subsurface/profile.c
Dirk Hohndel 7c09991876 Trim the dive to exclude surface time at beginning and end
We don't change any of the samples, we just don't plot (or consider for
dive time / mean calculations) the samples at the beginning or end of the
dive that are less than a certain threshold under water. Right now that's
an arbitrary 75cm which seems to Do The Right Thing(tm) for the dives I
tried this with - but I'm happy to look at other values if this causes
problems for people with dive computers I do not have access to.

Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2012-11-11 10:36:46 +01:00

1998 lines
57 KiB
C

/* profile.c */
/* creates all the necessary data for drawing the dive profile
* uses cairo to draw it
*/
#include <glib/gi18n.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include "dive.h"
#include "display.h"
#include "display-gtk.h"
#include "divelist.h"
#include "color.h"
#include "libdivecomputer/parser.h"
int selected_dive = 0;
char zoomed_plot = 0;
static double plot_scale = SCALE_SCREEN;
#define cairo_set_line_width_scaled(cr, w) \
cairo_set_line_width((cr), (w) * plot_scale);
typedef enum { STABLE, SLOW, MODERATE, FAST, CRAZY } velocity_t;
/* Plot info with smoothing, velocity indication
* and one-, two- and three-minute minimums and maximums */
struct plot_info {
int nr;
int maxtime;
int meandepth, maxdepth;
int maxpressure;
int mintemp, maxtemp;
struct plot_data {
unsigned int same_cylinder:1;
unsigned int cylinderindex;
int sec;
/* pressure[0] is sensor pressure
* pressure[1] is interpolated pressure */
int pressure[2];
int temperature;
/* Depth info */
int depth;
int ceiling;
int smoothed;
double po2, pn2, phe;
velocity_t velocity;
struct plot_data *min[3];
struct plot_data *max[3];
int avg[3];
} entry[];
};
#define SENSOR_PR 0
#define INTERPOLATED_PR 1
#define SENSOR_PRESSURE(_entry) (_entry)->pressure[SENSOR_PR]
#define INTERPOLATED_PRESSURE(_entry) (_entry)->pressure[INTERPOLATED_PR]
#define GET_PRESSURE(_entry) (SENSOR_PRESSURE(_entry) ? : INTERPOLATED_PRESSURE(_entry))
#define SAC_COLORS_START_IDX SAC_1
#define SAC_COLORS 9
#define VELOCITY_COLORS_START_IDX VELO_STABLE
#define VELOCITY_COLORS 5
typedef enum {
/* SAC colors. Order is important, the SAC_COLORS_START_IDX define above. */
SAC_1, SAC_2, SAC_3, SAC_4, SAC_5, SAC_6, SAC_7, SAC_8, SAC_9,
/* Velocity colors. Order is still important, ref VELOCITY_COLORS_START_IDX. */
VELO_STABLE, VELO_SLOW, VELO_MODERATE, VELO_FAST, VELO_CRAZY,
/* gas colors */
PO2, PO2_ALERT, PN2, PN2_ALERT, PHE, PHE_ALERT,
/* Other colors */
TEXT_BACKGROUND, ALERT_BG, ALERT_FG, EVENTS, SAMPLE_DEEP, SAMPLE_SHALLOW,
SMOOTHED, MINUTE, TIME_GRID, TIME_TEXT, DEPTH_GRID, MEAN_DEPTH, DEPTH_TOP,
DEPTH_BOTTOM, TEMP_TEXT, TEMP_PLOT, SAC_DEFAULT, BOUNDING_BOX, PRESSURE_TEXT, BACKGROUND,
CEILING_SHALLOW, CEILING_DEEP
} color_indice_t;
typedef struct {
/* media[0] is screen, and media[1] is printer */
struct rgba {
double r,g,b,a;
} media[2];
} color_t;
/* [color indice] = {{screen color, printer color}} */
static const color_t profile_color[] = {
[SAC_1] = {{FUNGREEN1, BLACK1_LOW_TRANS}},
[SAC_2] = {{APPLE1, BLACK1_LOW_TRANS}},
[SAC_3] = {{ATLANTIS1, BLACK1_LOW_TRANS}},
[SAC_4] = {{ATLANTIS2, BLACK1_LOW_TRANS}},
[SAC_5] = {{EARLSGREEN1, BLACK1_LOW_TRANS}},
[SAC_6] = {{HOKEYPOKEY1, BLACK1_LOW_TRANS}},
[SAC_7] = {{TUSCANY1, BLACK1_LOW_TRANS}},
[SAC_8] = {{CINNABAR1, BLACK1_LOW_TRANS}},
[SAC_9] = {{REDORANGE1, BLACK1_LOW_TRANS}},
[VELO_STABLE] = {{CAMARONE1, BLACK1_LOW_TRANS}},
[VELO_SLOW] = {{LIMENADE1, BLACK1_LOW_TRANS}},
[VELO_MODERATE] = {{RIOGRANDE1, BLACK1_LOW_TRANS}},
[VELO_FAST] = {{PIRATEGOLD1, BLACK1_LOW_TRANS}},
[VELO_CRAZY] = {{RED1, BLACK1_LOW_TRANS}},
[PO2] = {{APPLE1, APPLE1_MED_TRANS}},
[PO2_ALERT] = {{RED1, APPLE1_MED_TRANS}},
[PN2] = {{BLACK1_LOW_TRANS, BLACK1_LOW_TRANS}},
[PN2_ALERT] = {{RED1, BLACK1_LOW_TRANS}},
[PHE] = {{PEANUT, PEANUT_MED_TRANS}},
[PHE_ALERT] = {{RED1, PEANUT_MED_TRANS}},
[TEXT_BACKGROUND] = {{CONCRETE1_LOWER_TRANS, WHITE1}},
[ALERT_BG] = {{BROOM1_LOWER_TRANS, BLACK1_LOW_TRANS}},
[ALERT_FG] = {{BLACK1_LOW_TRANS, BLACK1_LOW_TRANS}},
[EVENTS] = {{REDORANGE1, BLACK1_LOW_TRANS}},
[SAMPLE_DEEP] = {{PERSIANRED1, BLACK1_LOW_TRANS}},
[SAMPLE_SHALLOW] = {{PERSIANRED1, BLACK1_LOW_TRANS}},
[SMOOTHED] = {{REDORANGE1_HIGH_TRANS, BLACK1_LOW_TRANS}},
[MINUTE] = {{MEDIUMREDVIOLET1_HIGHER_TRANS, BLACK1_LOW_TRANS}},
[TIME_GRID] = {{WHITE1, TUNDORA1_MED_TRANS}},
[TIME_TEXT] = {{FORESTGREEN1, BLACK1_LOW_TRANS}},
[DEPTH_GRID] = {{WHITE1, TUNDORA1_MED_TRANS}},
[MEAN_DEPTH] = {{REDORANGE1_MED_TRANS, BLACK1_LOW_TRANS}},
[DEPTH_BOTTOM] = {{GOVERNORBAY1_MED_TRANS, TUNDORA1_MED_TRANS}},
[DEPTH_TOP] = {{MERCURY1_MED_TRANS, WHITE1_MED_TRANS}},
[TEMP_TEXT] = {{GOVERNORBAY2, BLACK1_LOW_TRANS}},
[TEMP_PLOT] = {{ROYALBLUE2_LOW_TRANS, BLACK1_LOW_TRANS}},
[SAC_DEFAULT] = {{WHITE1, BLACK1_LOW_TRANS}},
[BOUNDING_BOX] = {{WHITE1, BLACK1_LOW_TRANS}},
[PRESSURE_TEXT] = {{KILLARNEY1, BLACK1_LOW_TRANS}},
[BACKGROUND] = {{SPRINGWOOD1, BLACK1_LOW_TRANS}},
[CEILING_SHALLOW] = {{REDORANGE1_HIGH_TRANS, REDORANGE1_HIGH_TRANS}},
[CEILING_DEEP] = {{RED1_MED_TRANS, RED1_MED_TRANS}},
};
#define plot_info_size(nr) (sizeof(struct plot_info) + (nr)*sizeof(struct plot_data))
/* Scale to 0,0 -> maxx,maxy */
#define SCALEX(gc,x) (((x)-gc->leftx)/(gc->rightx-gc->leftx)*gc->maxx)
#define SCALEY(gc,y) (((y)-gc->topy)/(gc->bottomy-gc->topy)*gc->maxy)
#define SCALE(gc,x,y) SCALEX(gc,x),SCALEY(gc,y)
static void move_to(struct graphics_context *gc, double x, double y)
{
cairo_move_to(gc->cr, SCALE(gc, x, y));
}
static void line_to(struct graphics_context *gc, double x, double y)
{
cairo_line_to(gc->cr, SCALE(gc, x, y));
}
static void set_source_rgba(struct graphics_context *gc, color_indice_t c)
{
const color_t *col = &profile_color[c];
struct rgba rgb = col->media[gc->printer];
double r = rgb.r;
double g = rgb.g;
double b = rgb.b;
double a = rgb.a;
cairo_set_source_rgba(gc->cr, r, g, b, a);
}
void init_profile_background(struct graphics_context *gc)
{
set_source_rgba(gc, BACKGROUND);
}
void pattern_add_color_stop_rgba(struct graphics_context *gc, cairo_pattern_t *pat, double o, color_indice_t c)
{
const color_t *col = &profile_color[c];
struct rgba rgb = col->media[gc->printer];
cairo_pattern_add_color_stop_rgba(pat, o, rgb.r, rgb.g, rgb.b, rgb.a);
}
#define ROUND_UP(x,y) ((((x)+(y)-1)/(y))*(y))
/* debugging tool - not normally used */
static void dump_pi (struct plot_info *pi)
{
int i;
printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
" maxpressure:%d mintemp:%d maxtemp:%d\n",
pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth,
pi->maxpressure, pi->mintemp, pi->maxtemp);
for (i = 0; i < pi->nr; i++)
printf(" entry[%d]:{same_cylinder:%d cylinderindex:%d sec:%d pressure:{%d,%d}\n"
" time:%d:%02d temperature:%d depth:%d ceiling:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n",
i, pi->entry[i].same_cylinder, pi->entry[i].cylinderindex, pi->entry[i].sec,
pi->entry[i].pressure[0], pi->entry[i].pressure[1],
pi->entry[i].sec / 60, pi->entry[i].sec % 60,
pi->entry[i].temperature, pi->entry[i].depth, pi->entry[i].ceiling, pi->entry[i].smoothed,
pi->entry[i].po2, pi->entry[i].phe, pi->entry[i].pn2,
pi->entry[i].po2 + pi->entry[i].phe + pi->entry[i].pn2);
printf(" }\n");
}
/*
* When showing dive profiles, we scale things to the
* current dive. However, we don't scale past less than
* 30 minutes or 90 ft, just so that small dives show
* up as such unless zoom is enabled.
