subsurface/core/device.cpp
Berthold Stoeger 2b557f567a cleanup: hide DiveComputerList implementation details
Remove the declaration of helper functions needed only in
core/device.cpp. To this goal, turn the member functions
into free functions.

Cosmetics: turn the DiveComputer[Node|List] "class"es into
"struct"s, since all members were public anyway.

Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
2020-10-03 10:53:26 -07:00

374 lines
11 KiB
C++

// SPDX-License-Identifier: GPL-2.0
#include "ssrf.h"
#include "dive.h"
#include "subsurface-string.h"
#include "device.h"
#include "errorhelper.h" // for verbose flag
#include "selection.h"
#include "core/settings/qPrefDiveComputer.h"
/*
* Good fake dive profiles are hard.
*
* "depthtime" is the integral of the dive depth over
* time ("area" of the dive profile). We want that
* area to match the average depth (avg_d*max_t).
*
* To do that, we generate a 6-point profile:
*
* (0, 0)
* (t1, max_d)
* (t2, max_d)
* (t3, d)
* (t4, d)
* (max_t, 0)
*
* with the same ascent/descent rates between the
* different depths.
*
* NOTE: avg_d, max_d and max_t are given constants.
* The rest we can/should play around with to get a
* good-looking profile.
*
* That six-point profile gives a total area of:
*
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3)
*
* And the "same ascent/descent rates" requirement
* gives us (time per depth must be same):
*
* t1 / max_d = (t3-t2) / (max_d-d)
* t1 / max_d = (max_t-t4) / d
*
* We also obviously require:
*
* 0 <= t1 <= t2 <= t3 <= t4 <= max_t
*
* Let us call 'd_frac = d / max_d', and we get:
*
* Total area must match average depth-time:
*
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) = avg_d*max_t
* max_d*(max_t-t1-(1-d_frac)*(t4-t3)) = avg_d*max_t
* max_t-t1-(1-d_frac)*(t4-t3) = avg_d*max_t/max_d
* t1+(1-d_frac)*(t4-t3) = max_t*(1-avg_d/max_d)
*
* and descent slope must match ascent slopes:
*
* t1 / max_d = (t3-t2) / (max_d*(1-d_frac))
* t1 = (t3-t2)/(1-d_frac)
*
* and
*
* t1 / max_d = (max_t-t4) / (max_d*d_frac)
* t1 = (max_t-t4)/d_frac
*
* In general, we have more free variables than we have constraints,
* but we can aim for certain basics, like a good ascent slope.
*/
static int fill_samples(struct sample *s, int max_d, int avg_d, int max_t, double slope, double d_frac)
{
double t_frac = max_t * (1 - avg_d / (double)max_d);
int t1 = lrint(max_d / slope);
int t4 = lrint(max_t - t1 * d_frac);
int t3 = lrint(t4 - (t_frac - t1) / (1 - d_frac));
int t2 = lrint(t3 - t1 * (1 - d_frac));
if (t1 < 0 || t1 > t2 || t2 > t3 || t3 > t4 || t4 > max_t)
return 0;
s[1].time.seconds = t1;
s[1].depth.mm = max_d;
s[2].time.seconds = t2;
s[2].depth.mm = max_d;
s[3].time.seconds = t3;
s[3].depth.mm = lrint(max_d * d_frac);
s[4].time.seconds = t4;
s[4].depth.mm = lrint(max_d * d_frac);
return 1;
}
/* we have no average depth; instead of making up a random average depth
* we should assume either a PADI rectangular profile (for short and/or
* shallow dives) or more reasonably a six point profile with a 3 minute
* safety stop at 5m */
static void fill_samples_no_avg(struct sample *s, int max_d, int max_t, double slope)
{
// shallow or short dives are just trapecoids based on the given slope
if (max_d < 10000 || max_t < 600) {
s[1].time.seconds = lrint(max_d / slope);
s[1].depth.mm = max_d;
s[2].time.seconds = max_t - lrint(max_d / slope);
s[2].depth.mm = max_d;
} else {
s[1].time.seconds = lrint(max_d / slope);
s[1].depth.mm = max_d;
s[2].time.seconds = max_t - lrint(max_d / slope) - 180;
s[2].depth.mm = max_d;
s[3].time.seconds = max_t - lrint(5000 / slope) - 180;
s[3].depth.mm = 5000;
s[4].time.seconds = max_t - lrint(5000 / slope);
s[4].depth.mm = 5000;
}
}
extern "C" void fake_dc(struct divecomputer *dc)
{
alloc_samples(dc, 6);
struct sample *fake = dc->sample;
int i;
dc->samples = 6;
/* The dive has no samples, so create a few fake ones */
int max_t = dc->duration.seconds;
int max_d = dc->maxdepth.mm;
int avg_d = dc->meandepth.mm;
memset(fake, 0, 6 * sizeof(struct sample));
fake[5].time.seconds = max_t;
for (i = 0; i < 6; i++) {
fake[i].bearing.degrees = -1;
fake[i].ndl.seconds = -1;
}
if (!max_t || !max_d) {
dc->samples = 0;
return;
}
/* Set last manually entered time to the total dive length */
dc->last_manual_time = dc->duration;
/*
* We want to fake the profile so that the average
* depth ends up correct. However, in the absence of
* a reasonable average, let's just make something
* up. Note that 'avg_d == max_d' is _not_ a reasonable
* average.
