subsurface/configuredivecomputerthreads.cpp
Anton Lundin b5dedcfba4 Write config data to the OSTC
This adds code that writes configuration data to the OSTC. As we don't
look at all the values in the OSTC config blocks, we read the current
blocks and only change the values we can change.

Signed-off-by: Anton Lundin <glance@acc.umu.se>
Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2014-10-27 14:41:49 -07:00

1425 lines
46 KiB
C++

#include "configuredivecomputerthreads.h"
#include "libdivecomputer/hw.h"
#include <QDebug>
#include <QDateTime>
#include <QStringList>
#define OSTC3_GAS1 0x10
#define OSTC3_GAS2 0x11
#define OSTC3_GAS3 0x12
#define OSTC3_GAS4 0x13
#define OSTC3_GAS5 0x14
#define OSTC3_DIL1 0x15
#define OSTC3_DIL2 0x16
#define OSTC3_DIL3 0x17
#define OSTC3_DIL4 0x18
#define OSTC3_DIL5 0x19
#define OSTC3_SP1 0x1A
#define OSTC3_SP2 0x1B
#define OSTC3_SP3 0x1C
#define OSTC3_SP4 0x1D
#define OSTC3_SP5 0x1E
#define OSTC3_CCR_MODE 0x1F
#define OSTC3_DIVE_MODE 0x20
#define OSTC3_DECO_TYPE 0x21
#define OSTC3_PPO2_MAX 0x22
#define OSTC3_PPO2_MIN 0x23
#define OSTC3_FUTURE_TTS 0x24
#define OSTC3_GF_LOW 0x25
#define OSTC3_GF_HIGH 0x26
#define OSTC3_AGF_LOW 0x27
#define OSTC3_AGF_HIGH 0x28
#define OSTC3_AGF_SELECTABLE 0x29
#define OSTC3_SATURATION 0x2A
#define OSTC3_DESATURATION 0x2B
#define OSTC3_LAST_DECO 0x2C
#define OSTC3_BRIGHTNESS 0x2D
#define OSTC3_UNITS 0x2E
#define OSTC3_SAMPLING_RATE 0x2F
#define OSTC3_SALINITY 0x30
#define OSTC3_DIVEMODE_COLOR 0x31
#define OSTC3_LANGUAGE 0x32
#define OSTC3_DATE_FORMAT 0x33
#define OSTC3_COMPASS_GAIN 0x34
#define OSTC3_PRESSURE_SENSOR_OFFSET 0x35
#define OSTC3_SAFETY_STOP 0x36
#define OSTC3_CALIBRATION_GAS_O2 0x37
#define OSTC3_SETPOINT_FALLBACK 0x38
#define OSTC3_FLIP_SCREEN 0x39
#define SUUNTO_VYPER_MAXDEPTH 0x1e
#define SUUNTO_VYPER_TOTAL_TIME 0x20
#define SUUNTO_VYPER_NUMBEROFDIVES 0x22
#define SUUNTO_VYPER_COMPUTER_TYPE 0x24
#define SUUNTO_VYPER_FIRMWARE 0x25
#define SUUNTO_VYPER_SERIALNUMBER 0x26
#define SUUNTO_VYPER_CUSTOM_TEXT 0x2c
#define SUUNTO_VYPER_SAMPLING_RATE 0x53
#define SUUNTO_VYPER_ALTITUDE_SAFETY 0x54
#define SUUNTO_VYPER_TIMEFORMAT 0x60
#define SUUNTO_VYPER_UNITS 0x62
#define SUUNTO_VYPER_MODEL 0x63
#define SUUNTO_VYPER_LIGHT 0x64
#define SUUNTO_VYPER_ALARM_DEPTH_TIME 0x65
#define SUUNTO_VYPER_ALARM_TIME 0x66
#define SUUNTO_VYPER_ALARM_DEPTH 0x68
#define SUUNTO_VYPER_CUSTOM_TEXT_LENGHT 30
#ifdef DEBUG_OSTC
// Fake io to ostc memory banks
#define hw_ostc_device_eeprom_read local_hw_ostc_device_eeprom_read
#define hw_ostc_device_eeprom_write local_hw_ostc_device_eeprom_write
#define hw_ostc_device_clock local_hw_ostc_device_clock
#define OSTC_FILE "../OSTC-data-dump.bin"
static dc_status_t local_hw_ostc_device_eeprom_read(void *ignored, unsigned char bank, unsigned char data[], unsigned int data_size)
{
FILE *f;
if ((f = fopen(OSTC_FILE, "r")) == NULL)
return DC_STATUS_NODEVICE;
fseek(f, bank * 256, SEEK_SET);
if (fread(data, sizeof(unsigned char), data_size, f) != data_size) {
fclose(f);
return DC_STATUS_IO;
}
fclose(f);
return DC_STATUS_SUCCESS;
}
static dc_status_t local_hw_ostc_device_eeprom_write(void *ignored, unsigned char bank, unsigned char data[], unsigned int data_size)
{
FILE *f;
if ((f = fopen(OSTC_FILE, "r+")) == NULL)
f = fopen(OSTC_FILE, "w");
fseek(f, bank * 256, SEEK_SET);
fwrite(data, sizeof(unsigned char), data_size, f);
fclose(f);
return DC_STATUS_SUCCESS;
}
static dc_status_t local_hw_ostc_device_clock(void *ignored, dc_datetime_t *time)
{
qDebug() << "Setting OSTC time";
return DC_STATUS_SUCCESS;
}
#endif
ReadSettingsThread::ReadSettingsThread(QObject *parent, device_data_t *data)
: QThread(parent), m_data(data)
{
}
static int read_ostc_cf(unsigned char data[], unsigned char cf) {
return data[128 + (cf % 32) * 4 + 3] << 8 ^ data[128 + (cf % 32) * 4 + 2];
}
static void write_ostc_cf(unsigned char data[], unsigned char cf, unsigned char max_CF, unsigned int value) {
// Only write settings supported by this firmware.