* We also need to add 180 seconds at the end so the min/max
* plots correctly
*/
static int get_maxtime(struct plot_info *pi)
{
int seconds = pi->maxtime;
if (zoomed_plot) {
/* Rounded up to one minute, with at least 2.5 minutes to
* spare.
* For dive times shorter than 10 minutes, we use seconds/4 to
* calculate the space dynamically.
* This is seamless since 600/4 = 150.
*/
if ( seconds < 600 )
return ROUND_UP(seconds+seconds/4, 60);
else
return ROUND_UP(seconds+150, 60);
} else {
/* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */
return MAX(30*60, ROUND_UP(seconds+150, 60*5));
}
}
/* get the maximum depth to which we want to plot
* take into account the additional verical space needed to plot
* partial pressure graphs */
static int get_maxdepth(struct plot_info *pi)
{
unsigned mm = pi->maxdepth;
int md;
if (zoomed_plot) {
/* Rounded up to 10m, with at least 3m to spare */
md = ROUND_UP(mm+3000, 10000);
} else {
/* Minimum 30m, rounded up to 10m, with at least 3m to spare */
md = MAX(30000, ROUND_UP(mm+3000, 10000));
}
if (GRAPHS_ENABLED) {
if (md <= 20000)
md += 10000;
else
md += ROUND_UP(md / 2, 10000);
}
return md;
}
typedef struct {
int size;
color_indice_t color;
double hpos, vpos;
} text_render_options_t;
#define RIGHT (-1.0)
#define CENTER (-0.5)
#define LEFT (0.0)
#define TOP (1)
#define MIDDLE (0)
#define BOTTOM (-1)
static void plot_text(struct graphics_context *gc, const text_render_options_t *tro,
double x, double y, const char *fmt, ...)
{
cairo_t *cr = gc->cr;
cairo_font_extents_t fe;
cairo_text_extents_t extents;
double dx, dy;
char buffer[80];
va_list args;
va_start(args, fmt);
vsnprintf(buffer, sizeof(buffer), fmt, args);
va_end(args);
cairo_set_font_size(cr, tro->size * plot_scale);
cairo_font_extents(cr, &fe);
cairo_text_extents(cr, buffer, &extents);
dx = tro->hpos * (extents.width + extents.x_bearing);
dy = tro->vpos * (extents.height + fe.descent);
move_to(gc, x, y);
cairo_rel_move_to(cr, dx, dy);
cairo_text_path(cr, buffer);
set_source_rgba(gc, TEXT_BACKGROUND);
cairo_stroke(cr);
move_to(gc, x, y);
cairo_rel_move_to(cr, dx, dy);
set_source_rgba(gc, tro->color);
cairo_show_text(cr, buffer);
}
/* collect all event names and whether we display them */
struct ev_select {
char *ev_name;
gboolean plot_ev;
};
static struct ev_select *ev_namelist;
static int evn_allocated;
static int evn_used;
void evn_foreach(void (*callback)(const char *, int *, void *), void *data)
{
int i;
for (i = 0; i < evn_used; i++) {
/* here we display an event name on screen - so translate */
callback(_(ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data);
}
}
void remember_event(const char *eventname)
{
int i = 0, len;
if (!eventname || (len = strlen(eventname)) == 0)
return;
while (i < evn_used) {
if (!strncmp(eventname, ev_namelist[i].ev_name, len))
return;
i++;
}
if (evn_used == evn_allocated) {
evn_allocated += 10;
ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select));
if (! ev_namelist)
/* we are screwed, but let's just bail out */
return;
}
ev_namelist[evn_used].ev_name = strdup(eventname);
ev_namelist[evn_used].plot_ev = TRUE;
evn_used++;
}
static void plot_one_event(struct graphics_context *gc, struct plot_info *pi, struct event *event, const text_render_options_t *tro)
{
int i, depth = 0;
int x,y;
char buffer[80];
/* is plotting this event disabled? */
if (event->name) {
for (i = 0; i < evn_used; i++) {
if (! strcmp(event->name, ev_namelist[i].ev_name)) {
if (ev_namelist[i].plot_ev)
break;
else
return;
}
}
}
for (i = 0; i < pi->nr; i++) {
struct plot_data *data = pi->entry + i;
if (event->time.seconds < data->sec)
break;
depth = data->depth;
}
/* draw a little tirangular marker and attach tooltip */
x = SCALEX(gc, event->time.seconds);
y = SCALEY(gc, depth);
set_source_rgba(gc, ALERT_BG);
cairo_move_to(gc->cr, x-15, y+6);
cairo_line_to(gc->cr, x-3 , y+6);
cairo_line_to(gc->cr, x-9, y-6);
cairo_line_to(gc->cr, x-15, y+6);
cairo_stroke_preserve(gc->cr);
cairo_fill(gc->cr);
set_source_rgba(gc, ALERT_FG);
cairo_move_to(gc->cr, x-9, y-3);
cairo_line_to(gc->cr, x-9, y+1);
cairo_move_to(gc->cr, x-9, y+4);
cairo_line_to(gc->cr, x-9, y+4);
cairo_stroke(gc->cr);
/* we display the event on screen - so translate */
if (event->value)
snprintf(buffer, sizeof(buffer), "%s: %d", _(event->name), event->value);
else
snprintf(buffer, sizeof(buffer), "%s", _(event->name));
attach_tooltip(x-15, y-6, 12, 12, buffer);
}
static void plot_events(struct graphics_context *gc, struct plot_info *pi, struct dive *dive)
{
static const text_render_options_t tro = {14, EVENTS, CENTER, TOP};
struct event *event = dive->events;
if (gc->printer)
return;
while (event) {
if (event->flags != SAMPLE_FLAGS_BEGIN && event->flags != SAMPLE_FLAGS_END)
plot_one_event(gc, pi, event, &tro);
event = event->next;
}
}
static void render_depth_sample(struct graphics_context *gc, struct plot_data *entry, const text_render_options_t *tro)
{
int sec = entry->sec, decimals;
double d;
d = get_depth_units(entry->depth, &decimals, NULL);
plot_text(gc, tro, sec, entry->depth, "%.*f", decimals, d);
}
static void plot_text_samples(struct graphics_context *gc, struct plot_info *pi)
{
static const text_render_options_t deep = {14, SAMPLE_DEEP, CENTER, TOP};
