subsurface/core/gas-model.c
Berthold Stoeger 360f07e453 Cleanup: pass gasmix by value
In a previous commit, the get_gasmix_* functions were changed to
return by value. For consistency, also pass gasmix by value.

Note that on common 64-bit platforms struct gasmix is the size
of a pointer [2 * 32 bit vs. 64 bit] and therefore uses the
same space on the stack. On 32-bit platforms, the stack use
is probably doubled, but in return a dereference is avoided.

Supporting arbitrary gas-mixes (H2, Ar, ...) will be such an
invasive change that going back to pointers is probably the
least of our worries.

This commit is a step in const-ifying input parameters (passing
by value is the ultimate way of signaling that the input parameter
will not be changed [unless there are references to said parameter]).

Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
2018-08-23 05:16:38 -07:00

83 lines
2.4 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0
/* gas-model.c */
/* gas compressibility model */
#include <stdio.h>
#include <stdlib.h>
#include "dive.h"
/* "Virial minus one" - the virial cubic form without the initial 1.0 */
#define virial_m1(C, x1, x2, x3) (C[0]*x1+C[1]*x2+C[2]*x3)
/*
* Z = pV/nRT
*
* Cubic virial least-square coefficients for O2/N2/He based on data from
*
* PERRYS CHEMICAL ENGINEERS HANDBOOK SEVENTH EDITION
*
* with the lookup and curve fitting by Lubomir.
*
* The "virial" form of the compression factor polynomial is
*
* Z = 1.0 + C[0]*P + C[1]*P^2 + C[2]*P^3 ...
*
* and these tables do not contain the initial 1.0 term.
*
* NOTE! Helium coefficients are a linear mix operation between the
* 323K and one for 273K isotherms, to make everything be at 300K.
*/
double gas_compressibility_factor(struct gasmix gas, double bar)
{
static const double o2_coefficients[3] = {
-7.18092073703e-04,
+2.81852572808e-06,
-1.50290620492e-09
};
static const double n2_coefficients[3] = {
-2.19260353292e-04,
+2.92844845532e-06,
-2.07613482075e-09
};
static const double he_coefficients[3] = {
+4.87320026468e-04,
-8.83632921053e-08,
+5.33304543646e-11
};
int o2, he;
double x1, x2, x3;
double Z;
o2 = get_o2(gas);
he = get_he(gas);
x1 = bar; x2 = x1*x1; x3 = x2*x1;
Z = virial_m1(o2_coefficients, x1, x2, x3) * o2 +
virial_m1(he_coefficients, x1, x2, x3) * he +
virial_m1(n2_coefficients, x1, x2, x3) * (1000 - o2 - he);
/*
* We add the 1.0 at the very end - the linear mixing of the
* three 1.0 terms is still 1.0 regardless of the gas mix.
*
* The * 0.001 is because we did the linear mixing using the
* raw permille gas values.
*/
return Z * 0.001 + 1.0;
}
/* Compute the new pressure when compressing (expanding) volome v1 at pressure p1 bar to volume v2
* taking into account the compressebility (to first order) */
double isothermal_pressure(struct gasmix gas, double p1, int volume1, int volume2)
{
double p_ideal = p1 * volume1 / volume2 / gas_compressibility_factor(gas, p1);
return p_ideal * gas_compressibility_factor(gas, p_ideal);
}
inline double gas_density(struct gasmix gas, int pressure) {
int density = gas.he.permille * HE_DENSITY + gas.o2.permille * O2_DENSITY + (1000 - gas.he.permille - gas.o2.permille) * N2_DENSITY;
return density * (double) pressure / gas_compressibility_factor(gas, pressure / 1000.0) / SURFACE_PRESSURE / 1000000.0;
}