if (cf > max_CF)
return;
data[128 + (cf % 32) * 4 + 3] = (value & 0xff00) >> 8;
data[128 + (cf % 32) * 4 + 2] = (value & 0x00ff);
}
void ReadSettingsThread::run()
{
bool supported = false;
dc_status_t rc;
#ifdef DEBUG_OSTC
if (strcmp(m_data->vendor, "Heinrichs Weikamp") == 0 && strcmp(m_data->product, "OSTC 2N") == 0)
rc = DC_STATUS_SUCCESS;
else
#endif
rc = dc_device_open(&m_data->device, m_data->context, m_data->descriptor, m_data->devname);
if (rc == DC_STATUS_SUCCESS) {
DeviceDetails *m_deviceDetails = new DeviceDetails(0);
switch (dc_device_get_type(m_data->device)) {
case DC_FAMILY_SUUNTO_VYPER: {
unsigned char data[SUUNTO_VYPER_CUSTOM_TEXT_LENGHT + 1];
rc = dc_device_read(m_data->device, SUUNTO_VYPER_COMPUTER_TYPE, data, 1);
if (rc == DC_STATUS_SUCCESS) {
const char *model;
// FIXME: grab this info from libdivecomputer descriptor
// instead of hard coded here
switch(data[0]) {
case 0x03:
model = "Stinger";
break;
case 0x04:
model = "Mosquito";
break;
case 0x05:
model = "D3";
break;
case 0x0A:
model = "Vyper";
break;
case 0x0B:
model = "Vytec";
break;
case 0x0C:
model = "Cobra";
break;
case 0x0D:
model = "Gekko";
break;
case 0x16:
model = "Zoop";
break;
case 20:
case 30:
case 60:
// Suunto Spyder have there sample interval at this position
// Fallthrough
default:
supported = false;
goto unsupported_dc_error;
}
// We found a supported device
// we can safely proceed with reading/writing to this device.
supported = true;
m_deviceDetails->setModel(model);
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_MAXDEPTH, data, 2);
if (rc == DC_STATUS_SUCCESS) {
// in ft * 128.0
int depth = feet_to_mm(data[0] << 8 ^ data[1]) / 128;
m_deviceDetails->setMaxDepth(depth);
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_TOTAL_TIME, data, 2);
if (rc == DC_STATUS_SUCCESS) {
int total_time = data[0] << 8 ^ data[1];
m_deviceDetails->setTotalTime(total_time);
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_NUMBEROFDIVES, data, 2);
if (rc == DC_STATUS_SUCCESS) {
int number_of_dives = data[0] << 8 ^ data[1];
m_deviceDetails->setNumberOfDives(number_of_dives);
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_FIRMWARE, data, 1);
if (rc == DC_STATUS_SUCCESS) {
m_deviceDetails->setFirmwareVersion(QString::number(data[0]) + ".0.0");
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_SERIALNUMBER, data, 4);
if (rc == DC_STATUS_SUCCESS) {
int serial_number = data[0] * 1000000 + data[1] * 10000 + data[2] * 100 + data[3];
m_deviceDetails->setSerialNo(QString::number(serial_number));
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_CUSTOM_TEXT, data, SUUNTO_VYPER_CUSTOM_TEXT_LENGHT);
if (rc == DC_STATUS_SUCCESS) {
data[SUUNTO_VYPER_CUSTOM_TEXT_LENGHT] = 0;
m_deviceDetails->setCustomText((const char*) data);
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_SAMPLING_RATE, data, 1);
if (rc == DC_STATUS_SUCCESS) {
m_deviceDetails->setSamplingRate((int) data[0]);
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_ALTITUDE_SAFETY, data, 1);
if (rc == DC_STATUS_SUCCESS) {
m_deviceDetails->setAltitude(data[0] & 0x03);
m_deviceDetails->setPersonalSafety(data[0] >> 2 & 0x03);
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_TIMEFORMAT, data, 1);
if (rc == DC_STATUS_SUCCESS) {
m_deviceDetails->setTimeFormat(data[0] & 0x01);
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_UNITS, data, 1);
if (rc == DC_STATUS_SUCCESS) {
m_deviceDetails->setUnits(data[0] & 0x01);
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_MODEL, data, 1);
if (rc == DC_STATUS_SUCCESS) {
m_deviceDetails->setDiveMode(data[0] & 0x03);
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_LIGHT, data, 1);
if (rc == DC_STATUS_SUCCESS) {
m_deviceDetails->setLightEnabled(data[0] >> 7);
m_deviceDetails->setLight(data[0] & 0x7F);
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_ALARM_DEPTH_TIME, data, 1);
if (rc == DC_STATUS_SUCCESS) {
m_deviceDetails->setAlarmTimeEnabled(data[0] & 0x01);
m_deviceDetails->setAlarmDepthEnabled(data[0] >> 1 & 0x01);
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_ALARM_TIME, data, 2);
if (rc == DC_STATUS_SUCCESS) {
m_deviceDetails->setAlarmTime(data[0] << 8 ^ data[1]);
}