static const text_render_options_t shallow = {14, SAMPLE_SHALLOW, CENTER, BOTTOM};
int i;
int last = -1;
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry + i;
if (entry->depth < 2000)
continue;
if ((entry == entry->max[2]) && entry->depth != last) {
render_depth_sample(gc, entry, &deep);
last = entry->depth;
}
if ((entry == entry->min[2]) && entry->depth != last) {
render_depth_sample(gc, entry, &shallow);
last = entry->depth;
}
if (entry->depth != last)
last = -1;
}
}
static void plot_depth_text(struct graphics_context *gc, struct plot_info *pi)
{
int maxtime, maxdepth;
/* Get plot scaling limits */
maxtime = get_maxtime(pi);
maxdepth = get_maxdepth(pi);
gc->leftx = 0; gc->rightx = maxtime;
gc->topy = 0; gc->bottomy = maxdepth;
plot_text_samples(gc, pi);
}
static void plot_smoothed_profile(struct graphics_context *gc, struct plot_info *pi)
{
int i;
struct plot_data *entry = pi->entry;
set_source_rgba(gc, SMOOTHED);
move_to(gc, entry->sec, entry->smoothed);
for (i = 1; i < pi->nr; i++) {
entry++;
line_to(gc, entry->sec, entry->smoothed);
}
cairo_stroke(gc->cr);
}
static void plot_minmax_profile_minute(struct graphics_context *gc, struct plot_info *pi,
int index)
{
int i;
struct plot_data *entry = pi->entry;
set_source_rgba(gc, MINUTE);
move_to(gc, entry->sec, entry->min[index]->depth);
for (i = 1; i < pi->nr; i++) {
entry++;
line_to(gc, entry->sec, entry->min[index]->depth);
}
for (i = 1; i < pi->nr; i++) {
line_to(gc, entry->sec, entry->max[index]->depth);
entry--;
}
cairo_close_path(gc->cr);
cairo_fill(gc->cr);
}
static void plot_minmax_profile(struct graphics_context *gc, struct plot_info *pi)
{
if (gc->printer)
return;
plot_minmax_profile_minute(gc, pi, 2);
plot_minmax_profile_minute(gc, pi, 1);
plot_minmax_profile_minute(gc, pi, 0);
}
static void plot_depth_scale(struct graphics_context *gc, struct plot_info *pi)
{
int i, maxdepth, marker;
static const text_render_options_t tro = {10, SAMPLE_DEEP, RIGHT, MIDDLE};
/* Depth markers: every 30 ft or 10 m*/
maxdepth = get_maxdepth(pi);
gc->topy = 0; gc->bottomy = maxdepth;
switch (output_units.length) {
case METERS: marker = 10000; break;
case FEET: marker = 9144; break; /* 30 ft */
}
set_source_rgba(gc, DEPTH_GRID);
for (i = marker; i < maxdepth; i += marker) {
double d = get_depth_units(i, NULL, NULL);
plot_text(gc, &tro, -0.002, i, "%.0f", d);
}
}
/* ap points to an array of int with pi->nr + 1 elements that is
* ininitialized with just one -1 entry
* this adds entries (if they aren't too close to an existing one)
* and keeps things sorted
* we KNOW the array is big enough to hold all possible indices
* a2p is a secondary array - we insert value at the same relative
* positio as idx in ap */
static void add_index(int idx, int margin, int **ap, int **a2p, int value)
{
int j, i = 0;
int *a = *ap;
int *a2 = *a2p;
while (a[i] != -1 && a[i] < idx)
i++;
if (a[i] == idx)
return;
if (a[i] != -1 && a[i - 1] != -1 && idx - a[i - 1] < margin)
return;
if (a[i] != -1 && a[i] - idx < margin)
return;
j = i;
while (a[j] != -1)
j++;
while (j >= i) {
a[j+1] = a[j];
a2[j+1] = a2[j];
j--;
}
a[i] = idx;
a2[i] = value;
}
#define LI(_i,_j) MAX((_i)-(_j), 0)
#define RI(_i,_j) MIN((_i)+(_j), nr - 1)
#define SPIKE(_i,_s) if (fabs(_s) > fabs(spk_data[_i])) spk_data[_i] = (_s)
/* this is an attempt at a metric that finds spikes in a data series */
static void calculate_spikyness(int nr, double *data, double *spk_data, int deltax, double deltay)
{
int i, j;
double dminl, dminr, dmaxl, dmaxr;
#if DEBUG_PROFILE > 2
printf("Spike data: \n 0 ");
#endif
for (i = 0; i < nr; i++) {
dminl = dminr = dmaxl = dmaxr = data[i];
spk_data[i] = 0.0;
for (j = 1; j < deltax; j++) {
if (data[LI(i,j)] < dminl)
dminl = data[LI(i,j)];
if (data[LI(i,j)] > dmaxl)
dmaxl = data[LI(i,j)];
if (data[RI(i,j)] < dminr)
dminr = data[RI(i,j)];
if (data[RI(i,j)] > dmaxr)
dmaxr = data[RI(i,j)];
/* don't do super narrow */
if (j < deltax / 3)
continue;
/* falling edge on left */
if (dmaxl == data[i] && dmaxr - data[i] < 0.1 * (data[i] - dminl))
SPIKE(i,(data[i] - dminl) / j);
/* falling edge on right */
if (dmaxr == data[i] && dmaxl - data[i] < 0.1 * (data[i] - dminr))
SPIKE(i,(data[i] - dminr) / j);
/* minima get a negative spike value */
/* rising edge on left */
if (dminl == data[i] && data[i] - dminr < 0.1 * (dmaxl - data[i]))
SPIKE(i,(data[i] - dmaxl) / j);
/* rising edge on right */
if (dminr == data[i] && data[i] - dminl < 0.1 * (dmaxr - data[i]))
SPIKE(i,(data[i] - dmaxr) / j);
}
#if DEBUG_PROFILE > 2
fprintf(debugfile, "%.4lf ", spk_data[i]);
if (i % 12 == 11)
fprintf(debugfile, "\n%2d ", (i + 1) / 12);
#endif
}
#if DEBUG_PROFILE > 2
printf("\n");
#endif
}
/* only show one spike in a deltax wide region - pick the highest (and first if the same) */
static gboolean higher_spike(double *spk_data, int idx, int nr, int deltax)
{
int i;
double s = fabs(spk_data[idx]);
for (i = MAX(0, idx - deltax); i <= MIN(idx + deltax, nr - 1); i++)
if (fabs(spk_data[i]) > s)
return TRUE;
else if (fabs(spk_data[i]) == s && i < idx)
return TRUE;
return FALSE;
}
/* this figures out which time stamps provide "interesting" formations in the graphs;
* this includes local minima and maxima as well as long plateaus.