* We explicitly treat avg_d == 0 differently */
if (avg_d == 0) {
/* we try for a sane slope, but bow to the insanity of
* the user supplied data */
fill_samples_no_avg(fake, max_d, max_t, MAX(2.0 * max_d / max_t, (double)prefs.ascratelast6m));
if (fake[3].time.seconds == 0) { // just a 4 point profile
dc->samples = 4;
fake[3].time.seconds = max_t;
}
return;
}
if (avg_d < max_d / 10 || avg_d >= max_d) {
avg_d = (max_d + 10000) / 3;
if (avg_d > max_d)
avg_d = max_d * 2 / 3;
}
if (!avg_d)
avg_d = 1;
/*
* Ok, first we try a basic profile with a specific ascent
* rate (5 meters per minute) and d_frac (1/3).
*/
if (fill_samples(fake, max_d, avg_d, max_t, (double)prefs.ascratelast6m, 0.33))
return;
/*
* Ok, assume that didn't work because we cannot make the
* average come out right because it was a quick deep dive
* followed by a much shallower region
*/
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0 / 60, 0.10))
return;
/*
* Uhhuh. That didn't work. We'd need to find a good combination that
* satisfies our constraints. Currently, we don't, we just give insane
* slopes.
*/
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0, 0.01))
return;
/* Even that didn't work? Give up, there's something wrong */
}
static void match_id(void *_dc, const char *model, uint32_t deviceid,
const char *, const char *serial, const char *firmware)
{
struct divecomputer *dc = (divecomputer *)_dc;
if (dc->deviceid != deviceid)
return;
if (!model || !dc->model || strcmp(dc->model, model))
return;
if (serial && !dc->serial)
dc->serial = strdup(serial);
if (firmware && !dc->fw_version)
dc->fw_version = strdup(firmware);
}
/*
* When setting the device ID, we also fill in the
* serial number and firmware version data
*/
extern "C" void set_dc_deviceid(struct divecomputer *dc, unsigned int deviceid)
{
if (deviceid) {
dc->deviceid = deviceid;
call_for_each_dc(dc, match_id, false);
}
}
DiveComputerList dcList;
bool DiveComputerNode::operator==(const DiveComputerNode &a) const
{
return model == a.model &&
deviceId == a.deviceId &&
firmware == a.firmware &&
serialNumber == a.serialNumber &&
nickName == a.nickName;
}
bool DiveComputerNode::operator!=(const DiveComputerNode &a) const
{
return !(*this == a);
}
bool DiveComputerNode::operator<(const DiveComputerNode &a) const
{
return std::tie(model, deviceId) < std::tie(a.model, a.deviceId);
}
static const DiveComputerNode *getDCExact(const QVector<DiveComputerNode> &dcs, const QString &m, uint32_t d)
{
auto it = std::lower_bound(dcs.begin(), dcs.end(), DiveComputerNode{m, d, {}, {}, {}});
return it != dcs.end() && it->model == m && it->deviceId == d ? &*it : NULL;
}
static const DiveComputerNode *getDC(const QVector<DiveComputerNode> &dcs, const QString &m)
{
auto it = std::lower_bound(dcs.begin(), dcs.end(), DiveComputerNode{m, 0, {}, {}, {}});
return it != dcs.end() && it->model == m ? &*it : NULL;
}
void DiveComputerNode::showchanges(const QString &n, const QString &s, const QString &f) const
{
if (nickName != n && !n.isEmpty())
qDebug("new nickname %s for DC model %s deviceId 0x%x", qPrintable(n), qPrintable(model), deviceId);
if (serialNumber != s && !s.isEmpty())