rc = dc_device_read(m_data->device, SUUNTO_VYPER_ALARM_DEPTH, data, 2);
if (rc == DC_STATUS_SUCCESS) {
int depth = feet_to_mm(data[0] << 8 ^ data[1]) / 128;
m_deviceDetails->setAlarmDepth(depth);
}
emit devicedetails(m_deviceDetails);
break;
}
#if DC_VERSION_CHECK(0, 5, 0)
case DC_FAMILY_HW_OSTC3: {
supported = true;
//Read gas mixes
gas gas1;
gas gas2;
gas gas3;
gas gas4;
gas gas5;
//Gas 1
unsigned char gasData[4] = {0,0,0,0};
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_GAS1, gasData, sizeof(gasData));
if (rc == DC_STATUS_SUCCESS) {
//Gas data read successful
gas1.oxygen = gasData[0];
gas1.helium = gasData[1];
gas1.type = gasData[2];
gas1.depth = gasData[3];
}
//Gas 2
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_GAS2, gasData, sizeof(gasData));
if (rc == DC_STATUS_SUCCESS) {
//Gas data read successful
gas2.oxygen = gasData[0];
gas2.helium = gasData[1];
gas2.type = gasData[2];
gas2.depth = gasData[3];
}
//Gas 3
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_GAS3, gasData, sizeof(gasData));
if (rc == DC_STATUS_SUCCESS) {
//Gas data read successful
gas3.oxygen = gasData[0];
gas3.helium = gasData[1];
gas3.type = gasData[2];
gas3.depth = gasData[3];
}
//Gas 4
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_GAS4, gasData, sizeof(gasData));
if (rc == DC_STATUS_SUCCESS) {
//Gas data read successful
gas4.oxygen = gasData[0];
gas4.helium = gasData[1];
gas4.type = gasData[2];
gas4.depth = gasData[3];
}
//Gas 5
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_GAS5, gasData, sizeof(gasData));
if (rc == DC_STATUS_SUCCESS) {
//Gas data read successful
gas5.oxygen = gasData[0];
gas5.helium = gasData[1];
gas5.type = gasData[2];
gas5.depth = gasData[3];
}
m_deviceDetails->setGas1(gas1);
m_deviceDetails->setGas2(gas2);
m_deviceDetails->setGas3(gas3);
m_deviceDetails->setGas4(gas4);
m_deviceDetails->setGas5(gas5);
//Read Dil Values
gas dil1;
gas dil2;
gas dil3;
gas dil4;
gas dil5;
//Dil 1
unsigned char dilData[4] = {0,0,0,0};
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_DIL1, dilData, sizeof(dilData));
if (rc == DC_STATUS_SUCCESS) {
//Data read successful
dil1.oxygen = dilData[0];
dil1.helium = dilData[1];
dil1.type = dilData[2];
dil1.depth = dilData[3];
}
//Dil 2
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_DIL2, dilData, sizeof(dilData));
if (rc == DC_STATUS_SUCCESS) {
//Data read successful
dil2.oxygen = dilData[0];
dil2.helium = dilData[1];
dil2.type = dilData[2];
dil2.depth = dilData[3];
}
//Dil 3
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_DIL3, dilData, sizeof(dilData));
if (rc == DC_STATUS_SUCCESS) {
//Data read successful
dil3.oxygen = dilData[0];
dil3.helium = dilData[1];
dil3.type = dilData[2];
dil3.depth = dilData[3];
}
//Dil 4
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_DIL4, dilData, sizeof(dilData));
if (rc == DC_STATUS_SUCCESS) {
//Data read successful
dil4.oxygen = dilData[0];
dil4.helium = dilData[1];
dil4.type = dilData[2];
dil4.depth = dilData[3];
}
//Dil 5
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_DIL5, dilData, sizeof(dilData));
if (rc == DC_STATUS_SUCCESS) {
//Data read successful
dil5.oxygen = dilData[0];
dil5.helium = dilData[1];
dil5.type = dilData[2];
dil5.depth = dilData[3];
}
m_deviceDetails->setDil1(dil1);
m_deviceDetails->setDil2(dil2);
m_deviceDetails->setDil3(dil3);
m_deviceDetails->setDil4(dil4);
m_deviceDetails->setDil5(dil5);
//Read set point Values
setpoint sp1;
setpoint sp2;
setpoint sp3;
setpoint sp4;
setpoint sp5;
unsigned char spData[2] = {0,0};
//Sp 1
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_SP1, spData, sizeof(spData));
if (rc == DC_STATUS_SUCCESS) {
//Data read successful
sp1.sp = spData[0];
sp1.depth = spData[1];
}
//Sp 2
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_SP2, spData, sizeof(spData));
if (rc == DC_STATUS_SUCCESS) {
//Data read successful
sp2.sp = spData[0];
sp2.depth = spData[1];
}
//Sp 3
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_SP3, spData, sizeof(spData));
if (rc == DC_STATUS_SUCCESS) {
//Data read successful
sp3.sp = spData[0];
sp3.depth = spData[1];
}
//Sp 4
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_SP4, spData, sizeof(spData));
if (rc == DC_STATUS_SUCCESS) {
//Data read successful
