Join dive computers with a specific time offset between
* them.
*
* Use the dive computer ID's (or names, if ID's are missing)
* to match them up. If we find a matching dive computer, we
* merge them. If not, we just take the data from 'a'.
*/
static void interleave_dive_computers(struct dive *d, struct divecomputer *res,
const struct divecomputer *a, const struct divecomputer *b,
const int cylinders_map_a[], const int cylinders_map_b[],
int offset)
{
do {
const struct divecomputer *match;
copy_dive_computer(res, a);
match = find_matching_computer(a, b);
if (match) {
merge_events(d, res, a, match, cylinders_map_a, cylinders_map_b, offset);
merge_samples(res, a, match, cylinders_map_a, cylinders_map_b, offset);
merge_extra_data(res, a, match);
/* Use the diveid of the later dive! */
if (offset > 0)
res->diveid = match->diveid;
} else {
copy_dc_renumber(d, a, res, cylinders_map_a);
}
a = a->next;
if (!a)
break;
res->next = calloc(1, sizeof(struct divecomputer));
res = res->next;
} while (res);
}
/*
* Join dive computer information.
*
* If we have old-style dive computer information (no model
* name etc), we will prefer a new-style one and just throw
* away the old. We're assuming it's a re-download.
*
* Otherwise, we'll just try to keep all the information,
* unless the user has specified that they prefer the
* downloaded computer, in which case we'll aggressively
* try to throw out old information that *might* be from
* that one.
*/
static void join_dive_computers(struct dive *d, struct divecomputer *res,
const struct divecomputer *a, const struct divecomputer *b,
const int cylinders_map_a[], const int cylinders_map_b[],
int prefer_downloaded)
{
struct divecomputer *tmp;
if (a->model && !b->model) {
copy_dc_renumber(d, a, res, cylinders_map_a);
return;
}
if (b->model && !a->model) {
copy_dc_renumber(d, b, res, cylinders_map_b);
return;
}
copy_dc_renumber(d, a, res, cylinders_map_a);
tmp = res;
while (tmp->next)
tmp = tmp->next;
tmp->next = calloc(1, sizeof(*tmp));
copy_dc_renumber(d, b, tmp->next, cylinders_map_b);
remove_redundant_dc(res, prefer_downloaded);
}
bool is_dc_planner(const struct divecomputer *dc)
{
return same_string(dc->model, "planned dive");
}
// Does this dive have a dive computer for which is_dc_planner has value planned
bool has_planned(const struct dive *dive, bool planned)
{
const struct divecomputer *dc = &dive->dc;
while (dc) {
if (is_dc_planner(&dive->dc) == planned)
return true;
dc = dc->next;
}
return false;
}
/*
* Merging two dives can be subtle, because there's two different ways
* of merging:
*
* (a) two distinctly _different_ dives that have the same dive computer
* are merged into one longer dive, because the user asked for it
* in the divelist.
*
* Because this case is with the same dive computer, we *know* the
* two must have a different start time, and "offset" is the relative
* time difference between the two.
*
* (b) two different dive computers that we might want to merge into
* one single dive with multiple dive computers.
*
* This is the "try_to_merge()" case, which will have offset == 0,
* even if the dive times might be different.
*
* If new dives are merged into the dive table, dive a is supposed to
* be the old dive and dive b is supposed to be the newly imported
* dive. If the flag "prefer_downloaded" is set, data of the latter
* will take priority over the former.
*
* The trip the new dive should be associated with (if any) is returned
* in the "trip" output parameter.
*
* The dive site the new dive should be added to (if any) is returned
* in the "dive_site" output parameter.
*/
struct dive *merge_dives(const struct dive *a, const struct dive *b, int offset, bool prefer_downloaded, struct dive_trip **trip, struct dive_site **site)
{
struct dive *res = alloc_dive();
int *cylinders_map_a, *cylinders_map_b;
if (offset) {
/*
* If "likely_same_dive()" returns true, that means that
* it is *not* the same dive computer, and we do not want
* to try to turn it into a single longer dive. So we'd
* join them as two separate dive computers at zero offset.
