subsurface/core/divecomputer.cpp
Berthold Stoeger 27dbdd35c6 core: turn event-list of divecomputer into std::vector<>
This is a rather long commit, because it refactors lots of the event
code from pointer to value semantics: pointers to entries in an
std::vector<> are not stable, so better use indexes.

To step through the event-list at diven time stamps, add *_loop classes,
which encapsulate state that had to be manually handled before by
the caller. I'm not happy about the interface, but it tries to
mirror the one we had before.

Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
2024-08-13 19:28:30 +02:00

453 lines
12 KiB
C++

// SPDX-License-Identifier: GPL-2.0
#include "divecomputer.h"
#include "errorhelper.h"
#include "event.h"
#include "extradata.h"
#include "pref.h"
#include "sample.h"
#include "structured_list.h"
#include "subsurface-string.h"
#include <string.h>
#include <stdlib.h>
divecomputer::divecomputer() = default;
divecomputer::~divecomputer() = default;
divecomputer::divecomputer(divecomputer &&) = default;
divecomputer &divecomputer::operator=(const divecomputer &) = default;
/*
* Good fake dive profiles are hard.
*
* "depthtime" is the integral of the dive depth over
* time ("area" of the dive profile). We want that
* area to match the average depth (avg_d*max_t).
*
* To do that, we generate a 6-point profile:
*
* (0, 0)
* (t1, max_d)
* (t2, max_d)
* (t3, d)
* (t4, d)
* (max_t, 0)
*
* with the same ascent/descent rates between the
* different depths.
*
* NOTE: avg_d, max_d and max_t are given constants.
* The rest we can/should play around with to get a
* good-looking profile.
*
* That six-point profile gives a total area of:
*
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3)
*
* And the "same ascent/descent rates" requirement
* gives us (time per depth must be same):
*
* t1 / max_d = (t3-t2) / (max_d-d)
* t1 / max_d = (max_t-t4) / d
*
* We also obviously require:
*
* 0 <= t1 <= t2 <= t3 <= t4 <= max_t
*
* Let us call 'd_frac = d / max_d', and we get:
*
* Total area must match average depth-time:
*
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) = avg_d*max_t
* max_d*(max_t-t1-(1-d_frac)*(t4-t3)) = avg_d*max_t
* max_t-t1-(1-d_frac)*(t4-t3) = avg_d*max_t/max_d
* t1+(1-d_frac)*(t4-t3) = max_t*(1-avg_d/max_d)
*
* and descent slope must match ascent slopes:
*
* t1 / max_d = (t3-t2) / (max_d*(1-d_frac))
* t1 = (t3-t2)/(1-d_frac)
*
* and
*
* t1 / max_d = (max_t-t4) / (max_d*d_frac)
* t1 = (max_t-t4)/d_frac
*
* In general, we have more free variables than we have constraints,
* but we can aim for certain basics, like a good ascent slope.
*/
static int fill_samples(std::vector<sample> &s, int max_d, int avg_d, int max_t, double slope, double d_frac)
{
double t_frac = max_t * (1 - avg_d / (double)max_d);
int t1 = lrint(max_d / slope);
int t4 = lrint(max_t - t1 * d_frac);
int t3 = lrint(t4 - (t_frac - t1) / (1 - d_frac));
int t2 = lrint(t3 - t1 * (1 - d_frac));
if (t1 < 0 || t1 > t2 || t2 > t3 || t3 > t4 || t4 > max_t)
return 0;
s[1].time.seconds = t1;
s[1].depth.mm = max_d;
s[2].time.seconds = t2;
s[2].depth.mm = max_d;
s[3].time.seconds = t3;
s[3].depth.mm = lrint(max_d * d_frac);
s[4].time.seconds = t4;
s[4].depth.mm = lrint(max_d * d_frac);
return 1;
}
/* we have no average depth; instead of making up a random average depth
* we should assume either a PADI rectangular profile (for short and/or
* shallow dives) or more reasonably a six point profile with a 3 minute
* safety stop at 5m */
static void fill_samples_no_avg(std::vector<sample> &s, int max_d, int max_t, double slope)
{
// shallow or short dives are just trapecoids based on the given slope
if (max_d < 10000 || max_t < 600) {
s[1].time.seconds = lrint(max_d / slope);
s[1].depth.mm = max_d;
s[2].time.seconds = max_t - lrint(max_d / slope);
s[2].depth.mm = max_d;
} else {
s[1].time.seconds = lrint(max_d / slope);
s[1].depth.mm = max_d;
s[2].time.seconds = max_t - lrint(max_d / slope) - 180;
s[2].depth.mm = max_d;
s[3].time.seconds = max_t - lrint(5000 / slope) - 180;
s[3].depth.mm = 5000;
s[4].time.seconds = max_t - lrint(5000 / slope);
s[4].depth.mm = 5000;
}
}
void fake_dc(struct divecomputer *dc)
{
/* The dive has no samples, so create a few fake ones */
int max_t = dc->duration.seconds;
int max_d = dc->maxdepth.mm;
int avg_d = dc->meandepth.mm;
if (!max_t || !max_d) {
dc->samples.clear();
return;
}
std::vector<struct sample> &fake = dc->samples;
fake.resize(6);
fake[5].time.seconds = max_t;
for (int i = 0; i < 6; i++) {
fake[i].bearing.degrees = -1;
fake[i].ndl.seconds = -1;
}
/* Set last manually entered time to the total dive length */
dc->last_manual_time = dc->duration;
/*
* We want to fake the profile so that the average
* depth ends up correct. However, in the absence of
* a reasonable average, let's just make something
* up. Note that 'avg_d == max_d' is _not_ a reasonable
* average.