sp4.sp = spData[0];
sp4.depth = spData[1];
}
//Sp 5
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_SP5, spData, sizeof(spData));
if (rc == DC_STATUS_SUCCESS) {
//Data read successful
sp5.sp = spData[0];
sp5.depth = spData[1];
}
m_deviceDetails->setSp1(sp1);
m_deviceDetails->setSp2(sp2);
m_deviceDetails->setSp3(sp3);
m_deviceDetails->setSp4(sp4);
m_deviceDetails->setSp5(sp5);
//Read other settings
unsigned char uData[1] = {0};
#define READ_SETTING(_OSTC3_SETTING, _DEVICE_DETAIL) \
rc = hw_ostc3_device_config_read(m_data->device, _OSTC3_SETTING, uData, sizeof(uData)); \
if (rc == DC_STATUS_SUCCESS) \
m_deviceDetails->_DEVICE_DETAIL(uData[0]);
READ_SETTING(OSTC3_DIVE_MODE, setDiveMode)
READ_SETTING(OSTC3_SATURATION, setSaturation)
READ_SETTING(OSTC3_DESATURATION, setDesaturation)
READ_SETTING(OSTC3_LAST_DECO, setLastDeco)
READ_SETTING(OSTC3_BRIGHTNESS, setBrightness)
READ_SETTING(OSTC3_UNITS, setUnits)
READ_SETTING(OSTC3_SAMPLING_RATE,setSamplingRate)
READ_SETTING(OSTC3_SALINITY, setSalinity)
READ_SETTING(OSTC3_DIVEMODE_COLOR,setDiveModeColor)
READ_SETTING(OSTC3_LANGUAGE, setLanguage)
READ_SETTING(OSTC3_DATE_FORMAT, setDateFormat)
READ_SETTING(OSTC3_COMPASS_GAIN, setCompassGain)
READ_SETTING(OSTC3_SAFETY_STOP, setSafetyStop)
READ_SETTING(OSTC3_GF_HIGH, setGfHigh)
READ_SETTING(OSTC3_GF_LOW, setGfLow)
READ_SETTING(OSTC3_PPO2_MIN, setPpO2Min)
READ_SETTING(OSTC3_PPO2_MAX, setPpO2Max)
READ_SETTING(OSTC3_FUTURE_TTS, setFutureTTS)
READ_SETTING(OSTC3_CCR_MODE, setCcrMode)
READ_SETTING(OSTC3_DECO_TYPE, setDecoType)
READ_SETTING(OSTC3_AGF_SELECTABLE, setAGFSelectable)
READ_SETTING(OSTC3_AGF_HIGH, setAGFHigh)
READ_SETTING(OSTC3_AGF_LOW, setAGFLow)
READ_SETTING(OSTC3_CALIBRATION_GAS_O2, setCalibrationGas)
READ_SETTING(OSTC3_FLIP_SCREEN, setFlipScreen)
READ_SETTING(OSTC3_SETPOINT_FALLBACK, setSetPointFallback)
#undef READ_SETTING
rc = hw_ostc3_device_config_read(m_data->device, OSTC3_PRESSURE_SENSOR_OFFSET, uData, sizeof(uData));
if (rc == DC_STATUS_SUCCESS) {
// OSTC3 stores the pressureSensorOffset in two-complement
m_deviceDetails->setPressureSensorOffset((signed char) uData[0]);
}
//read firmware settings
unsigned char fData[64] = {0};
rc = hw_ostc3_device_version (m_data->device, fData, sizeof (fData));
if (rc == DC_STATUS_SUCCESS) {
int serial = fData[0] + (fData[1] << 8);
m_deviceDetails->setSerialNo(QString::number(serial));
m_deviceDetails->setFirmwareVersion(QString::number(fData[2]) + "." + QString::number(fData[3]));
QByteArray ar((char *)fData + 4, 60);
m_deviceDetails->setCustomText(ar.trimmed());
}
emit devicedetails(m_deviceDetails);
break;
}
#ifdef DEBUG_OSTC
case DC_FAMILY_NULL:
#endif
case DC_FAMILY_HW_OSTC: {
supported = true;
unsigned char data[256] = {};
#ifdef DEBUG_OSTC_CF
// FIXME: how should we report settings not supported back?
unsigned char max_CF = 0;
#endif
rc = hw_ostc_device_eeprom_read(m_data->device, 0, data, sizeof(data));
if (rc == DC_STATUS_SUCCESS) {
m_deviceDetails->setSerialNo(QString::number(data[1] << 8 ^ data[0]));
m_deviceDetails->setNumberOfDives(data[3] << 8 ^ data[2]);
//Byte5-6:
//Gas 1 default (%O2=21, %He=0)
gas gas1;
gas1.oxygen = data[6];
gas1.helium = data[7];
//Byte9-10:
//Gas 2 default (%O2=21, %He=0)
gas gas2;
gas2.oxygen = data[10];
gas2.helium = data[11];
//Byte13-14:
//Gas 3 default (%O2=21, %He=0)
gas gas3;
gas3.oxygen = data[14];
gas3.helium = data[15];
//Byte17-18:
//Gas 4 default (%O2=21, %He=0)
gas gas4;
gas4.oxygen = data[18];
gas4.helium = data[19];
//Byte21-22:
//Gas 5 default (%O2=21, %He=0)
gas gas5;
gas5.oxygen = data[22];
gas5.helium = data[23];
//Byte25-26:
//Gas 6 current (%O2, %He)
m_deviceDetails->setSalinity(data[26]);
// Active Gas Flag Register
gas1.type = data[27] & 0x01;
gas2.type = (data[27] & 0x02) >> 1;
gas3.type = (data[27] & 0x04) >> 2;
gas4.type = (data[27] & 0x08) >> 3;
gas5.type = (data[27] & 0x10) >> 4;
// Gas switch depths
gas1.depth = data[28];
gas2.depth = data[29];
gas3.depth = data[30];
gas4.depth = data[31];
gas5.depth = data[32];
// 33 which gas is Fist gas
switch(data[33]) {
case 1:
gas1.type = 2;
break;
case 2:
gas2.type = 2;
break;
case 3:
gas3.type = 2;
break;
case 4:
gas4.type = 2;
break;
case 5:
gas5.type = 2;
break;
default:
//Error?