*/
if (likely_same_dive(a, b))
offset = 0;
}
if (is_dc_planner(&a->dc)) {
const struct dive *tmp = a;
a = b;
b = tmp;
}
res->when = prefer_downloaded ? b->when : a->when;
res->selected = a->selected || b->selected;
if (trip)
*trip = get_preferred_trip(a, b);
MERGE_TXT(res, a, b, notes, "\n--\n");
MERGE_TXT(res, a, b, buddy, ", ");
MERGE_TXT(res, a, b, divemaster, ", ");
MERGE_MAX(res, a, b, rating);
MERGE_TXT(res, a, b, suit, ", ");
MERGE_MAX(res, a, b, number);
MERGE_NONZERO(res, a, b, cns);
MERGE_NONZERO(res, a, b, visibility);
copy_pictures(a->pictures.nr ? &a->pictures : &b->pictures, &res->pictures);
taglist_merge(&res->tag_list, a->tag_list, b->tag_list);
cylinders_map_a = malloc(a->cylinders.nr * sizeof(*cylinders_map_a));
cylinders_map_b = malloc(b->cylinders.nr * sizeof(*cylinders_map_b));
merge_cylinders(res, a, b, cylinders_map_a, cylinders_map_b);
merge_equipment(res, a, b);
merge_temperatures(res, a, b);
if (prefer_downloaded) {
/* If we prefer downloaded, do those first, and get rid of "might be same" computers */
join_dive_computers(res, &res->dc, &b->dc, &a->dc, cylinders_map_b, cylinders_map_a, 1);
} else if (offset && might_be_same_device(&a->dc, &b->dc))
interleave_dive_computers(res, &res->dc, &a->dc, &b->dc, cylinders_map_a, cylinders_map_b, offset);
else
join_dive_computers(res, &res->dc, &a->dc, &b->dc, cylinders_map_a, cylinders_map_b, 0);
/* we take the first dive site, unless it's empty */
*site = a->dive_site && !dive_site_is_empty(a->dive_site) ? a->dive_site : b->dive_site;
fixup_dive(res);
free(cylinders_map_a);
free(cylinders_map_b);
return res;
}
// copy_dive(), but retaining the new ID for the copied dive
static struct dive *create_new_copy(const struct dive *from)
{
struct dive *to = alloc_dive();
int id;
// alloc_dive() gave us a new ID, we just need to
// make sure it's not overwritten.
id = to->id;
copy_dive(from, to);
to->id = id;
return to;
}
struct start_end_pressure {
pressure_t start;
pressure_t end;
};
static void force_fixup_dive(struct dive *d)
{
struct divecomputer *dc = &d->dc;
int old_temp = dc->watertemp.mkelvin;
int old_mintemp = d->mintemp.mkelvin;
int old_maxtemp = d->maxtemp.mkelvin;
duration_t old_duration = d->duration;
struct start_end_pressure *old_pressures = malloc(d->cylinders.nr * sizeof(*old_pressures));
d->maxdepth.mm = 0;
dc->maxdepth.mm = 0;
d->watertemp.mkelvin = 0;
dc->watertemp.mkelvin = 0;
d->duration.seconds = 0;
d->maxtemp.mkelvin = 0;
d->mintemp.mkelvin = 0;
for (int i = 0; i < d->cylinders.nr; i++) {
cylinder_t *cyl = get_cylinder(d, i);
old_pressures[i].start = cyl->start;
old_pressures[i].end = cyl->end;
cyl->start.mbar = 0;
cyl->end.mbar = 0;
}
fixup_dive(d);
if (!d->watertemp.mkelvin)
d->watertemp.mkelvin = old_temp;
if (!dc->watertemp.mkelvin)
dc->watertemp.mkelvin = old_temp;
if (!d->maxtemp.mkelvin)
d->maxtemp.mkelvin = old_maxtemp;
if (!d->mintemp.mkelvin)
d->mintemp.mkelvin = old_mintemp;
if (!d->duration.seconds)
d->duration = old_duration;
for (int i = 0; i < d->cylinders.nr; i++) {
if (!get_cylinder(d, i)->start.mbar)
get_cylinder(d, i)->start = old_pressures[i].start;
if (!get_cylinder(d, i)->end.mbar)
get_cylinder(d, i)->end = old_pressures[i].end;
}
free(old_pressures);
}
/*
* Split a dive that has a surface interval from samples 'a' to 'b'
* into two dives, but don't add them to the log yet.