* We explicitly treat avg_d == 0 differently */
if (avg_d == 0) {
/* we try for a sane slope, but bow to the insanity of
* the user supplied data */
fill_samples_no_avg(fake, max_d, max_t, std::max(2.0 * max_d / max_t, (double)prefs.ascratelast6m));
if (fake[3].time.seconds == 0) { // just a 4 point profile
dc->samples.resize(4);
fake[3].time.seconds = max_t;
}
return;
}
if (avg_d < max_d / 10 || avg_d >= max_d) {
avg_d = (max_d + 10000) / 3;
if (avg_d > max_d)
avg_d = max_d * 2 / 3;
}
if (!avg_d)
avg_d = 1;
/*
* Ok, first we try a basic profile with a specific ascent
* rate (5 meters per minute) and d_frac (1/3).
*/
if (fill_samples(fake, max_d, avg_d, max_t, (double)prefs.ascratelast6m, 0.33))
return;
/*
* Ok, assume that didn't work because we cannot make the
* average come out right because it was a quick deep dive
* followed by a much shallower region
*/
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0 / 60, 0.10))
return;
/*
* Uhhuh. That didn't work. We'd need to find a good combination that
* satisfies our constraints. Currently, we don't, we just give insane
* slopes.
*/
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0, 0.01))
return;
/* Even that didn't work? Give up, there's something wrong */
}
divemode_loop::divemode_loop(const struct divecomputer &dc) :
dc(dc), last(dc.divemode), loop("modechange")
{
/* on first invocation, get first event (if any) */
ev = loop.next(dc);
}
divemode_t divemode_loop::next(int time)
{
while (ev && ev->time.seconds <= time) {
last = static_cast<divemode_t>(ev->value);
ev = loop.next(dc);
}
return last;
}
/* helper function to make it easier to work with our structures
* we don't interpolate here, just use the value from the last sample up to that time */
int get_depth_at_time(const struct divecomputer *dc, unsigned int time)
{
int depth = 0;
if (dc) {
for (const auto &sample: dc->samples) {
if (sample.time.seconds > (int)time)
break;
depth = sample.depth.mm;
}
}
return depth;
}
static void free_dc(struct divecomputer *dc)
{
delete dc;
}
/* The first divecomputer is embedded in the dive structure. Ignore it.
* For all remainding dcs in the list, free data and structures. */
void free_dive_dcs(struct divecomputer *dc)
{
STRUCTURED_LIST_FREE(struct divecomputer, dc->next, free_dc);
}
struct sample *prepare_sample(struct divecomputer *dc)
{
if (dc) {
dc->samples.emplace_back();
auto &sample = dc->samples.back();
// Copy the sensor numbers - but not the pressure values
// from the previous sample if any.
if (dc->samples.size() >= 2) {
auto &prev = dc->samples[dc->samples.size() - 2];
for (int idx = 0; idx < MAX_SENSORS; idx++)
sample.sensor[idx] = prev.sensor[idx];
}
// Init some values with -1
sample.bearing.degrees = -1;
sample.ndl.seconds = -1;
return &sample;
}
return NULL;
}
struct sample *add_sample(const struct sample *sample, int time, struct divecomputer *dc)
{
struct sample *p = prepare_sample(dc);
if (p) {
*p = *sample;
p->time.seconds = time;
}
return p;
}
/*
* Calculate how long we were actually under water, and the average
* depth while under water.
