mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-30 22:20:21 +00:00
2e5913d2ba
Recently (c9b8584bd2
) the sort criteria of the device-table
was changed from (model/id) to (id/model). However, that
messed with the detection of duplicate device names: there,
the code searched for the first element greater or equal
to (model / 0).
With the reversal of the sort criteria, this would now
always give the first element.
Therefore, do a simple non-binary search, which is much
more robust. The binary search was a silly and pointless
premature optimization anyway - don't do such things
if not necessary!
Since only one place in the code search for existence
for a model-name, fold the corresponding function into
that place.
Moreover, change the code to do a case-insensitive compare.
This is consistent with the dc_match_serial() code in
core/libdivecomputer.c, where matching models is
case-insensitive!
Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
356 lines
10 KiB
C++
356 lines
10 KiB
C++
// SPDX-License-Identifier: GPL-2.0
|
|
#include "ssrf.h"
|
|
#include "dive.h"
|
|
#include "subsurface-string.h"
|
|
#include "qthelper.h" // for copy_qstring
|
|
#include "device.h"
|
|
#include "errorhelper.h" // for verbose flag
|
|
#include "selection.h"
|
|
#include "core/settings/qPrefDiveComputer.h"
|
|
|
|
/*
|
|
* Good fake dive profiles are hard.
|
|
*
|
|
* "depthtime" is the integral of the dive depth over
|
|
* time ("area" of the dive profile). We want that
|
|
* area to match the average depth (avg_d*max_t).
|
|
*
|
|
* To do that, we generate a 6-point profile:
|
|
*
|
|
* (0, 0)
|
|
* (t1, max_d)
|
|
* (t2, max_d)
|
|
* (t3, d)
|
|
* (t4, d)
|
|
* (max_t, 0)
|
|
*
|
|
* with the same ascent/descent rates between the
|
|
* different depths.
|
|
*
|
|
* NOTE: avg_d, max_d and max_t are given constants.
|
|
* The rest we can/should play around with to get a
|
|
* good-looking profile.
|
|
*
|
|
* That six-point profile gives a total area of:
|
|
*
|
|
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3)
|
|
*
|
|
* And the "same ascent/descent rates" requirement
|
|
* gives us (time per depth must be same):
|
|
*
|
|
* t1 / max_d = (t3-t2) / (max_d-d)
|
|
* t1 / max_d = (max_t-t4) / d
|
|
*
|
|
* We also obviously require:
|
|
*
|
|
* 0 <= t1 <= t2 <= t3 <= t4 <= max_t
|
|
*
|
|
* Let us call 'd_frac = d / max_d', and we get:
|
|
*
|
|
* Total area must match average depth-time:
|
|
*
|
|
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) = avg_d*max_t
|
|
* max_d*(max_t-t1-(1-d_frac)*(t4-t3)) = avg_d*max_t
|
|
* max_t-t1-(1-d_frac)*(t4-t3) = avg_d*max_t/max_d
|
|
* t1+(1-d_frac)*(t4-t3) = max_t*(1-avg_d/max_d)
|
|
*
|
|
* and descent slope must match ascent slopes:
|
|
*
|
|
* t1 / max_d = (t3-t2) / (max_d*(1-d_frac))
|
|
* t1 = (t3-t2)/(1-d_frac)
|
|
*
|
|
* and
|
|
*
|
|
* t1 / max_d = (max_t-t4) / (max_d*d_frac)
|
|
* t1 = (max_t-t4)/d_frac
|
|
*
|
|
* In general, we have more free variables than we have constraints,
|
|
* but we can aim for certain basics, like a good ascent slope.