* pass in the function that returns the value at a certain point (as double),
* the delta in time (expressed as number of data points of "significant time")
* the delta at which the value is considered to have been "significantly changed" and
* the number of points to cover
* returns a list of indices that ends with a -1 of times that are "interesting" */
static void find_points_of_interest(struct plot_info *pi, double (*value_func)(int, struct plot_info *),
int deltax, double deltay, int **poip, int **poip_vpos)
{
int i, j, nr = pi->nr;
double *data, *data_max, *data_min, *spk_data;
double min, max;
int *pois;
/* avoid all the function calls by creating a local array and
* have some helper arrays to make our lifes easier */
data = malloc(nr * sizeof(double));
data_max = malloc(nr * sizeof(double));
data_min = malloc(nr * sizeof(double));
spk_data = malloc(nr * sizeof(double));
pois = *poip = malloc((nr + 1) * sizeof(int));
*poip_vpos = malloc((nr + 1) * sizeof(int));
pois[0] = -1;
pois[1] = -1;
/* copy the data and get the absolute minimum and maximum while we do it */
for (i = 0; i < nr; i++) {
data_max[i] = data_min[i] = data[i] = value_func(i, pi);
if (i == 0 || data[i] < min)
min = data[i];
if (i == 0 || data[i] > max)
max = data[i];
}
/* next find out if there are real spikes in the graph */
calculate_spikyness(nr, data, spk_data, deltax, deltay);
/* now process all data points */
for (i = 0; i < nr; i++) {
/* get the local min/max */
for (j = MAX(0, i - deltax); j < i + deltax && j < nr; j++) {
if (data[j] < data[i])
data_min[i] = data[j];
if (data[j] > data[i])
data_max[i] = data[j];
}
/* is i the overall minimum or maximum */
if (data[i] == max && (i == 0 || data[i - 1] != max))
add_index(i, deltax, poip, poip_vpos, BOTTOM);
if (data[i] == min && (i == 0 || data[i - 1] != min))
add_index(i, deltax, poip, poip_vpos, TOP);
/* is i a spike? */
if (fabs(spk_data[i]) > 0.01 && ! higher_spike(spk_data, i, nr, deltax)) {
if (spk_data[i] > 0.0)
add_index(i, deltax, poip, poip_vpos, BOTTOM);
if (spk_data[i] < 0.0)
add_index(i, deltax, poip, poip_vpos, TOP);
}
/* is i a significant local minimum or maximum? */
if (data[i] == data_min[i] && data_max[i] - data[i] > deltay)
add_index(i, deltax, poip, poip_vpos, TOP);
if (data[i] == data_max[i] && data[i] - data_min[i] > deltay)
add_index(i, deltax, poip, poip_vpos, BOTTOM);
}
/* still need to search for plateaus */
}
static void setup_pp_limits(struct graphics_context *gc, struct plot_info *pi)
{
int maxdepth;
gc->leftx = 0;
gc->rightx = get_maxtime(pi);
/* the maxdepth already includes extra vertical space - and if
* we use 1.5 times the corresponding pressure as maximum partial
* pressure the graph seems to look fine*/
maxdepth = get_maxdepth(pi);
gc->topy = 1.5 * (maxdepth + 10000) / 10000.0 * 1.01325;
gc->bottomy = 0.0;
}
static void plot_single_pp_text(struct graphics_context *gc, int sec, double pp,
double vpos, color_indice_t color)
{
text_render_options_t tro = {12, color, CENTER, vpos};
plot_text(gc, &tro, sec, pp, "%.1lf", pp);
}
#define MAXPP(_mpp, _pp) { _mpp = 0; \
for(i = 0; i< pi->nr; i++) \
if (pi->entry[i]._pp > _mpp) \
_mpp = pi->entry[i]._pp; \
}
static double po2_value(int idx, struct plot_info *pi)
{
return pi->entry[idx].po2;
}
static double pn2_value(int idx, struct plot_info *pi)
{
return pi->entry[idx].pn2;
}
static double phe_value(int idx, struct plot_info *pi)
{
return pi->entry[idx].phe;
}
static double plot_single_gas_pp_text(struct graphics_context *gc, struct plot_info *pi,
double (*value_func)(int, struct plot_info *),
double value_threshold, int color)
{
int *pois, *pois_vpos;
int i, two_minutes = 1;
double maxpp = 0.0;
/* don't bother with local min/max if the dive is under two minutes */
if (pi->entry[pi->nr - 1].sec > 120) {
int idx = 0;
while (pi->entry[idx].sec == 0)
idx++;
while (pi->entry[idx + two_minutes].sec < 120)
two_minutes++;
} else {
two_minutes = pi->nr;
}
find_points_of_interest(pi, value_func, two_minutes, value_threshold, &pois, &pois_vpos);
for (i = 0; pois[i] != -1; i++) {
struct plot_data *entry = pi->entry + pois[i];
double value = value_func(pois[i], pi);
#if DEBUG_PROFILE > 1
fprintf(debugfile, "POI at %d sec value %lf\n", entry->sec, entry->po2);
#endif
plot_single_pp_text(gc, entry->sec, value, pois_vpos[i], color);
if (value > maxpp)
maxpp = value;
}
free(pois);
free(pois_vpos);
return maxpp;
}
static void plot_pp_text(struct graphics_context *gc, struct plot_info *pi)
{
double pp, dpp, m, maxpp = 0.0;
int hpos;
static const text_render_options_t tro = {11, PN2, LEFT, MIDDLE};
setup_pp_limits(gc, pi);
if (partial_pressure_graphs.po2) {
maxpp = plot_single_gas_pp_text(gc, pi, po2_value, 0.4, PO2);
}
if (partial_pressure_graphs.pn2) {
m = plot_single_gas_pp_text(gc, pi, pn2_value, 0.6, PN2);
if (m > maxpp)
maxpp = m;
}
if (partial_pressure_graphs.phe) {
m = plot_single_gas_pp_text(gc, pi, phe_value, 0.4, PHE);
if (m > maxpp)
maxpp = m;
}
/* while this is somewhat useful, I don't like the way it looks...
* for now I'll leave the code here, but disable it */
if (0) {
pp = floor(maxpp * 10.0) / 10.0 + 0.2;
dpp = floor(2.0 * pp) / 10.0;
hpos = pi->entry[pi->nr - 1].sec + 30;
for (m = 0.0; m <= pp; m += dpp)
plot_text(gc, &tro, hpos, m, "%.1f", m);
}
}
static void plot_pp_gas_profile(struct graphics_context *gc, struct plot_info *pi)
{
int i;
struct plot_data *entry;
setup_pp_limits(gc, pi);
if (partial_pressure_graphs.po2) {
set_source_rgba(gc, PO2);
entry = pi->entry;
move_to(gc, entry->sec, entry->po2);
for (i = 1; i < pi->nr; i++) {
entry++;
if (entry->po2 < partial_pressure_graphs.po2_threshold)
line_to(gc, entry->sec, entry->po2);
else
move_to(gc, entry->sec, entry->po2);
}
cairo_stroke(gc->cr);
set_source_rgba(gc, PO2_ALERT);
entry = pi->entry;
move_to(gc, entry->sec, entry->po2);
for (i = 1; i < pi->nr; i++) {
entry++;
if (entry->po2 >= partial_pressure_graphs.po2_threshold)
line_to(gc, entry->sec, entry->po2);
else
move_to(gc, entry->sec, entry->po2);
}
cairo_stroke(gc->cr);
}
if (partial_pressure_graphs.pn2) {
set_source_rgba(gc, PN2);
entry = pi->entry;
move_to(gc, entry->sec, entry->pn2);
for (i = 1; i < pi->nr; i++) {
entry++;
if (entry->pn2 < partial_pressure_graphs.pn2_threshold)
line_to(gc, entry->sec, entry->pn2);
else
move_to(gc, entry->sec, entry->pn2);
}
cairo_stroke(gc->cr);
set_source_rgba(gc, PN2_ALERT);
entry = pi->entry;
move_to(gc, entry->sec, entry->pn2);
for (i = 1; i < pi->nr; i++) {
entry++;
if (entry->pn2 >= partial_pressure_graphs.pn2_threshold)
line_to(gc, entry->sec, entry->pn2);
else
move_to(gc, entry->sec, entry->pn2);
}
cairo_stroke(gc->cr);
}
if (partial_pressure_graphs.phe) {
set_source_rgba(gc, PHE);
entry = pi->entry;
move_to(gc, entry->sec, entry->phe);
for (i = 1; i < pi->nr; i++) {
entry++;
if (entry->phe < partial_pressure_graphs.phe_threshold)
line_to(gc, entry->sec, entry->phe);
else
move_to(gc, entry->sec, entry->phe);
}
cairo_stroke(gc->cr);
set_source_rgba(gc, PHE_ALERT);
entry = pi->entry;
move_to(gc, entry->sec, entry->phe);
for (i = 1; i < pi->nr; i++) {
entry++;
if (entry->phe >= partial_pressure_graphs.phe_threshold)
line_to(gc, entry->sec, entry->phe);
else
move_to(gc, entry->sec, entry->phe);
}
cairo_stroke(gc->cr);
}
}
static void plot_depth_profile(struct graphics_context *gc, struct plot_info *pi)
{
int i, incr;
cairo_t *cr = gc->cr;
int sec, depth;
struct plot_data *entry;
int maxtime, maxdepth, marker;
int increments[8] = { 10, 20, 30, 60, 5*60, 10*60, 15*60, 30*60 };
/* Get plot scaling limits */
maxtime = get_maxtime(pi);
maxdepth = get_maxdepth(pi);
/* Time markers: at most every 10 seconds, but no more than 12 markers.
* We start out with 10 seconds and increment up to 30 minutes,
* depending on the dive time.
* This allows for 6h dives - enough (I hope) for even the craziest
* divers - but just in case, for those 8h depth-record-breaking dives,
* we double the interval if this still doesn't get us to 12 or fewer
* time markers */
i = 0;
while (maxtime / increments[i] > 12 && i < 8)
i++;
incr = increments[i];
while (maxtime / incr > 12)
incr *= 2;
gc->leftx = 0; gc->rightx = maxtime;
gc->topy = 0; gc->bottomy = 1.0;
set_source_rgba(gc, TIME_GRID);
cairo_set_line_width_scaled(gc->cr, 2);
for (i = incr; i < maxtime; i += incr) {
move_to(gc, i, 0);
line_to(gc, i, 1);
}
cairo_stroke(cr);
/* now the text on the time markers */
text_render_options_t tro = {10, TIME_TEXT, CENTER, TOP};
if (maxtime < 600) {
/* Be a bit more verbose with shorter dives */
for (i = incr; i < maxtime; i += incr)
plot_text(gc, &tro, i, 1, "%02d:%02d", i/60, i%60);
} else {
/* Only render the time on every second marker for normal dives */
for (i = incr; i < maxtime; i += 2 * incr)
plot_text(gc, &tro, i, 1, "%d", i/60);
}
/* Depth markers: every 30 ft or 10 m*/
gc->leftx = 0; gc->rightx = 1.0;
gc->topy = 0; gc->bottomy = maxdepth;
switch (output_units.length) {
case METERS: marker = 10000; break;
case FEET: marker = 9144; break; /* 30 ft */
}
set_source_rgba(gc, DEPTH_GRID);
for (i = marker; i < maxdepth; i += marker) {
move_to(gc, 0, i);
line_to(gc, 1, i);
}
cairo_stroke(cr);
gc->leftx = 0; gc->rightx = maxtime;
/* Show mean depth */
if (! gc->printer) {
set_source_rgba(gc, MEAN_DEPTH);
move_to(gc, 0, pi->meandepth);
line_to(gc, pi->entry[pi->nr - 1].sec, pi->meandepth);
cairo_stroke(cr);
}
/*
* These are good for debugging text placement etc,
* but not for actual display..