break;
}
// Data filled up, set the gases.
m_deviceDetails->setGas1(gas1);
m_deviceDetails->setGas2(gas2);
m_deviceDetails->setGas3(gas3);
m_deviceDetails->setGas4(gas4);
m_deviceDetails->setGas5(gas5);
m_deviceDetails->setDecoType(data[34]);
//Byte36:
//Use O2 Sensor Module in CC Modes (0= OFF, 1= ON) (Only available in old OSTC1 - unused for OSTC Mk.2/2N)
//m_deviceDetails->setCcrMode(data[35]);
setpoint sp1;
sp1.sp = data[36];
sp1.depth = 0;
setpoint sp2;
sp2.sp = data[37];
sp2.depth = 0;
setpoint sp3;
sp3.sp = data[38];
sp3.depth = 0;
m_deviceDetails->setSp1(sp1);
m_deviceDetails->setSp2(sp2);
m_deviceDetails->setSp3(sp3);
// Byte41-42:
// Lowest Battery voltage seen (in mV)
// Byte43:
// Lowest Battery voltage seen at (Month)
// Byte44:
// Lowest Battery voltage seen at (Day)
// Byte45:
// Lowest Battery voltage seen at (Year)
// Byte46-47:
// Lowest Battery voltage seen at (Temperature in 0.1 °C)
// Byte48:
// Last complete charge at (Month)
// Byte49:
// Last complete charge at (Day)
// Byte50:
// Last complete charge at (Year)
// Byte51-52:
// Total charge cycles
// Byte53-54:
// Total complete charge cycles
// Byte55-56:
// Temperature Extrema minimum (Temperature in 0.1 °C)
// Byte57:
// Temperature Extrema minimum at (Month)
// Byte58:
// Temperature Extrema minimum at (Day)
// Byte59:
// Temperature Extrema minimum at (Year)
// Byte60-61:
// Temperature Extrema maximum (Temperature in 0.1 °C)
// Byte62:
// Temperature Extrema maximum at (Month)
// Byte63:
// Temperature Extrema maximum at (Day)
// Byte64:
// Temperature Extrema maximum at (Year)
// Byte65:
// Custom Text active (=1), Custom Text Disabled (<>1)
// Byte66-90:
// TO FIX EDITOR SYNTAX/INDENT {
// (25Bytes): Custom Text for Surfacemode (Real text must end with "}")
// Example: OSTC Dive Computer} (19 Characters incl. "}") Bytes 85-90 will be ignored.
if (data[64] == 1) {
// Make shure the data is null-terminated
data[89] = 0;
// Find the internal termination and replace it with 0
char *term = strchr((char *) data + 65, (int)'}');
if (term)
*term = 0;
m_deviceDetails->setCustomText((const char*) data + 65);
}
// Byte91:
// Dim OLED in Divemode (>0), Normal mode (=0)
// Byte92:
// Date format for all outputs:
// =0: MM/DD/YY
// =1: DD/MM/YY
// =2: YY/MM/DD
m_deviceDetails->setDateFormat(data[91]);
// Byte93:
// Total number of CF used in installed firmware
#ifdef DEBUG_OSTC_CF
max_CF = data[92];
#endif
// Byte94:
// Last selected view for customview area in surface mode
// Byte95:
// Last selected view for customview area in dive mode
// Byte96-97:
// Diluent 1 Default (%O2,%He)
// Byte98-99:
// Diluent 1 Current (%O2,%He)
gas dil1 = {};
dil1.oxygen = data[97];
dil1.helium = data[98];
// Byte100-101:
// Gasuent 2 Default (%O2,%He)
// Byte102-103:
// Gasuent 2 Current (%O2,%He)
gas dil2 = {};
dil2.oxygen = data[101];
dil2.helium = data[102];
// Byte104-105:
// Gasuent 3 Default (%O2,%He)
// Byte106-107:
// Gasuent 3 Current (%O2,%He)
gas dil3 = {};
dil3.oxygen = data[105];
dil3.helium = data[106];
// Byte108-109:
// Gasuent 4 Default (%O2,%He)
// Byte110-111:
// Gasuent 4 Current (%O2,%He)
gas dil4 = {};
dil4.oxygen = data[109];
dil4.helium = data[110];
// Byte112-113:
// Gasuent 5 Default (%O2,%He)
// Byte114-115:
// Gasuent 5 Current (%O2,%He)
gas dil5 = {};
dil5.oxygen = data[113];
dil5.helium = data[114];
// Byte116:
// First Diluent (1-5)
switch(data[115]) {
case 1:
dil1.type = 2;
break;
case 2:
dil2.type = 2;
break;
case 3:
dil3.type = 2;
break;
case 4:
dil4.type = 2;
break;
case 5:
dil5.type = 2;
break;
default:
//Error?