* Returns the nr of the old dive or <0 on failure.
* Moreover, on failure both output dives are set to NULL.
* On success, the newly allocated dives are returned in out1 and out2.
*/
static int split_dive_at(const struct dive *dive, int a, int b, struct dive **out1, struct dive **out2)
{
int i, nr;
uint32_t t;
struct dive *d1, *d2;
struct divecomputer *dc1, *dc2;
struct event *event, **evp;
/* if we can't find the dive in the dive list, don't bother */
if ((nr = get_divenr(dive)) < 0)
return -1;
/* Splitting should leave at least 3 samples per dive */
if (a < 3 || b > dive->dc.samples - 4)
return -1;
/* We're not trying to be efficient here.. */
d1 = create_new_copy(dive);
d2 = create_new_copy(dive);
d1->divetrip = d2->divetrip = 0;
/* now unselect the first first segment so we don't keep all
* dives selected by mistake. But do keep the second one selected
* so the algorithm keeps splitting the dive further */
d1->selected = false;
dc1 = &d1->dc;
dc2 = &d2->dc;
/*
* Cut off the samples of d1 at the beginning
* of the interval.
*/
dc1->samples = a;
/* And get rid of the 'b' first samples of d2 */
dc2->samples -= b;
memmove(dc2->sample, dc2->sample+b, dc2->samples * sizeof(struct sample));
/* Now the secondary dive computers */
t = dc2->sample[0].time.seconds;
while ((dc1 = dc1->next)) {
i = 0;
while (dc1->samples < i && dc1->sample[i].time.seconds <= t)
++i;
dc1->samples = i;
}
while ((dc2 = dc2->next)) {
i = 0;
while (dc2->samples < i && dc2->sample[i].time.seconds < t)
++i;
dc2->samples -= i;
memmove(dc2->sample, dc2->sample + i, dc2->samples * sizeof(struct sample));
}
dc1 = &d1->dc;
dc2 = &d2->dc;
/*
* This is where we cut off events from d1,
* and shift everything in d2
*/
d2->when += t;
while (dc1 && dc2) {
dc2->when += t;
for (i = 0; i < dc2->samples; i++)
dc2->sample[i].time.seconds -= t;
/* Remove the events past 't' from d1 */
evp = &dc1->events;
while ((event = *evp) != NULL && event->time.seconds < t)
evp = &event->next;
*evp = NULL;
while (event) {
struct event *next = event->next;
free(event);
event = next;
}
/* Remove the events before 't' from d2, and shift the rest */
evp = &dc2->events;
while ((event = *evp) != NULL) {
if (event->time.seconds < t) {
*evp = event->next;
free(event);
} else {
event->time.seconds -= t;
}
}
dc1 = dc1->next;
dc2 = dc2->next;
}
force_fixup_dive(d1);
force_fixup_dive(d2);
/*
* Was the dive numbered? If it was the last dive, then we'll
* increment the dive number for the tail part that we split off.
* Otherwise the tail is unnumbered.
*/
if (d2->number) {
if (dive_table.nr == nr + 1)
d2->number++;
else
d2->number = 0;
}
*out1 = d1;
*out2 = d2;
return nr;
}
/* in freedive mode we split for as little as 10 seconds on the surface,
* otherwise we use a minute */
static bool should_split(const struct divecomputer *dc, int t1, int t2)
{
int threshold = dc->divemode == FREEDIVE ? 10 : 60;
return t2 - t1 >= threshold;
}
/*
* Try to split a dive into multiple dives at a surface interval point.