qDebug("new serial number %s for DC model %s deviceId 0x%x", qPrintable(s), qPrintable(model), deviceId);
if (firmware != f && !f.isEmpty())
qDebug("new firmware version %s for DC model %s deviceId 0x%x", qPrintable(f), qPrintable(model), deviceId);
}
static void addDC(QVector<DiveComputerNode> &dcs, const QString &m, uint32_t d, const QString &n, const QString &s, const QString &f)
{
if (m.isEmpty() || d == 0)
return;
auto it = std::lower_bound(dcs.begin(), dcs.end(), DiveComputerNode{m, d, {}, {}, {}});
if (it != dcs.end() && it->model == m && it->deviceId == d) {
// debugging: show changes
if (verbose)
it->showchanges(n, s, f);
// Update any non-existent fields from the old entry
if (!n.isEmpty())
it->nickName = n;
if (!s.isEmpty())
it->serialNumber = s;
if (!f.isEmpty())
it->firmware = f;
} else {
dcs.insert(it, DiveComputerNode{m, d, s, f, n});
}
}
extern "C" void create_device_node(const char *model, uint32_t deviceid, const char *serial, const char *firmware, const char *nickname)
{
addDC(dcList.dcs, model, deviceid, nickname, serial, firmware);
}
extern "C" void clear_device_nodes()
{
dcList.dcs.clear();
}
static bool compareDCById(const DiveComputerNode &a, const DiveComputerNode &b)
{
return a.deviceId < b.deviceId;
}
extern "C" void call_for_each_dc (void *f, void (*callback)(void *, const char *, uint32_t, const char *, const char *, const char *),
bool select_only)
{
QVector<DiveComputerNode> values = dcList.dcs;
std::sort(values.begin(), values.end(), compareDCById);
for (const DiveComputerNode &node : values) {
bool found = false;
if (select_only) {
for (dive *d: getDiveSelection()) {
struct divecomputer *dc;
for_each_dc (d, dc) {
if (dc->deviceid == node.deviceId) {
found = true;
break;
}
}
if (found)
break;
}
} else {
found = true;
}
if (found)
callback(f, qPrintable(node.model), node.deviceId, qPrintable(node.nickName),
qPrintable(node.serialNumber), qPrintable(node.firmware));
}
}
extern "C" int is_default_dive_computer(const char *vendor, const char *product)
{
return qPrefDiveComputer::vendor() == vendor && qPrefDiveComputer::product() == product;
}
extern "C" int is_default_dive_computer_device(const char *name)
{
return qPrefDiveComputer::device() == name;
}
extern "C" void set_dc_nickname(struct dive *dive)
{
if (!dive)
return;
struct divecomputer *dc;
for_each_dc (dive, dc) {
if (!empty_string(dc->model) && dc->deviceid &&
!getDCExact(dcList.dcs, dc->model, dc->deviceid)) {
// we don't have this one, yet
const DiveComputerNode *existNode = getDC(dcList.dcs, dc->model);
if (existNode) {
// we already have this model but a different deviceid
QString simpleNick(dc->model);
if (dc->deviceid == 0)
simpleNick.append(" (unknown deviceid)");
else
simpleNick.append(" (").append(QString::number(dc->deviceid, 16)).append(")");
addDC(dcList.dcs, dc->model, dc->deviceid, simpleNick, {}, {});
} else {
addDC(dcList.dcs, dc->model, dc->deviceid, {}, {}, {});
}
}
}
}
QString get_dc_nickname(const struct divecomputer *dc)
{
const DiveComputerNode *existNode = getDCExact(dcList.dcs, dc->model, dc->deviceid);
if (existNode && !existNode->nickName.isEmpty())
return existNode->nickName;
else
return dc->model;
}