break;
}
m_deviceDetails->setDil1(dil1);
m_deviceDetails->setDil2(dil2);
m_deviceDetails->setDil3(dil3);
m_deviceDetails->setDil4(dil4);
m_deviceDetails->setDil5(dil5);
// Byte117-128:
// not used/reserved
// Byte129-256:
// 32 custom Functions (CF0-CF31)
// Decode the relevant ones
// CF11: Factor for saturation processes
m_deviceDetails->setSaturation(read_ostc_cf(data, 11));
// CF12: Factor for desaturation processes
m_deviceDetails->setDesaturation(read_ostc_cf(data, 12));
// CF17: Lower threshold for ppO2 warning
m_deviceDetails->setPpO2Min(read_ostc_cf(data, 17));
// CF18: Upper threshold for ppO2 warning
m_deviceDetails->setPpO2Max(read_ostc_cf(data, 18));
// CF20: Depth sampling rate for Profile storage
m_deviceDetails->setSamplingRate(read_ostc_cf(data, 20));
// CF29: Depth of last decompression stop
m_deviceDetails->setLastDeco(read_ostc_cf(data, 29));
#ifdef DEBUG_OSTC_CF
for(int cf = 0; cf <= 31 && cf <= max_CF; cf++)
printf("CF %d: %d\n", cf, read_ostc_cf(data, cf));
#endif
}
rc = hw_ostc_device_eeprom_read(m_data->device, 1, data, sizeof(data));
if (rc == DC_STATUS_SUCCESS) {
// Byte1:
// Logbook version indicator (Not writable!)
// Byte2-3:
// Last Firmware installed, 1st Byte.2nd Byte (e.g. „1.90“) (Not writable!)
m_deviceDetails->setFirmwareVersion(QString::number(data[1]) + "." + QString::number(data[2]));
// Byte4:
// OLED brightness (=0: Eco, =1 High) (Not writable!)
// Byte5-11:
// Time/Date vault during firmware updates
// Byte12-128
// not used/reserved
// Byte129-256:
// 32 custom Functions (CF 32-63)
// Decode the relevant ones
// CF32: Gradient Factor low
m_deviceDetails->setGfLow(read_ostc_cf(data, 32));
// CF33: Gradient Factor high
m_deviceDetails->setGfHigh(read_ostc_cf(data, 33));
// CF58: Future time to surface setFutureTTS
m_deviceDetails->setFutureTTS(read_ostc_cf(data, 58));
#ifdef DEBUG_OSTC_CF
for(int cf = 32; cf <= 63 && cf <= max_CF; cf++)
printf("CF %d: %d\n", cf, read_ostc_cf(data, cf));
#endif
}
rc = hw_ostc_device_eeprom_read(m_data->device, 2, data, sizeof(data));
if (rc == DC_STATUS_SUCCESS) {
// Byte1-4:
// not used/reserved (Not writable!)
// Byte5-128:
// not used/reserved
// Byte129-256:
// 32 custom Functions (CF 64-95)
// Decode the relevant ones
// CF65: Show safety stop
m_deviceDetails->setSafetyStop(read_ostc_cf(data, 65));
// CF67: Alternaitve Gradient Factor low
m_deviceDetails->setAGFLow(read_ostc_cf(data, 67));
// CF68: Alternative Gradient Factor high
m_deviceDetails->setAGFHigh(read_ostc_cf(data, 68));
// CF69: Allow Gradient Factor change
m_deviceDetails->setAGFSelectable(read_ostc_cf(data, 69));
#ifdef DEBUG_OSTC_CF
for(int cf = 64; cf <= 95 && cf <= max_CF; cf++)
printf("CF %d: %d\n", cf, read_ostc_cf(data, cf));
#endif
}
emit devicedetails(m_deviceDetails);
break;
}
#endif // divecomputer 0.5.0
default:
supported = false;
break;
}
} else {
lastError = tr("Could not a establish connection to the dive computer.");
emit error(lastError);
}
unsupported_dc_error:
dc_device_close(m_data->device);
if (!supported) {
lastError = tr("This feature is not yet available for the selected dive computer.");
emit error(lastError);
}
}
WriteSettingsThread::WriteSettingsThread(QObject *parent, device_data_t *data)
: QThread(parent), m_data(data) {
}
void WriteSettingsThread::setDeviceDetails(DeviceDetails *details)
{
m_deviceDetails = details;
}
void WriteSettingsThread::run()
{
bool supported = false;
dc_status_t rc;
#ifdef DEBUG_OSTC
rc = DC_STATUS_SUCCESS;
#else
rc = dc_device_open(&m_data->device, m_data->context, m_data->descriptor, m_data->devname);
#endif
if (rc == DC_STATUS_SUCCESS) {
switch (dc_device_get_type(m_data->device)) {
case DC_FAMILY_SUUNTO_VYPER:
unsigned char data;
unsigned char data2[2];
// Maybee we should read the model from the device to sanity check it here too..