*
* NOTE! We will split when there is at least one surface event that has
* non-surface events on both sides.
*
* The surface interval points are determined using the first dive computer.
*
* In other words, this is a (simplified) reversal of the dive merging.
*/
int split_dive(const struct dive *dive, struct dive **new1, struct dive **new2)
{
int i;
int at_surface, surface_start;
const struct divecomputer *dc;
*new1 = *new2 = NULL;
if (!dive)
return -1;
dc = &dive->dc;
surface_start = 0;
at_surface = 1;
for (i = 1; i < dc->samples; i++) {
struct sample *sample = dc->sample+i;
int surface_sample = sample->depth.mm < SURFACE_THRESHOLD;
/*
* We care about the transition from and to depth 0,
* not about the depth staying similar.
*/
if (at_surface == surface_sample)
continue;
at_surface = surface_sample;
// Did it become surface after having been non-surface? We found the start
if (at_surface) {
surface_start = i;
continue;
}
// Going down again? We want at least a minute from
// the surface start.
if (!surface_start)
continue;
if (!should_split(dc, dc->sample[surface_start].time.seconds, sample[-1].time.seconds))
continue;
return split_dive_at(dive, surface_start, i-1, new1, new2);
}
return -1;
}
int split_dive_at_time(const struct dive *dive, duration_t time, struct dive **new1, struct dive **new2)
{
int i = 0;
if (!dive)
return -1;
struct sample *sample = dive->dc.sample;
*new1 = *new2 = NULL;
while(sample->time.seconds < time.seconds) {
++sample;
++i;
if (dive->dc.samples == i)
return -1;
}
return split_dive_at(dive, i, i - 1, new1, new2);
}
/*
* "dc_maxtime()" is how much total time this dive computer
* has for this dive. Note that it can differ from "duration"
* if there are surface events in the middle.
*
* Still, we do ignore all but the last surface samples from the
* end, because some divecomputers just generate lots of them.
*/
static inline int dc_totaltime(const struct divecomputer *dc)
{
int time = dc->duration.seconds;
int nr = dc->samples;
while (nr--) {
struct sample *s = dc->sample + nr;
time = s->time.seconds;
if (s->depth.mm >= SURFACE_THRESHOLD)
break;
}
return time;
}
/*
* The end of a dive is actually not trivial, because "duration"
* is not the duration until the end, but the time we spend under
* water, which can be very different if there are surface events
* during the dive.
*
* So walk the dive computers, looking for the longest actual
* time in the samples (and just default to the dive duration if
* there are no samples).
*/
static inline int dive_totaltime(const struct dive *dive)
{
int time = dive->duration.seconds;
const struct divecomputer *dc;
for_each_dc(dive, dc) {
int dc_time = dc_totaltime(dc);
if (dc_time > time)
time = dc_time;
}
return time;
}
timestamp_t dive_endtime(const struct dive *dive)
{
return dive->when + dive_totaltime(dive);
}
bool time_during_dive_with_offset(struct dive *dive, timestamp_t when, timestamp_t offset)
{
timestamp_t start = dive->when;
timestamp_t end = dive_endtime(dive);
return start - offset <= when && when <= end + offset;
}
bool dive_within_time_range(struct dive *dive, timestamp_t when, timestamp_t offset)
{
timestamp_t start = dive->when;
timestamp_t end = dive_endtime(dive);
return when - offset <= start && end <= when + offset;
}
/* find the n-th dive that is part of a group of dives within the offset around 'when'.
