subsurface/core/range.h
Berthold Stoeger 6b835710bc map: use value semantics for MapLocation
This makes memory management more simple, as not explicit deletion
is necessary.

A rather large commit, because changing QVector<> to std::vector<>
is propagated up the call chain.

Adds a new range_contains() helper function for collection
types such as std::vector<>. I didn't want to call it
contains(), since we already have a contains function
for strings and let's keep argument overloading simple.

Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
2024-08-13 19:28:30 +02:00

108 lines
3 KiB
C++

// SPDX-License-Identifier: GPL-2.0
// Helper functions for range manipulations
#ifndef RANGE_H
#define RANGE_H
#include <utility> // for std::pair
#include <vector> // we need a declaration of std::begin() and std::end()
// Move a range in a vector to a different position.
// The parameters are given according to the usual STL-semantics:
// v: a container with STL-like random access iterator via std::begin(...)
// rangeBegin: index of first element
// rangeEnd: index one *past* last element
// destination: index to element before which the range will be moved
// Owing to std::begin() magic, this function works with STL-like containers:
// QVector<int> v{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
// move_in_range(v, 1, 4, 6);
// as well as with C-style arrays:
// int array[10] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
// move_in_range(array, 1, 4, 6);
// Both calls will have the following effect:
// Before: 0 1 2 3 4 5 6 7 8 9
// After: 0 4 5 1 2 3 6 7 8 9
// No sanitizing of the input arguments is performed.
template <typename Range>
void move_in_range(Range &v, int rangeBegin, int rangeEnd, int destination)
{
auto it = std::begin(v);
if (destination > rangeEnd)
std::rotate(it + rangeBegin, it + rangeEnd, it + destination);
else if (destination < rangeBegin)
std::rotate(it + destination, it + rangeBegin, it + rangeEnd);
}
// A rudimentary adaptor for looping over ranges with an index:
// for (auto [idx, item]: enumerated_range(v)) ...
// The index is a signed integer, since this is what we use more often.
template <typename Range>
class enumerated_range
{
Range &base;
public:
using base_iterator = decltype(std::begin(std::declval<Range &>()));
class iterator {
int idx;
base_iterator it;
public:
std::pair<int, decltype(*it)> operator*() const
{
return { idx, *it };
}
iterator &operator++()
{
++idx;
++it;
return *this;
}
iterator(int idx, base_iterator it) : idx(idx), it(it)
{
}
bool operator==(const iterator &it2) const
{
return it == it2.it;
}
bool operator!=(const iterator &it2) const
{
return it != it2.it;
}
};
iterator begin()
{
return iterator(0, std::begin(base));
}
iterator end()
{
return iterator(-1, std::end(base));
}
enumerated_range(Range &base) : base(base)
{
}
};
// Find the index of an element in a range. Return -1 if not found
// Range must have a random access iterator.
template <typename Range, typename Element>
int index_of(const Range &range, const Element &e)
{
auto it = std::find(std::begin(range), std::end(range), e);
return it == std::end(range) ? -1 : it - std::begin(range);
}
template <typename Range, typename Func>
int index_of_if(const Range &range, Func f)
{
auto it = std::find_if(std::begin(range), std::end(range), f);
return it == std::end(range) ? -1 : it - std::begin(range);
}
// Not really appropriate here, but oh my.
template<typename Range, typename Element>
bool range_contains(const Range &v, const Element &item)
{
return std::find(v.begin(), v.end(), item) != v.end();
}
#endif