// For now we just check that we actually read a device before writing to one.
if (m_deviceDetails->model() == "")
break;
else
supported = true;
dc_device_write(m_data->device, SUUNTO_VYPER_CUSTOM_TEXT,
// Convert the customText to a 30 char wide padded with " "
(const unsigned char *) QString("%1").arg(m_deviceDetails->customText(), -30, QChar(' ')).toUtf8().data(),
SUUNTO_VYPER_CUSTOM_TEXT_LENGHT);
data = m_deviceDetails->samplingRate();
dc_device_write(m_data->device, SUUNTO_VYPER_SAMPLING_RATE, &data, 1);
data = m_deviceDetails->personalSafety() << 2 ^ m_deviceDetails->altitude();
dc_device_write(m_data->device, SUUNTO_VYPER_ALTITUDE_SAFETY, &data, 1);
data = m_deviceDetails->timeFormat();
dc_device_write(m_data->device, SUUNTO_VYPER_TIMEFORMAT, &data, 1);
data = m_deviceDetails->units();
dc_device_write(m_data->device, SUUNTO_VYPER_UNITS, &data, 1);
data = m_deviceDetails->diveMode();
dc_device_write(m_data->device, SUUNTO_VYPER_MODEL, &data, 1);
data = m_deviceDetails->lightEnabled() << 7 ^ (m_deviceDetails->light() & 0x7F);
dc_device_write(m_data->device, SUUNTO_VYPER_LIGHT, &data, 1);
data = m_deviceDetails->alarmDepthEnabled() << 1 ^ m_deviceDetails->alarmTimeEnabled();
dc_device_write(m_data->device, SUUNTO_VYPER_ALARM_DEPTH_TIME, &data, 1);
data2[0] = m_deviceDetails->alarmTime() >> 8;
data2[1] = m_deviceDetails->alarmTime() & 0xFF;
dc_device_write(m_data->device, SUUNTO_VYPER_ALARM_TIME, data2, 2);
data2[0] = (int)(mm_to_feet(m_deviceDetails->alarmDepth()) * 128) >> 8;
data2[1] = (int)(mm_to_feet(m_deviceDetails->alarmDepth()) * 128) & 0x0FF;
dc_device_write(m_data->device, SUUNTO_VYPER_ALARM_DEPTH, data2, 2);
break;
#if DC_VERSION_CHECK(0,5,0)
case DC_FAMILY_HW_OSTC3: {
supported = true;
//write gas values
unsigned char gas1Data[4] = {m_deviceDetails->gas1().oxygen,
m_deviceDetails->gas1().helium,
m_deviceDetails->gas1().type,
m_deviceDetails->gas1().depth};
unsigned char gas2Data[4] = {m_deviceDetails->gas2().oxygen,
m_deviceDetails->gas2().helium,
m_deviceDetails->gas2().type,
m_deviceDetails->gas2().depth};
unsigned char gas3Data[4] = {m_deviceDetails->gas3().oxygen,
m_deviceDetails->gas3().helium,
m_deviceDetails->gas3().type,
m_deviceDetails->gas3().depth};
unsigned char gas4Data[4] = {m_deviceDetails->gas4().oxygen,
m_deviceDetails->gas4().helium,
m_deviceDetails->gas4().type,
m_deviceDetails->gas4().depth};
unsigned char gas5Data[4] = {m_deviceDetails->gas5().oxygen,
m_deviceDetails->gas5().helium,
m_deviceDetails->gas5().type,
m_deviceDetails->gas5().depth};
//gas 1
hw_ostc3_device_config_write(m_data->device, OSTC3_GAS1, gas1Data, sizeof(gas1Data));
//gas 2
hw_ostc3_device_config_write(m_data->device, OSTC3_GAS2, gas2Data, sizeof(gas2Data));
//gas 3
hw_ostc3_device_config_write(m_data->device, OSTC3_GAS3, gas3Data, sizeof(gas3Data));
//gas 4
hw_ostc3_device_config_write(m_data->device, OSTC3_GAS4, gas4Data, sizeof(gas4Data));
//gas 5
hw_ostc3_device_config_write(m_data->device, OSTC3_GAS5, gas5Data, sizeof(gas5Data));
//write set point values
unsigned char sp1Data[2] = {m_deviceDetails->sp1().sp,
m_deviceDetails->sp1().depth};
unsigned char sp2Data[2] = {m_deviceDetails->sp2().sp,
m_deviceDetails->sp2().depth};
unsigned char sp3Data[2] = {m_deviceDetails->sp3().sp,
m_deviceDetails->sp3().depth};
unsigned char sp4Data[2] = {m_deviceDetails->sp4().sp,
m_deviceDetails->sp4().depth};
unsigned char sp5Data[2] = {m_deviceDetails->sp5().sp,
m_deviceDetails->sp5().depth};
//sp 1
hw_ostc3_device_config_write(m_data->device, OSTC3_SP1, sp1Data, sizeof(sp1Data));
//sp 2
hw_ostc3_device_config_write(m_data->device, OSTC3_SP2, sp2Data, sizeof(sp2Data));
//sp 3
hw_ostc3_device_config_write(m_data->device, OSTC3_SP3, sp3Data, sizeof(sp3Data));
//sp 4
hw_ostc3_device_config_write(m_data->device, OSTC3_SP4, sp4Data, sizeof(sp4Data));
//sp 5