*/
if (0) {
plot_smoothed_profile(gc, pi);
plot_minmax_profile(gc, pi);
}
/* Do the depth profile for the neat fill */
gc->topy = 0; gc->bottomy = maxdepth;
cairo_pattern_t *pat;
pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale);
pattern_add_color_stop_rgba (gc, pat, 1, DEPTH_BOTTOM);
pattern_add_color_stop_rgba (gc, pat, 0, DEPTH_TOP);
cairo_set_source(gc->cr, pat);
cairo_pattern_destroy(pat);
cairo_set_line_width_scaled(gc->cr, 2);
entry = pi->entry;
move_to(gc, 0, 0);
for (i = 0; i < pi->nr; i++, entry++)
line_to(gc, entry->sec, entry->depth);
/* Show any ceiling we may have encountered */
for (i = pi->nr - 1; i >= 0; i--, entry--) {
if (entry->ceiling < entry->depth) {
line_to(gc, entry->sec, entry->ceiling);
} else {
line_to(gc, entry->sec, entry->depth);
}
}
cairo_close_path(gc->cr);
cairo_fill(gc->cr);
/* next show where we have been bad and crossed the ceiling */
pat = cairo_pattern_create_linear (0.0, 0.0, 0.0, 256.0 * plot_scale);
pattern_add_color_stop_rgba (gc, pat, 0, CEILING_SHALLOW);
pattern_add_color_stop_rgba (gc, pat, 1, CEILING_DEEP);
cairo_set_source(gc->cr, pat);
cairo_pattern_destroy(pat);
entry = pi->entry;
move_to(gc, 0, 0);
for (i = 0; i < pi->nr; i++, entry++)
line_to(gc, entry->sec, entry->depth);
for (i = pi->nr - 1; i >= 0; i--, entry--) {
if (entry->ceiling > entry->depth) {
line_to(gc, entry->sec, entry->ceiling);
} else {
line_to(gc, entry->sec, entry->depth);
}
}
cairo_close_path(gc->cr);
cairo_fill(gc->cr);
/* Now do it again for the velocity colors */
entry = pi->entry;
for (i = 1; i < pi->nr; i++) {
entry++;
sec = entry->sec;
/* we want to draw the segments in different colors
* representing the vertical velocity, so we need to
* chop this into short segments */
depth = entry->depth;
set_source_rgba(gc, VELOCITY_COLORS_START_IDX + entry->velocity);
move_to(gc, entry[-1].sec, entry[-1].depth);
line_to(gc, sec, depth);
cairo_stroke(cr);
}
}
static int setup_temperature_limits(struct graphics_context *gc, struct plot_info *pi)
{
int maxtime, mintemp, maxtemp, delta;
/* Get plot scaling limits */
maxtime = get_maxtime(pi);
mintemp = pi->mintemp;
maxtemp = pi->maxtemp;
gc->leftx = 0; gc->rightx = maxtime;
/* Show temperatures in roughly the lower third, but make sure the scale
is at least somewhat reasonable */
delta = maxtemp - mintemp;
if (delta > 3000) /* more than 3K in fluctuation */
gc->topy = maxtemp + delta*2;
else
gc->topy = maxtemp + 1500 + delta*2;
if (GRAPHS_ENABLED)
gc->bottomy = mintemp - delta * 2;
else
gc->bottomy = mintemp - delta / 2;
return maxtemp > mintemp;
}
static void plot_single_temp_text(struct graphics_context *gc, int sec, int mkelvin)
{
double deg;
const char *unit;
static const text_render_options_t tro = {12, TEMP_TEXT, LEFT, TOP};
deg = get_temp_units(mkelvin, &unit);
plot_text(gc, &tro, sec, mkelvin, "%d%s", (int)(deg + 0.5), unit);
}
static void plot_temperature_text(struct graphics_context *gc, struct plot_info *pi)
{
int i;
int last = -300, sec = 0;
int last_temperature = 0, last_printed_temp = 0;
if (!setup_temperature_limits(gc, pi))
return;
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry+i;
int mkelvin = entry->temperature;
if (!mkelvin)
continue;
last_temperature = mkelvin;
sec = entry->sec;
/* don't print a temperature
* if it's been less than 5min and less than a 2K change OR
* if it's been less than 2min OR if the change from the
* last print is less than .4K (and therefore less than 1F */
if (((sec < last + 300) && (abs(mkelvin - last_printed_temp) < 2000)) ||
(sec < last + 120) ||
(abs(mkelvin - last_printed_temp) < 400))
continue;
last = sec;
plot_single_temp_text(gc,sec,mkelvin);
last_printed_temp = mkelvin;
}
/* it would be nice to print the end temperature, if it's
* different or if the last temperature print has been more
* than a quarter of the dive back */
if ((abs(last_temperature - last_printed_temp) > 500) ||
((double)last / (double)sec < 0.75))
plot_single_temp_text(gc, sec, last_temperature);
}
static void plot_temperature_profile(struct graphics_context *gc, struct plot_info *pi)
{
int i;
cairo_t *cr = gc->cr;
int last = 0;
if (!setup_temperature_limits(gc, pi))
return;
cairo_set_line_width_scaled(gc->cr, 2);
set_source_rgba(gc, TEMP_PLOT);
for (i = 0; i < pi->nr; i++) {
struct plot_data *entry = pi->entry + i;
int mkelvin = entry->temperature;
int sec = entry->sec;
if (!mkelvin) {
if (!last)
continue;
mkelvin = last;
}
if (last)
line_to(gc, sec, mkelvin);
else
move_to(gc, sec, mkelvin);
last = mkelvin;
}
cairo_stroke(cr);
}
/* gets both the actual start and end pressure as well as the scaling factors */
static int get_cylinder_pressure_range(struct graphics_context *gc, struct plot_info *pi)
{
gc->leftx = 0;
gc->rightx = get_maxtime(pi);
if (GRAPHS_ENABLED)
gc->bottomy = -pi->maxpressure * 0.75;
else
gc->bottomy = 0;
gc->topy = pi->maxpressure * 1.5;
return pi->maxpressure != 0;
}
/* set the color for the pressure plot according to temporary sac rate
* as compared to avg_sac; the calculation simply maps the delta between
* sac and avg_sac to indexes 0 .. (SAC_COLORS - 1) with everything
* more than 6000 ml/min below avg_sac mapped to 0 */
static void set_sac_color(struct graphics_context *gc, int sac, int avg_sac)
{
int sac_index = 0;
int delta = sac - avg_sac + 7000;
if (!gc->printer) {
sac_index = delta / 2000;
if (sac_index < 0)
sac_index = 0;
if (sac_index > SAC_COLORS - 1)
sac_index = SAC_COLORS - 1;
set_source_rgba(gc, SAC_COLORS_START_IDX + sac_index);
} else {
set_source_rgba(gc, SAC_DEFAULT);
}
}
/* calculate the current SAC in ml/min and convert to int */
#define GET_LOCAL_SAC(_entry1, _entry2, _dive) (int) \
((GET_PRESSURE((_entry1)) - GET_PRESSURE((_entry2))) * \
(_dive)->cylinder[(_entry1)->cylinderindex].type.size.mliter / \
(((_entry2)->sec - (_entry1)->sec) / 60.0) / \
depth_to_mbar(((_entry1)->depth + (_entry2)->depth) / 2.0, (_dive)))
#define SAC_WINDOW 45 /* sliding window in seconds for current SAC calculation */
static void plot_cylinder_pressure(struct graphics_context *gc, struct plot_info *pi,
struct dive *dive)
{
int i;
int last = -1;
int lift_pen = FALSE;
int first_plot = TRUE;
int sac = 0;
struct plot_data *last_entry = NULL;
if (!get_cylinder_pressure_range(gc, pi))
return;
cairo_set_line_width_scaled(gc->cr, 2);
for (i = 0; i < pi->nr; i++) {
int mbar;
struct plot_data *entry = pi->entry + i;
mbar = GET_PRESSURE(entry);
if (!entry->same_cylinder) {
lift_pen = TRUE;
last_entry = NULL;
}
if (!mbar) {
lift_pen = TRUE;
continue;
}
if (!last_entry) {
last = i;
last_entry = entry;
sac = GET_LOCAL_SAC(entry, pi->entry + i + 1, dive);
} else {
int j;
sac = 0;
for (j = last; j < i; j++)
sac += GET_LOCAL_SAC(pi->entry + j, pi->entry + j + 1, dive);
sac /= (i - last);
if (entry->sec - last_entry->sec >= SAC_WINDOW) {
last++;
last_entry = pi->entry + last;
}
}
set_sac_color(gc, sac, dive->sac);
if (lift_pen) {
if (!first_plot && entry->same_cylinder) {
/* if we have a previous event from the same tank,
* draw at least a short line */
int prev_pr;
prev_pr = GET_PRESSURE(entry - 1);
move_to(gc, (entry-1)->sec, prev_pr);
line_to(gc, entry->sec, mbar);
} else {
first_plot = FALSE;
move_to(gc, entry->sec, mbar);
}
lift_pen = FALSE;
} else {
line_to(gc, entry->sec, mbar);
}
cairo_stroke(gc->cr);
move_to(gc, entry->sec, mbar);
}
}
static void plot_pressure_value(struct graphics_context *gc, int mbar, int sec,
int xalign, int yalign)
{
int pressure;
const char *unit;
pressure = get_pressure_units(mbar, &unit);
text_render_options_t tro = {10, PRESSURE_TEXT, xalign, yalign};
plot_text(gc, &tro, sec, mbar, "%d %s", pressure, unit);
}
static void plot_cylinder_pressure_text(struct graphics_context *gc, struct plot_info *pi)
{
int i;
int mbar, cyl;
int seen_cyl[MAX_CYLINDERS] = { FALSE, };