* How is that for a vague definition of what this function should do... */
struct dive *find_dive_n_near(timestamp_t when, int n, timestamp_t offset)
{
int i, j = 0;
struct dive *dive;
for_each_dive (i, dive) {
if (dive_within_time_range(dive, when, offset))
if (++j == n)
return dive;
}
return NULL;
}
timestamp_t get_times()
{
int i;
struct dive *dive;
for_each_dive (i, dive) {
if (dive->selected)
break;
}
return dive->when;
}
/* this sets a usually unused copy of the preferences with the units
* that were active the last time the dive list was saved to git storage
* (this isn't used in XML files); storing the unit preferences in the
* data file is usually pointless (that's a setting of the software,
* not a property of the data), but it's a great hint of what the user
* might expect to see when creating a backend service that visualizes
* the dive list without Subsurface running - so this is basically a
* functionality for the core library that Subsurface itself doesn't
* use but that another consumer of the library (like an HTML exporter)
* will need */
void set_informational_units(const char *units)
{
if (strstr(units, "METRIC")) {
git_prefs.unit_system = METRIC;
} else if (strstr(units, "IMPERIAL")) {
git_prefs.unit_system = IMPERIAL;
} else if (strstr(units, "PERSONALIZE")) {
git_prefs.unit_system = PERSONALIZE;
if (strstr(units, "METERS"))
git_prefs.units.length = METERS;
if (strstr(units, "FEET"))
git_prefs.units.length = FEET;
if (strstr(units, "LITER"))
git_prefs.units.volume = LITER;
if (strstr(units, "CUFT"))
git_prefs.units.volume = CUFT;
if (strstr(units, "BAR"))
git_prefs.units.pressure = BAR;
if (strstr(units, "PSI"))
git_prefs.units.pressure = PSI;
if (strstr(units, "PASCAL"))
git_prefs.units.pressure = PASCALS;
if (strstr(units, "CELSIUS"))
git_prefs.units.temperature = CELSIUS;
if (strstr(units, "FAHRENHEIT"))
git_prefs.units.temperature = FAHRENHEIT;
if (strstr(units, "KG"))
git_prefs.units.weight = KG;
if (strstr(units, "LBS"))
git_prefs.units.weight = LBS;
if (strstr(units, "SECONDS"))
git_prefs.units.vertical_speed_time = SECONDS;
if (strstr(units, "MINUTES"))
git_prefs.units.vertical_speed_time = MINUTES;
}
}
void set_git_prefs(const char *prefs)
{
if (strstr(prefs, "TANKBAR"))
git_prefs.tankbar = 1;
if (strstr(prefs, "DCCEILING"))
git_prefs.dcceiling = 1;
if (strstr(prefs, "SHOW_SETPOINT"))
git_prefs.show_ccr_setpoint = 1;
if (strstr(prefs, "SHOW_SENSORS"))
git_prefs.show_ccr_sensors = 1;
if (strstr(prefs, "PO2_GRAPH"))
git_prefs.pp_graphs.po2 = 1;
}
/* clones a dive and moves given dive computer to front */
struct dive *make_first_dc(const struct dive *d, int dc_number)
{
struct dive *res;
struct divecomputer *dc, *newdc, *old_dc;
/* copy the dive */
res = alloc_dive();
copy_dive(d, res);
/* make a new unique id, since we still can't handle two equal ids */
res->id = dive_getUniqID();
invalidate_dive_cache(res);
if (dc_number == 0)
return res;
dc = &res->dc;
newdc = malloc(sizeof(*newdc));
old_dc = get_dive_dc(res, dc_number);
/* skip the current DC in the linked list */
for (dc = &res->dc; dc && dc->next != old_dc; dc = dc->next)
;
if (!dc) {
free(newdc);
fprintf(stderr, "data inconsistent: can't find the current DC");
return res;
}
dc->next = old_dc->next;
*newdc = res->dc;
res->dc = *old_dc;
res->dc.next = newdc;
free(old_dc);
return res;
}
int count_divecomputers(const struct dive *d)
{
int ret = 1;
struct divecomputer *dc = d->dc.next;
while (dc) {
ret++;
dc = dc->next;
}
return ret;
}
static void delete_divecomputer(struct dive *d, int num)
{
int i;
/* Refuse to delete the last dive computer */
if (!d->dc.next)
return;
if (num == 0) {
/* remove the first one, so copy the second one in place of the first and free the second one
* be careful about freeing the no longer needed structures - since we copy things around we can't use free_dc()*/
struct divecomputer *fdc = d->dc.next;
free_dc_contents(&d->dc);
memcpy(&d->dc, fdc, sizeof(struct divecomputer));
free(fdc);
} else {
struct divecomputer *pdc = &d->dc;
for (i = 0; i < num - 1 && pdc; i++)
pdc = pdc->next;
if (pdc && pdc->next) {
struct divecomputer *dc = pdc->next;
pdc->next = dc->next;
free_dc(dc);
}
}
/* If this is the currently displayed dive, we might have to adjust
* the currently displayed dive computer. */
if (d == current_dive && dc_number >= count_divecomputers(d))
dc_number--;
invalidate_dive_cache(d);
}
/* Clone a dive and delete goven dive computer */
struct dive *clone_delete_divecomputer(const struct dive *d, int dc_number)
{
struct dive *res;
/* copy the dive */
res = alloc_dive();
copy_dive(d, res);
/* make a new unique id, since we still can't handle two equal ids */
res->id = dive_getUniqID();
invalidate_dive_cache(res);
delete_divecomputer(res, dc_number);
return res;
}
/*
* This splits the dive src by dive computer. The first output dive has all
* dive computers except num, the second only dive computer num.