|
|
*/
|
|
static int fill_samples(struct sample *s, int max_d, int avg_d, int max_t, double slope, double d_frac)
|
|
{
|
|
double t_frac = max_t * (1 - avg_d / (double)max_d);
|
|
int t1 = lrint(max_d / slope);
|
|
int t4 = lrint(max_t - t1 * d_frac);
|
|
int t3 = lrint(t4 - (t_frac - t1) / (1 - d_frac));
|
|
int t2 = lrint(t3 - t1 * (1 - d_frac));
|
|
|
|
if (t1 < 0 || t1 > t2 || t2 > t3 || t3 > t4 || t4 > max_t)
|
|
return 0;
|
|
|
|
s[1].time.seconds = t1;
|
|
s[1].depth.mm = max_d;
|
|
s[2].time.seconds = t2;
|
|
s[2].depth.mm = max_d;
|
|
s[3].time.seconds = t3;
|
|
s[3].depth.mm = lrint(max_d * d_frac);
|
|
s[4].time.seconds = t4;
|
|
s[4].depth.mm = lrint(max_d * d_frac);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* we have no average depth; instead of making up a random average depth
|
|
* we should assume either a PADI rectangular profile (for short and/or
|
|
* shallow dives) or more reasonably a six point profile with a 3 minute
|
|
* safety stop at 5m */
|
|
static void fill_samples_no_avg(struct sample *s, int max_d, int max_t, double slope)
|
|
{
|
|
// shallow or short dives are just trapecoids based on the given slope
|
|
if (max_d < 10000 || max_t < 600) {
|
|
s[1].time.seconds = lrint(max_d / slope);
|
|
s[1].depth.mm = max_d;
|
|
s[2].time.seconds = max_t - lrint(max_d / slope);
|
|
s[2].depth.mm = max_d;
|
|
} else {
|
|
s[1].time.seconds = lrint(max_d / slope);
|
|
s[1].depth.mm = max_d;
|
|
s[2].time.seconds = max_t - lrint(max_d / slope) - 180;
|
|
s[2].depth.mm = max_d;
|
|
s[3].time.seconds = max_t - lrint(5000 / slope) - 180;
|
|
s[3].depth.mm = 5000;
|
|
s[4].time.seconds = max_t - lrint(5000 / slope);
|
|
s[4].depth.mm = 5000;
|
|
}
|
|
}
|
|
|
|
extern "C" void fake_dc(struct divecomputer *dc)
|
|
{
|
|
alloc_samples(dc, 6);
|
|
struct sample *fake = dc->sample;
|
|
int i;
|
|
|
|
dc->samples = 6;
|
|
|
|
/* The dive has no samples, so create a few fake ones */
|
|
int max_t = dc->duration.seconds;
|
|
int max_d = dc->maxdepth.mm;
|
|
int avg_d = dc->meandepth.mm;
|
|
|
|
memset(fake, 0, 6 * sizeof(struct sample));
|
|
fake[5].time.seconds = max_t;
|
|
for (i = 0; i < 6; i++) {
|
|
fake[i].bearing.degrees = -1;
|
|
fake[i].ndl.seconds = -1;
|
|
}
|
|
if (!max_t || !max_d) {
|
|
dc->samples = 0;
|
|
return;
|
|
}
|
|
|
|
/* Set last manually entered time to the total dive length */
|
|
dc->last_manual_time = dc->duration;
|
|
|
|
/*
|
|
* We want to fake the profile so that the average
|
|
* depth ends up correct. However, in the absence of
|
|
* a reasonable average, let's just make something
|
|
* up. Note that 'avg_d == max_d' is _not_ a reasonable
|
|
* average.
|
|
* We explicitly treat avg_d == 0 differently */
|
|
if (avg_d == 0) {
|
|
/* we try for a sane slope, but bow to the insanity of
|
|
* the user supplied data */
|
|
fill_samples_no_avg(fake, max_d, max_t, MAX(2.0 * max_d / max_t, (double)prefs.ascratelast6m));
|
|
if (fake[3].time.seconds == 0) { // just a 4 point profile
|
|
dc->samples = 4;
|
|
fake[3].time.seconds = max_t;
|
|
}
|
|
return;
|
|
}
|
|
if (avg_d < max_d / 10 || avg_d >= max_d) {
|
|
avg_d = (max_d + 10000) / 3;
|
|
if (avg_d > max_d)
|
|
avg_d = max_d * 2 / 3;
|
|
}
|
|
if (!avg_d)
|
|
avg_d = 1;
|
|
|
|
/*
|
|
* Ok, first we try a basic profile with a specific ascent
|
|
* rate (5 meters per minute) and d_frac (1/3).