int last_pressure[MAX_CYLINDERS] = { 0, };
int last_time[MAX_CYLINDERS] = { 0, };
struct plot_data *entry;
if (!get_cylinder_pressure_range(gc, pi))
return;
/* only loop over the actual events from the dive computer
* plus the second synthetic event at the start (to make sure
* we get "time=0" right)
* sadly with a recent change that first entry may no longer
* have any pressure reading - in that case just grab the
* pressure from the second entry */
if (GET_PRESSURE(pi->entry + 1) == 0 && GET_PRESSURE(pi->entry + 2) !=0)
INTERPOLATED_PRESSURE(pi->entry + 1) = GET_PRESSURE(pi->entry + 2);
for (i = 1; i < pi->nr; i++) {
entry = pi->entry + i;
if (!entry->same_cylinder) {
cyl = entry->cylinderindex;
if (!seen_cyl[cyl]) {
mbar = GET_PRESSURE(entry);
plot_pressure_value(gc, mbar, entry->sec, LEFT, BOTTOM);
seen_cyl[cyl] = TRUE;
}
if (i > 2) {
/* remember the last pressure and time of
* the previous cylinder */
cyl = (entry - 1)->cylinderindex;
last_pressure[cyl] = GET_PRESSURE(entry - 1);
last_time[cyl] = (entry - 1)->sec;
}
}
}
cyl = entry->cylinderindex;
if (GET_PRESSURE(entry))
last_pressure[cyl] = GET_PRESSURE(entry);
last_time[cyl] = entry->sec;
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
if (last_time[cyl]) {
plot_pressure_value(gc, last_pressure[cyl], last_time[cyl], CENTER, TOP);
}
}
}
static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index)
{
struct plot_data *p = entry;
int time = entry->sec;
int seconds = 90*(index+1);
struct plot_data *min, *max;
int avg, nr;
/* Go back 'seconds' in time */
while (p > first) {
if (p[-1].sec < time - seconds)
break;
p--;
}
/* Then go forward until we hit an entry past the time */
min = max = p;
avg = p->depth;
nr = 1;
while (++p < last) {
int depth = p->depth;
if (p->sec > time + seconds)
break;
avg += depth;
nr ++;
if (depth < min->depth)
min = p;
if (depth > max->depth)
max = p;
}
entry->min[index] = min;
entry->max[index] = max;
entry->avg[index] = (avg + nr/2) / nr;
}
static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last)
{
analyze_plot_info_minmax_minute(entry, first, last, 0);
analyze_plot_info_minmax_minute(entry, first, last, 1);
analyze_plot_info_minmax_minute(entry, first, last, 2);
}
static velocity_t velocity(int speed)
{
velocity_t v;
if (speed < -304) /* ascent faster than -60ft/min */
v = CRAZY;
else if (speed < -152) /* above -30ft/min */
v = FAST;
else if (speed < -76) /* -15ft/min */
v = MODERATE;
else if (speed < -25) /* -5ft/min */
v = SLOW;
else if (speed < 25) /* very hard to find data, but it appears that the recommendations
for descent are usually about 2x ascent rate; still, we want
stable to mean stable */
v = STABLE;
else if (speed < 152) /* between 5 and 30ft/min is considered slow */
v = SLOW;
else if (speed < 304) /* up to 60ft/min is moderate */
v = MODERATE;
else if (speed < 507) /* up to 100ft/min is fast */
v = FAST;
else /* more than that is just crazy - you'll blow your ears out */
v = CRAZY;
return v;
}
static struct plot_info *analyze_plot_info(struct plot_info *pi)
{
int i;
int nr = pi->nr;
/* Do pressure min/max based on the non-surface data */
for (i = 0; i < nr; i++) {
struct plot_data *entry = pi->entry+i;
int pressure = GET_PRESSURE(entry);
int temperature = entry->temperature;
if (pressure) {
if (pressure > pi->maxpressure)
pi->maxpressure = pressure;
}
if (temperature) {
if (!pi->mintemp || temperature < pi->mintemp)
pi->mintemp = temperature;
if (temperature > pi->maxtemp)
pi->maxtemp = temperature;
}
}
/* Smoothing function: 5-point triangular smooth */
for (i = 2; i < nr; i++) {
struct plot_data *entry = pi->entry+i;
int depth;
if (i < nr-2) {
depth = entry[-2].depth + 2*entry[-1].depth + 3*entry[0].depth + 2*entry[1].depth + entry[2].depth;
entry->smoothed = (depth+4) / 9;
}
/* vertical velocity in mm/sec */
/* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
if (entry[0].sec - entry[-1].sec) {
entry->velocity = velocity((entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec));
/* if our samples are short and we aren't too FAST*/
if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) {
int past = -2;
while (i+past > 0 && entry[0].sec - entry[past].sec < 15)
past--;
entry->velocity = velocity((entry[0].depth - entry[past].depth) /
(entry[0].sec - entry[past].sec));
}
} else
entry->velocity = STABLE;
}
/* One-, two- and three-minute minmax data */
for (i = 0; i < nr; i++) {
struct plot_data *entry = pi->entry +i;
analyze_plot_info_minmax(entry, pi->entry, pi->entry+nr);
}
return pi;
}
/*
* simple structure to track the beginning and end tank pressure as
* well as the integral of depth over time spent while we have no
* pressure reading from the tank */
typedef struct pr_track_struct pr_track_t;
struct pr_track_struct {
int start;
int end;
int t_start;
int t_end;
double pressure_time;
pr_track_t *next;
};
static pr_track_t *pr_track_alloc(int start, int t_start) {
pr_track_t *pt = malloc(sizeof(pr_track_t));
pt->start = start;
pt->t_start = t_start;
pt->end = 0;
pt->t_end = 0;
pt->pressure_time = 0.0;
pt->next = NULL;
return pt;
}
/* poor man's linked list */
static pr_track_t *list_last(pr_track_t *list)
{
pr_track_t *tail = list;
if (!tail)
return NULL;
while (tail->next) {
tail = tail->next;
}
return tail;
}
static pr_track_t *list_add(pr_track_t *list, pr_track_t *element)
{
pr_track_t *tail = list_last(list);
if (!tail)
return element;
tail->next = element;
return list;
}
static void list_free(pr_track_t *list)
{
if (!list)
return;
list_free(list->next);
free(list);
}
static void dump_pr_track(pr_track_t **track_pr)
{
int cyl;
pr_track_t *list;
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
list = track_pr[cyl];
while (list) {
printf("cyl%d: start %d end %d t_start %d t_end %d pt %6.3f\n", cyl,
list->start, list->end, list->t_start, list->t_end, list->pressure_time);
list = list->next;
}
}
}
static void fill_missing_tank_pressures(struct plot_info *pi, pr_track_t **track_pr)
{
pr_track_t *list = NULL;
pr_track_t *nlist = NULL;
double pt, magic;
int cyl, i;
struct plot_data *entry;
int cur_pr[MAX_CYLINDERS];
if (0) {
/* another great debugging tool */
dump_pr_track(track_pr);
}
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
cur_pr[cyl] = track_pr[cyl]->start;
}
/* The first two are "fillers", but in case we don't have a sample
* at time 0 we need to process the second of them here */
for (i = 1; i < pi->nr; i++) {
entry = pi->entry + i;
if (SENSOR_PRESSURE(entry)) {
cur_pr[entry->cylinderindex] = SENSOR_PRESSURE(entry);
} else {
if(!list || list->t_end < entry->sec) {
nlist = track_pr[entry->cylinderindex];
list = NULL;
while (nlist && nlist->t_start <= entry->sec) {
list = nlist;
nlist = list->next;
}
/* there may be multiple segments - so
* let's assemble the length */
nlist = list;
if (list) {
pt = list->pressure_time;
while (!nlist->end) {
nlist = nlist->next;
if (!nlist) {
/* oops - we have no end pressure,
* so this means this is a tank without
* gas consumption information */
break;
}
pt += nlist->pressure_time;
}
}
if (!nlist) {
/* just continue without calculating
* interpolated values */
INTERPOLATED_PRESSURE(entry) = cur_pr[entry->cylinderindex];
list = NULL;
continue;
}
magic = (nlist->end - cur_pr[entry->cylinderindex]) / pt;
}
if (pt != 0.0) {
double cur_pt = (entry->sec - (entry-1)->sec) *
(1 + (entry->depth + (entry-1)->depth) / 20000.0);
INTERPOLATED_PRESSURE(entry) =
cur_pr[entry->cylinderindex] + cur_pt * magic + 0.5;
cur_pr[entry->cylinderindex] = INTERPOLATED_PRESSURE(entry);
} else
INTERPOLATED_PRESSURE(entry) = cur_pr[entry->cylinderindex];
}
}
}
static int get_cylinder_index(struct dive *dive, struct event *ev)
{
int i;
/*
* Try to find a cylinder that matches the O2 percentage
* in the gas change event 'value' field.