* The dives will not be associated with a trip.
* On error, both output parameters are set to NULL.
*/
void split_divecomputer(const struct dive *src, int num, struct dive **out1, struct dive **out2)
{
struct divecomputer *srcdc = get_dive_dc(current_dive, dc_number);
if (src && srcdc) {
// Copy the dive, but only using the selected dive computer
*out2 = alloc_dive();
copy_dive_onedc(src, srcdc, *out2);
// This will also make fixup_dive() to allocate a new dive id...
(*out2)->id = 0;
fixup_dive(*out2);
// Copy the dive with all dive computers
*out1 = create_new_copy(src);
// .. and then delete the split-out dive computer
delete_divecomputer(*out1, num);
(*out1)->divetrip = (*out2)->divetrip = NULL;
} else {
*out1 = *out2 = NULL;
}
}
/* helper function to make it easier to work with our structures
* we don't interpolate here, just use the value from the last sample up to that time */
int get_depth_at_time(const struct divecomputer *dc, unsigned int time)
{
int depth = 0;
if (dc && dc->sample)
for (int i = 0; i < dc->samples; i++) {
if (dc->sample[i].time.seconds > time)
break;
depth = dc->sample[i].depth.mm;
}
return depth;
}
//Calculate O2 in best mix
fraction_t best_o2(depth_t depth, const struct dive *dive)
{
fraction_t fo2;
fo2.permille = (prefs.bottompo2 * 100 / depth_to_mbar(depth.mm, dive)) * 10; //use integer arithmetic to round down to nearest percent
// Don't permit >100% O2
if (fo2.permille > 1000)
fo2.permille = 1000;
return fo2;
}
//Calculate He in best mix. O2 is considered narcopic
fraction_t best_he(depth_t depth, const struct dive *dive, bool o2narcotic, fraction_t fo2)
{
fraction_t fhe;
int pnarcotic, ambient;
pnarcotic = depth_to_mbar(prefs.bestmixend.mm, dive);
ambient = depth_to_mbar(depth.mm, dive);
if (o2narcotic) {
fhe.permille = (100 - 100 * pnarcotic / ambient) * 10; //use integer arithmetic to round up to nearest percent
} else {
fhe.permille = 1000 - fo2.permille - N2_IN_AIR * pnarcotic / ambient;
}
if (fhe.permille < 0)
fhe.permille = 0;
return fhe;
}
void invalidate_dive_cache(struct dive *dive)
{
memset(dive->git_id, 0, 20);
}
bool dive_cache_is_valid(const struct dive *dive)
{
static const unsigned char null_id[20] = { 0, };
return !!memcmp(dive->git_id, null_id, 20);
}
int get_surface_pressure_in_mbar(const struct dive *dive, bool non_null)
{
int mbar = dive->surface_pressure.mbar;
if (!mbar && non_null)
mbar = SURFACE_PRESSURE;
return mbar;
}
/* Pa = N/m^2 - so we determine the weight (in N) of the mass of 10m
* of water (and use standard salt water at 1.03kg per liter if we don't know salinity)
* and add that to the surface pressure (or to 1013 if that's unknown) */
int calculate_depth_to_mbar(int depth, pressure_t surface_pressure, int salinity)
{
double specific_weight;
int mbar = surface_pressure.mbar;
if (!mbar)
mbar = SURFACE_PRESSURE;
if (!salinity)
salinity = SEAWATER_SALINITY;
if (salinity < 500)
salinity += FRESHWATER_SALINITY;
specific_weight = salinity / 10000.0 * 0.981;
mbar += lrint(depth / 10.0 * specific_weight);
return mbar;
}
int depth_to_mbar(int depth, const struct dive *dive)