|
|
*/
|
|
if (fill_samples(fake, max_d, avg_d, max_t, (double)prefs.ascratelast6m, 0.33))
|
|
return;
|
|
|
|
/*
|
|
* Ok, assume that didn't work because we cannot make the
|
|
* average come out right because it was a quick deep dive
|
|
* followed by a much shallower region
|
|
*/
|
|
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0 / 60, 0.10))
|
|
return;
|
|
|
|
/*
|
|
* Uhhuh. That didn't work. We'd need to find a good combination that
|
|
* satisfies our constraints. Currently, we don't, we just give insane
|
|
* slopes.
|
|
*/
|
|
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0, 0.01))
|
|
return;
|
|
|
|
/* Even that didn't work? Give up, there's something wrong */
|
|
}
|
|
|
|
struct device_table device_table;
|
|
|
|
bool device::operator==(const device &a) const
|
|
{
|
|
return model == a.model &&
|
|
deviceId == a.deviceId &&
|
|
firmware == a.firmware &&
|
|
serialNumber == a.serialNumber &&
|
|
nickName == a.nickName;
|
|
}
|
|
|
|
bool device::operator!=(const device &a) const
|
|
{
|
|
return !(*this == a);
|
|
}
|
|
|
|
bool device::operator<(const device &a) const
|
|
{
|
|
return std::tie(deviceId, model) < std::tie(a.deviceId, a.model);
|
|
}
|
|
|
|
static const device *getDCExact(const QVector<device> &dcs, const divecomputer *dc)
|
|
{
|
|
auto it = std::lower_bound(dcs.begin(), dcs.end(), device{dc->model, dc->deviceid, {}, {}, {}});
|
|
return it != dcs.end() && it->model == dc->model && it->deviceId == dc->deviceid ? &*it : NULL;
|
|
}
|
|
|
|
/*
|
|
* When setting the device ID, we also fill in the
|
|
* serial number and firmware version data
|
|
*/
|
|
extern "C" void set_dc_deviceid(struct divecomputer *dc, unsigned int deviceid)
|
|
{
|
|
if (!deviceid)
|
|
return;
|
|
|
|
dc->deviceid = deviceid;
|
|
|
|
// Serial and firmware can only be deduced if we know the model
|
|
if (!dc->model)
|
|
return;
|
|
|
|
const device *node = getDCExact(device_table.devices, dc);
|
|
if (!node)
|
|
return;
|
|
|
|
if (!node->serialNumber.isEmpty() && empty_string(dc->serial))
|
|
dc->serial = copy_qstring(node->serialNumber);
|
|
if (!node->firmware.isEmpty() && empty_string(dc->fw_version))
|
|
dc->fw_version = copy_qstring(node->firmware);
|
|
}
|
|
|
|
void device::showchanges(const QString &n, const QString &s, const QString &f) const
|
|
{
|
|
if (nickName != n && !n.isEmpty())
|
|
qDebug("new nickname %s for DC model %s deviceId 0x%x", qPrintable(n), qPrintable(model), deviceId);
|
|
if (serialNumber != s && !s.isEmpty())
|
|
qDebug("new serial number %s for DC model %s deviceId 0x%x", qPrintable(s), qPrintable(model), deviceId);
|
|
if (firmware != f && !f.isEmpty())
|
|
qDebug("new firmware version %s for DC model %s deviceId 0x%x", qPrintable(f), qPrintable(model), deviceId);
|
|
}
|
|
|
|
static void addDC(QVector<device> &dcs, const QString &m, uint32_t d, const QString &n, const QString &s, const QString &f)
|
|
{
|
|