*
* Crazy suunto gas change events. We really should do
* this in libdivecomputer or something.
*/
for (i = 0; i < MAX_CYLINDERS; i++) {
cylinder_t *cyl = dive->cylinder+i;
int o2 = (cyl->gasmix.o2.permille + 5) / 10;
if (o2 == ev->value)
return i;
}
return 0;
}
static struct event *get_next_event(struct event *event, char *name)
{
if (!name || !*name)
return NULL;
while (event) {
if (!strcmp(event->name, name))
return event;
event = event->next;
}
return event;
}
static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end)
{
while (i < pi->nr) {
struct plot_data *entry = pi->entry+i;
if (entry->sec > end)
break;
if (entry->cylinderindex != cylinderindex) {
entry->cylinderindex = cylinderindex;
entry->pressure[0] = 0;
}
i++;
}
return i;
}
static void check_gas_change_events(struct dive *dive, struct plot_info *pi)
{
int i = 0, cylinderindex = 0;
struct event *ev = get_next_event(dive->events, "gaschange");
if (!ev)
return;
do {
i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds);
cylinderindex = get_cylinder_index(dive, ev);
ev = get_next_event(ev->next, "gaschange");
} while (ev);
set_cylinder_index(pi, i, cylinderindex, ~0u);
}
/* for computers that track gas changes through events */
static int count_gas_change_events(struct dive *dive)
{
int count = 0;
struct event *ev = get_next_event(dive->events, "gaschange");
while (ev) {
count++;
ev = get_next_event(ev->next, "gaschange");
}
return count;
}
/*
* Create a plot-info with smoothing and ranged min/max
*
* This also makes sure that we have extra empty events on both
* sides, so that you can do end-points without having to worry
* about it.
*/
static struct plot_info *create_plot_info(struct dive *dive, int nr_samples, struct sample *dive_sample)
{
int cylinderindex = -1;
int lastdepth, lastindex;
int i, pi_idx, nr, sec, cyl, ceiling = 0;
size_t alloc_size;
struct plot_info *pi;
pr_track_t *track_pr[MAX_CYLINDERS] = {NULL, };
pr_track_t *pr_track, *current;
gboolean missing_pr = FALSE;
struct plot_data *entry = NULL;
struct event *ev, *ceil_ev;
double amb_pressure;
/* we want to potentially add synthetic plot_info elements for the gas changes */
nr = nr_samples + 4 + 2 * count_gas_change_events(dive);
alloc_size = plot_info_size(nr);
pi = malloc(alloc_size);
if (!pi)
return pi;
memset(pi, 0, alloc_size);
pi->nr = nr;
pi_idx = 2; /* the two extra events at the start */
/* check for gas changes before the samples start */
ev = get_next_event(dive->events, "gaschange");
while (ev && ev->time.seconds < dive_sample->time.seconds) {
entry = pi->entry + pi_idx;
entry->sec = ev->time.seconds;
entry->depth = 0; /* is that always correct ? */
pi_idx++;
ev = get_next_event(ev->next, "gaschange");
}
if (ev && ev->time.seconds == dive_sample->time.seconds) {
/* we already have a sample at the time of the event */
ev = get_next_event(ev->next, "gaschange");
}
/* find the first deco/ceiling event (if any) */
ceil_ev = get_next_event(dive->events, "ceiling");
sec = 0;
lastindex = 0;
lastdepth = -1;
for (i = 0; i < nr_samples; i++) {
int depth;
int delay = 0;
struct sample *sample = dive_sample+i;
if (sample->time.seconds < dive->start || sample->time.seconds > dive->end) {
pi_idx--;
continue;
}
entry = pi->entry + i + pi_idx;
while (ceil_ev && ceil_ev->time.seconds <= sample->time.seconds) {
struct event *next_ceil_ev = get_next_event(ceil_ev->next, "ceiling");
if (!next_ceil_ev || next_ceil_ev->time.seconds > sample->time.seconds)
break;
ceil_ev = next_ceil_ev;
}
if (ceil_ev && ceil_ev->time.seconds <= sample->time.seconds) {
ceiling = ceil_ev->value;
ceil_ev = get_next_event(ceil_ev->next, "ceiling");
}
while (ev && ev->time.seconds < sample->time.seconds) {
/* insert two fake plot info structures for the end of
* the old tank and the start of the new tank */
if (ev->time.seconds == sample->time.seconds - 1) {
entry->sec = ev->time.seconds - 1;
(entry+1)->sec = ev->time.seconds;
entry->sec = ev->time.seconds;
(entry+1)->sec = ev->time.seconds + 1;
}
/* we need a fake depth - let's interpolate */
if (i) {
entry->depth = sample->depth.mm -
(sample->depth.mm - (sample-1)->depth.mm) / 2;
} else
entry->depth = sample->depth.mm;
(entry + 1)->depth = entry->depth;
entry->ceiling = ceiling;
(entry + 1)->ceiling = ceiling;
pi_idx += 2;
entry = pi->entry + i + pi_idx;
ev = get_next_event(ev->next, "gaschange");
}
if (ev && ev->time.seconds == sample->time.seconds) {
/* we already have a sample at the time of the event
* just add a new one for the old tank and delay the
* real even by one second (to keep time monotonous) */
entry->sec = ev->time.seconds;
entry->depth = sample->depth.mm;
entry->ceiling = ceiling;
pi_idx++;
entry = pi->entry + i + pi_idx;
ev = get_next_event(ev->next, "gaschange");
delay = 1;
}
sec = entry->sec = sample->time.seconds + delay;
depth = entry->depth = sample->depth.mm;
entry->ceiling = ceiling;
entry->cylinderindex = sample->cylinderindex;
SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar;
entry->temperature = sample->temperature.mkelvin;
if (depth || lastdepth)
lastindex = i + pi_idx;
lastdepth = depth;
if (depth > pi->maxdepth)
pi->maxdepth = depth;
}
entry = pi->entry + i + pi_idx;
/* are there still unprocessed gas changes? that would be very strange */
while (ev) {
entry->sec = ev->time.seconds;
entry->depth = 0; /* why are there gas changes after the dive is over? */
pi_idx++;
entry = pi->entry + i + pi_idx;
ev = get_next_event(ev->next, "gaschange");
}
nr = nr_samples + pi_idx - 2;
check_gas_change_events(dive, pi);
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) /* initialize the start pressures */
track_pr[cyl] = pr_track_alloc(dive->cylinder[cyl].start.mbar, -1);
current = track_pr[pi->entry[2].cylinderindex];
for (i = 0; i < nr + 1; i++) {
int fo2, fhe;
entry = pi->entry + i + 1;
entry->same_cylinder = entry->cylinderindex == cylinderindex;
cylinderindex = entry->cylinderindex;
/* track the segments per cylinder and their pressure/time integral */
if (!entry->same_cylinder) {
current->end = SENSOR_PRESSURE(entry-1);
current->t_end = (entry-1)->sec;
current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec);
track_pr[cylinderindex] = list_add(track_pr[cylinderindex], current);