{
return calculate_depth_to_mbar(depth, dive->surface_pressure, dive->salinity);
}
double depth_to_bar(int depth, const struct dive *dive)
{
return depth_to_mbar(depth, dive) / 1000.0;
}
double depth_to_atm(int depth, const struct dive *dive)
{
return mbar_to_atm(depth_to_mbar(depth, dive));
}
/* for the inverse calculation we use just the relative pressure
* (that's the one that some dive computers like the Uemis Zurich
* provide - for the other models that do this libdivecomputer has to
* take care of this, but the Uemis we support natively */
int rel_mbar_to_depth(int mbar, const struct dive *dive)
{
int cm;
double specific_weight = 1.03 * 0.981;
if (dive->dc.salinity)
specific_weight = dive->dc.salinity / 10000.0 * 0.981;
/* whole mbar gives us cm precision */
cm = (int)lrint(mbar / specific_weight);
return cm * 10;
}
int mbar_to_depth(int mbar, const struct dive *dive)
{
pressure_t surface_pressure;
if (dive->surface_pressure.mbar)
surface_pressure = dive->surface_pressure;
else
surface_pressure.mbar = SURFACE_PRESSURE;
return rel_mbar_to_depth(mbar - surface_pressure.mbar, dive);
}
/* MOD rounded to multiples of roundto mm */
depth_t gas_mod(struct gasmix mix, pressure_t po2_limit, const struct dive *dive, int roundto)
{
depth_t rounded_depth;
double depth = (double) mbar_to_depth(po2_limit.mbar * 1000 / get_o2(mix), dive);
rounded_depth.mm = (int)lrint(depth / roundto) * roundto;
return rounded_depth;
}
/* Maximum narcotic depth rounded to multiples of roundto mm */
depth_t gas_mnd(struct gasmix mix, depth_t end, const struct dive *dive, int roundto)
{
depth_t rounded_depth;
pressure_t ppo2n2;
ppo2n2.mbar = depth_to_mbar(end.mm, dive);
int maxambient = (int)lrint(ppo2n2.mbar / (1 - get_he(mix) / 1000.0));
rounded_depth.mm = (int)lrint(((double)mbar_to_depth(maxambient, dive)) / roundto) * roundto;
return rounded_depth;
}
struct dive *get_dive(int nr)
{
if (nr >= dive_table.nr || nr < 0)
return NULL;
return dive_table.dives[nr];
}
struct dive_site *get_dive_site_for_dive(const struct dive *dive)
{
return dive->dive_site;
}
const char *get_dive_country(const struct dive *dive)
{
struct dive_site *ds = dive->dive_site;
if (ds) {
int idx = taxonomy_index_for_category(&ds->taxonomy, TC_COUNTRY);
if (idx >= 0)
return ds->taxonomy.category[idx].value;
}
return NULL;
}
const char *get_dive_location(const struct dive *dive)
{
const struct dive_site *ds = dive->dive_site;
if (ds && ds->name)
return ds->name;
return NULL;
}
unsigned int number_of_computers(const struct dive *dive)
{
unsigned int total_number = 0;
const struct divecomputer *dc = &dive->dc;
if (!dive)
return 1;
do {
total_number++;
dc = dc->next;
} while (dc);
return total_number;
}
struct divecomputer *get_dive_dc(struct dive *dive, int nr)
{
struct divecomputer *dc;
if (!dive)
return NULL;
dc = &dive->dc;
while (nr-- > 0) {
dc = dc->next;
if (!dc)
return &dive->dc;
}
return dc;
}
struct dive *get_dive_by_uniq_id(int id)
{
int i;
struct dive *dive = NULL;
for_each_dive (i, dive) {
if (dive->id == id)
break;
}
#ifdef DEBUG