if (m.isEmpty() || d == 0)
|
|
return;
|
|
auto it = std::lower_bound(dcs.begin(), dcs.end(), device{m, d, {}, {}, {}});
|
|
if (it != dcs.end() && it->model == m && it->deviceId == d) {
|
|
// debugging: show changes
|
|
if (verbose)
|
|
it->showchanges(n, s, f);
|
|
// Update any non-existent fields from the old entry
|
|
if (!n.isEmpty())
|
|
it->nickName = n;
|
|
if (!s.isEmpty())
|
|
it->serialNumber = s;
|
|
if (!f.isEmpty())
|
|
it->firmware = f;
|
|
} else {
|
|
dcs.insert(it, device{m, d, s, f, n});
|
|
}
|
|
}
|
|
|
|
extern "C" void create_device_node(const char *model, uint32_t deviceid, const char *serial, const char *firmware, const char *nickname)
|
|
{
|
|
addDC(device_table.devices, model, deviceid, nickname, serial, firmware);
|
|
}
|
|
|
|
extern "C" void clear_device_nodes()
|
|
{
|
|
device_table.devices.clear();
|
|
}
|
|
|
|
extern "C" void call_for_each_dc (void *f, void (*callback)(void *, const char *, uint32_t, const char *, const char *, const char *),
|
|
bool select_only)
|
|
{
|
|
for (const device &node : device_table.devices) {
|
|
bool found = false;
|
|
if (select_only) {
|
|
for (dive *d: getDiveSelection()) {
|
|
struct divecomputer *dc;
|
|
for_each_dc (d, dc) {
|
|
if (dc->deviceid == node.deviceId) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (found)
|
|
break;
|
|
}
|
|
} else {
|
|
found = true;
|
|
}
|
|
if (found)
|
|
callback(f, qPrintable(node.model), node.deviceId, qPrintable(node.nickName),
|
|
qPrintable(node.serialNumber), qPrintable(node.firmware));
|
|
}
|
|
}
|
|
|
|
extern "C" int is_default_dive_computer_device(const char *name)
|
|
{
|
|
return qPrefDiveComputer::device() == name;
|
|
}
|
|
|
|
extern "C" void set_dc_nickname(struct dive *dive)
|
|
{
|
|
if (!dive)
|
|
return;
|
|
|
|
struct divecomputer *dc;
|
|
|
|
for_each_dc (dive, dc) {
|
|
if (!empty_string(dc->model) && dc->deviceid &&
|
|
!getDCExact(device_table.devices, dc)) {
|
|
// we don't have this one, yet
|
|
auto it = std::find_if(device_table.devices.begin(), device_table.devices.end(),
|
|
[dc] (const device &dev)
|
|
{ return !strcasecmp(qPrintable(dev.model), dc->model); });
|
|
if (it != device_table.devices.end()) {
|
|
// we already have this model but a different deviceid
|
|
QString simpleNick(dc->model);
|
|
if (dc->deviceid == 0)
|
|
simpleNick.append(" (unknown deviceid)");
|
|
else
|
|
simpleNick.append(" (").append(QString::number(dc->deviceid, 16)).append(")");
|
|
addDC(device_table.devices, dc->model, dc->deviceid, simpleNick, {}, {});
|
|
} else {
|
|
addDC(device_table.devices, dc->model, dc->deviceid, {}, {}, {});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
QString get_dc_nickname(const struct divecomputer *dc)
|
|
{
|
|
const device *existNode = getDCExact(device_table.devices, dc);
|
|
|
|
if (existNode && !existNode->nickName.isEmpty())
|
|
return existNode->nickName;
|
|
else
|
|
return dc->model;
|
|
}
|