} else { /* same cylinder */
if ((!SENSOR_PRESSURE(entry) && SENSOR_PRESSURE(entry-1)) ||
(SENSOR_PRESSURE(entry) && !SENSOR_PRESSURE(entry-1))) {
/* transmitter changed its working status */
current->end = SENSOR_PRESSURE(entry-1);
current->t_end = (entry-1)->sec;
current = pr_track_alloc(SENSOR_PRESSURE(entry), entry->sec);
track_pr[cylinderindex] =
list_add(track_pr[cylinderindex], current);
}
}
amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0;
fo2 = dive->cylinder[cylinderindex].gasmix.o2.permille;
fhe = dive->cylinder[cylinderindex].gasmix.he.permille;
if (!fo2)
fo2 = AIR_PERMILLE;
entry->po2 = fo2 / 1000.0 * amb_pressure;
entry->phe = fhe / 1000.0 * amb_pressure;
entry->pn2 = (1000 - fo2 - fhe) / 1000.0 * amb_pressure;
/* finally, do the discrete integration to get the SAC rate equivalent */
current->pressure_time += (entry->sec - (entry-1)->sec) *
depth_to_mbar((entry->depth + (entry-1)->depth) / 2, dive) / 1000.0;
missing_pr |= !SENSOR_PRESSURE(entry);
}
if (entry)
current->t_end = entry->sec;
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) { /* initialize the end pressures */
int pr = dive->cylinder[cyl].end.mbar;
if (pr && track_pr[cyl]) {
pr_track = list_last(track_pr[cyl]);
pr_track->end = pr;
}
}
/* Fill in the last two entries with empty values but valid times
* without creating a false cylinder change event */
i = nr + 2;
pi->entry[i].sec = sec + 20;
pi->entry[i].same_cylinder = 1;
pi->entry[i].cylinderindex = pi->entry[i-1].cylinderindex;
INTERPOLATED_PRESSURE(pi->entry + i) = GET_PRESSURE(pi->entry + i - 1);
amb_pressure = depth_to_mbar(pi->entry[i - 1].depth, dive) / 1000.0;
pi->entry[i].po2 = pi->entry[i-1].po2 / amb_pressure;
pi->entry[i].phe = pi->entry[i-1].phe / amb_pressure;
pi->entry[i].pn2 = 1.01325 - pi->entry[i].po2 - pi->entry[i].phe;
pi->entry[i+1].sec = sec + 40;
pi->entry[i+1].same_cylinder = 1;
pi->entry[i+1].cylinderindex = pi->entry[i-1].cylinderindex;
INTERPOLATED_PRESSURE(pi->entry + i + 1) = GET_PRESSURE(pi->entry + i - 1);
pi->entry[i+1].po2 = pi->entry[i].po2;
pi->entry[i+1].phe = pi->entry[i].phe;
pi->entry[i+1].pn2 = pi->entry[i].pn2;
/* make sure the first two pi entries have a sane po2 / phe / pn2 */
amb_pressure = depth_to_mbar(pi->entry[2].depth, dive) / 1000.0;
if (pi->entry[1].po2 < 0.01)
pi->entry[1].po2 = pi->entry[2].po2 / amb_pressure;
if (pi->entry[1].phe < 0.01)
pi->entry[1].phe = pi->entry[2].phe / amb_pressure;
pi->entry[1].pn2 = 1.01325 - pi->entry[1].po2 - pi->entry[1].phe;
amb_pressure = depth_to_mbar(pi->entry[1].depth, dive) / 1000.0;
if (pi->entry[0].po2 < 0.01)
pi->entry[0].po2 = pi->entry[1].po2 / amb_pressure;
if (pi->entry[0].phe < 0.01)
pi->entry[0].phe = pi->entry[1].phe / amb_pressure;
pi->entry[0].pn2 = 1.01325 - pi->entry[0].po2 - pi->entry[0].phe;
/* the number of actual entries - some computers have lots of
* depth 0 samples at the end of a dive, we want to make sure
* we have exactly one of them at the end */
pi->nr = lastindex+1;
while (pi->nr <= i+2 && pi->entry[pi->nr-1].depth > 0)
pi->nr++;
pi->maxtime = pi->entry[lastindex].sec;
/* Analyze_plot_info() will do the sample max pressures,
* this handles the manual pressures
*/
pi->maxpressure = 0;
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
unsigned int mbar = dive->cylinder[cyl].start.mbar;
if (mbar > pi->maxpressure)
pi->maxpressure = mbar;
}
pi->meandepth = dive->meandepth.mm;
if (missing_pr) {
fill_missing_tank_pressures(pi, track_pr);
}
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++)
list_free(track_pr[cyl]);
if (0) /* awesome for debugging - not useful otherwise */
dump_pi(pi);
return analyze_plot_info(pi);
}
static void plot_set_scale(scale_mode_t scale)
{
switch (scale) {
default:
case SC_SCREEN:
plot_scale = SCALE_SCREEN;
break;
case SC_PRINT:
plot_scale = SCALE_PRINT;
break;
}
}
void plot(struct graphics_context *gc, cairo_rectangle_t *drawing_area, struct dive *dive, scale_mode_t scale)
{
struct plot_info *pi;
static struct sample fake[4];
struct sample *sample = dive->sample;
int nr = dive->samples;
plot_set_scale(scale);
if (!nr) {
/* The dive has no samples, so create a few fake ones. This assumes an
ascent/descent rate of 9 m/min, which is just below the limit for FAST. */
int duration = dive->duration.seconds;
int maxdepth = dive->maxdepth.mm;
int asc_desc_time = dive->maxdepth.mm*60/9000;
if (asc_desc_time * 2 >= duration)
asc_desc_time = duration / 2;
sample = fake;
fake[1].time.seconds = asc_desc_time;
fake[1].depth.mm = maxdepth;
fake[2].time.seconds = duration - asc_desc_time;
fake[2].depth.mm = maxdepth;
fake[3].time.seconds = duration * 1.00;
nr = 4;
}
pi = create_plot_info(dive, nr, sample);
/* shift the drawing area so we have a nice margin around it */
cairo_translate(gc->cr, drawing_area->x, drawing_area->y);
cairo_set_line_width_scaled(gc->cr, 1);
cairo_set_line_cap(gc->cr, CAIRO_LINE_CAP_ROUND);
cairo_set_line_join(gc->cr, CAIRO_LINE_JOIN_ROUND);
/*
* We don't use "cairo_translate()" because that doesn't
* scale line width etc. But the actual scaling we need
* do set up ourselves..
*
* Snif. What a pity.
*/
gc->maxx = (drawing_area->width - 2*drawing_area->x);
gc->maxy = (drawing_area->height - 2*drawing_area->y);
/* Depth profile */
plot_depth_profile(gc, pi);
plot_events(gc, pi, dive);
/* Temperature profile */
plot_temperature_profile(gc, pi);
/* Cylinder pressure plot */
plot_cylinder_pressure(gc, pi, dive);
/* Text on top of all graphs.. */
plot_temperature_text(gc, pi);
plot_depth_text(gc, pi);
plot_cylinder_pressure_text(gc, pi);
/* Bounding box last */
gc->leftx = 0; gc->rightx = 1.0;
gc->topy = 0; gc->bottomy = 1.0;
set_source_rgba(gc, BOUNDING_BOX);
cairo_set_line_width_scaled(gc->cr, 1);
move_to(gc, 0, 0);
line_to(gc, 0, 1);
line_to(gc, 1, 1);
line_to(gc, 1, 0);
cairo_close_path(gc->cr);
cairo_stroke(gc->cr);
if (GRAPHS_ENABLED) {
plot_pp_gas_profile(gc, pi);
plot_pp_text(gc, pi);
}
/* now shift the translation back by half the margin;
* this way we can draw the vertical scales on both sides */
cairo_translate(gc->cr, -drawing_area->x / 2.0, 0);
gc->maxx += drawing_area->x;
gc->leftx = -(drawing_area->x / drawing_area->width) / 2.0;
gc->rightx = 1.0 - gc->leftx;
plot_depth_scale(gc, pi);
free(pi);
}