if (dive == NULL) {
fprintf(stderr, "Invalid id %x passed to get_dive_by_diveid, try to fix the code\n", id);
exit(1);
}
#endif
return dive;
}
int get_idx_by_uniq_id(int id)
{
int i;
struct dive *dive = NULL;
for_each_dive (i, dive) {
if (dive->id == id)
break;
}
#ifdef DEBUG
if (dive == NULL) {
fprintf(stderr, "Invalid id %x passed to get_dive_by_diveid, try to fix the code\n", id);
exit(1);
}
#endif
return i;
}
bool dive_site_has_gps_location(const struct dive_site *ds)
{
return ds && has_location(&ds->location);
}
int dive_has_gps_location(const struct dive *dive)
{
if (!dive)
return false;
return dive_site_has_gps_location(dive->dive_site);
}
/* Extract GPS location of a dive computer stored in the GPS1
* or GPS2 extra data fields */
static location_t dc_get_gps_location(const struct divecomputer *dc)
{
location_t res = { };
for (struct extra_data *data = dc->extra_data; data; data = data->next) {
if (!strcmp(data->key, "GPS1")) {
parse_location(data->value, &res);
/* If we found a valid GPS1 field exit early since
* it has priority over GPS2 */
if (has_location(&res))
break;
} else if (!strcmp(data->key, "GPS2")) {
/* For GPS2 fields continue searching, as we might
* still find a GPS1 field */
parse_location(data->value, &res);
}
}
return res;
}
/* Get GPS location for a dive. Highest priority is given to the GPS1
* extra data written by libdivecomputer, as this comes from a real GPS
* device. If that doesn't exits, use the currently set dive site.
* This function is potentially slow, therefore only call sparingly
* and remember the result.
*/
location_t dive_get_gps_location(const struct dive *d)
{
location_t res = { };
for (const struct divecomputer *dc = &d->dc; dc; dc = dc->next) {
res = dc_get_gps_location(dc);
if (has_location(&res))
return res;
}
/* No libdivecomputer generated GPS data found.
* Let's use the location of the current dive site.
*/
if (d->dive_site)
res = d->dive_site->location;
return res;
}
/* When evaluated at the time of a gasswitch, this returns the new gas */
struct gasmix get_gasmix(const struct dive *dive, const struct divecomputer *dc, int time, const struct event **evp, struct gasmix gasmix)
{
const struct event *ev = *evp;
struct gasmix res;
/* if there is no cylinder, return air */
if (dive->cylinders.nr <= 0)
return gasmix_air;
if (!ev) {
/* on first invocation, get initial gas mix and first event (if any) */
int cyl = explicit_first_cylinder(dive, dc);
res = get_cylinder(dive, cyl)->gasmix;
ev = dc ? get_next_event(dc->events, "gaschange") : NULL;
} else {
res = gasmix;
}
while (ev && ev->time.seconds <= time) {
res = get_gasmix_from_event(dive, ev);
ev = get_next_event(ev->next, "gaschange");
}
*evp = ev;
return res;
}
/* get the gas at a certain time during the dive */
/* If there is a gasswitch at that time, it returns the new gasmix */
struct gasmix get_gasmix_at_time(const struct dive *d, const struct divecomputer *dc, duration_t time)
{
const struct event *ev = NULL;
struct gasmix gasmix = gasmix_air;
return get_gasmix(d, dc, time.seconds, &ev, gasmix);
}