*
* This ignores any surface time in the middle of the dive.
*/
void fixup_dc_duration(struct divecomputer *dc)
{
int duration = 0;
int lasttime = 0, lastdepth = 0, depthtime = 0;
for (const auto &sample: dc->samples) {
int time = sample.time.seconds;
int depth = sample.depth.mm;
/* We ignore segments at the surface */
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
duration += time - lasttime;
depthtime += (time - lasttime) * (depth + lastdepth) / 2;
}
lastdepth = depth;
lasttime = time;
}
if (duration) {
dc->duration.seconds = duration;
dc->meandepth.mm = (depthtime + duration / 2) / duration;
}
}
/*
* What do the dive computers say the water temperature is?
* (not in the samples, but as dc property for dcs that support that)
*/
unsigned int dc_watertemp(const struct divecomputer *dc)
{
int sum = 0, nr = 0;
do {
if (dc->watertemp.mkelvin) {
sum += dc->watertemp.mkelvin;
nr++;
}
} while ((dc = dc->next) != NULL);
if (!nr)
return 0;
return (sum + nr / 2) / nr;
}
/*
* What do the dive computers say the air temperature is?
*/
unsigned int dc_airtemp(const struct divecomputer *dc)
{
int sum = 0, nr = 0;
do {
if (dc->airtemp.mkelvin) {
sum += dc->airtemp.mkelvin;
nr++;
}
} while ((dc = dc->next) != NULL);
if (!nr)
return 0;
return (sum + nr / 2) / nr;
}
static bool operator<(const event &ev1, const event &ev2)
{
if (ev1.time.seconds < ev2.time.seconds)
return -1;
if (ev1.time.seconds > ev2.time.seconds)
return 1;
return ev1.name < ev2.name;
}
int add_event_to_dc(struct divecomputer *dc, struct event ev)
{
// Do a binary search for insertion point
auto it = std::lower_bound(dc->events.begin(), dc->events.end(), ev);
int idx = it - dc->events.begin();
dc->events.insert(it, ev);
return idx;
}
struct event *add_event(struct divecomputer *dc, unsigned int time, int type, int flags, int value, const std::string &name)
{
struct event ev(time, type, flags, value, name);
int idx = add_event_to_dc(dc, std::move(ev));
return &dc->events[idx];
}
/* Remove given event from dive computer. Returns the removed event. */
struct event remove_event_from_dc(struct divecomputer *dc, int idx)
{
if (idx < 0 || static_cast<size_t>(idx) > dc->events.size()) {
report_info("removing invalid event %d", idx);
return event();
}
event res = std::move(dc->events[idx]);
dc->events.erase(dc->events.begin() + idx);
return res;
}
struct event *get_event(struct divecomputer *dc, int idx)
{
if (idx < 0 || static_cast<size_t>(idx) > dc->events.size()) {
report_info("accessing invalid event %d", idx);
return nullptr;
}
return &dc->events[idx];
}
void add_extra_data(struct divecomputer *dc, const std::string &key, const std::string &value)
{
if (key == "Serial") {
dc->deviceid = calculate_string_hash(value.c_str());
dc->serial = value;
}
if (key == "FW Version")
dc->fw_version = value;
dc->extra_data.push_back(extra_data { key, value });
}
/*
* Match two dive computer entries against each other, and
* tell if it's the same dive. Return 0 if "don't know",
* positive for "same dive" and negative for "definitely
* not the same dive"
*/
int match_one_dc(const struct divecomputer *a, const struct divecomputer *b)
{
/* Not same model? Don't know if matching.. */
if (a->model.empty() || b->model.empty())
return 0;
if (strcasecmp(a->model.c_str(), b->model.c_str()))
return 0;
/* Different device ID's? Don't know */
if (a->deviceid != b->deviceid)
return 0;
/* Do we have dive IDs? */
if (!a->diveid || !b->diveid)
return 0;
/*
* If they have different dive ID's on the same
* dive computer, that's a definite "same or not"
*/
return a->diveid == b->diveid && a->when == b->when ? 1 : -1;
}
static const char *planner_dc_name = "planned dive";
bool is_dc_planner(const struct divecomputer *dc)
{
return dc->model == planner_dc_name;
}
void make_planner_dc(struct divecomputer *dc)
{
dc->model = planner_dc_name;
}
const char *manual_dc_name = "manually added dive";
bool is_dc_manually_added_dive(const struct divecomputer *dc)
{
return dc->model == manual_dc_name;
}
void make_manually_added_dive_dc(struct divecomputer *dc)
{
dc->model = manual_dc_name;
}