hw_ostc3_device_config_write(m_data->device, OSTC3_SP5, sp5Data, sizeof(sp5Data));
//write dil values
unsigned char dil1Data[4] = {m_deviceDetails->dil1().oxygen,
m_deviceDetails->dil1().helium,
m_deviceDetails->dil1().type,
m_deviceDetails->dil1().depth};
unsigned char dil2Data[4] = {m_deviceDetails->dil2().oxygen,
m_deviceDetails->dil2().helium,
m_deviceDetails->dil2().type,
m_deviceDetails->dil2().depth};
unsigned char dil3Data[4] = {m_deviceDetails->dil3().oxygen,
m_deviceDetails->dil3().helium,
m_deviceDetails->dil3().type,
m_deviceDetails->dil3().depth};
unsigned char dil4Data[4] = {m_deviceDetails->dil4().oxygen,
m_deviceDetails->dil4().helium,
m_deviceDetails->dil4().type,
m_deviceDetails->dil4().depth};
unsigned char dil5Data[4] = {m_deviceDetails->dil5().oxygen,
m_deviceDetails->dil5().helium,
m_deviceDetails->dil5().type,
m_deviceDetails->dil5().depth};
//dil 1
hw_ostc3_device_config_write(m_data->device, OSTC3_DIL1, dil1Data, sizeof(gas1Data));
//dil 2
hw_ostc3_device_config_write(m_data->device, OSTC3_DIL2, dil2Data, sizeof(dil2Data));
//dil 3
hw_ostc3_device_config_write(m_data->device, OSTC3_DIL3, dil3Data, sizeof(dil3Data));
//dil 4
hw_ostc3_device_config_write(m_data->device, OSTC3_DIL4, dil4Data, sizeof(dil4Data));
//dil 5
hw_ostc3_device_config_write(m_data->device, OSTC3_DIL5, dil5Data, sizeof(dil5Data));
//write general settings
//custom text
hw_ostc3_device_customtext(m_data->device, m_deviceDetails->customText().toUtf8().data());
unsigned char data[1] = {0};
#define WRITE_SETTING(_OSTC3_SETTING, _DEVICE_DETAIL) \
data[0] = m_deviceDetails->_DEVICE_DETAIL(); \
hw_ostc3_device_config_write(m_data->device, _OSTC3_SETTING, data, sizeof(data));
WRITE_SETTING(OSTC3_DIVE_MODE, diveMode)
WRITE_SETTING(OSTC3_SATURATION, saturation)
WRITE_SETTING(OSTC3_DESATURATION, desaturation)
WRITE_SETTING(OSTC3_LAST_DECO, lastDeco)
WRITE_SETTING(OSTC3_BRIGHTNESS, brightness)
WRITE_SETTING(OSTC3_UNITS, units)
WRITE_SETTING(OSTC3_SAMPLING_RATE, samplingRate)
WRITE_SETTING(OSTC3_SALINITY, salinity)
WRITE_SETTING(OSTC3_DIVEMODE_COLOR, diveModeColor)
WRITE_SETTING(OSTC3_LANGUAGE, language)
WRITE_SETTING(OSTC3_DATE_FORMAT, dateFormat)
WRITE_SETTING(OSTC3_COMPASS_GAIN, compassGain)
WRITE_SETTING(OSTC3_SAFETY_STOP, safetyStop)
WRITE_SETTING(OSTC3_GF_HIGH, gfHigh)
WRITE_SETTING(OSTC3_GF_LOW, gfLow)
WRITE_SETTING(OSTC3_PPO2_MIN, ppO2Min)
WRITE_SETTING(OSTC3_PPO2_MAX, ppO2Max)
WRITE_SETTING(OSTC3_FUTURE_TTS, futureTTS)
WRITE_SETTING(OSTC3_CCR_MODE, ccrMode)
WRITE_SETTING(OSTC3_DECO_TYPE, decoType)
WRITE_SETTING(OSTC3_AGF_SELECTABLE, aGFSelectable)
WRITE_SETTING(OSTC3_AGF_HIGH, aGFHigh)
WRITE_SETTING(OSTC3_AGF_LOW, aGFLow)
WRITE_SETTING(OSTC3_CALIBRATION_GAS_O2, calibrationGas)
WRITE_SETTING(OSTC3_FLIP_SCREEN, flipScreen)
WRITE_SETTING(OSTC3_SETPOINT_FALLBACK, setPointFallback)
#undef WRITE_SETTING
// OSTC3 stores the pressureSensorOffset in two-complement
data[0] = (unsigned char) m_deviceDetails->pressureSensorOffset();
hw_ostc3_device_config_write(m_data->device, OSTC3_PRESSURE_SENSOR_OFFSET, data, sizeof(data));
//sync date and time
if (m_deviceDetails->syncTime()) {
QDateTime timeToSet = QDateTime::currentDateTime();
dc_datetime_t time;
time.year = timeToSet.date().year();
time.month = timeToSet.date().month();
time.day = timeToSet.date().day();
time.hour = timeToSet.time().hour();
time.minute = timeToSet.time().minute();
time.second = timeToSet.time().second();
hw_ostc3_device_clock(m_data->device, &time);
}
break;
}
#endif // divecomputer 0.5.0
#ifdef DEBUG_OSTC
case DC_FAMILY_NULL:
#endif
case DC_FAMILY_HW_OSTC: {
supported = true;
unsigned char data[256] = {};
unsigned char max_CF = 0;
// Because we write whole memory blocks, we read all the current
// values out and then change then ones we should change.
rc = hw_ostc_device_eeprom_read(m_data->device, 0, data, sizeof(data));
if (rc == DC_STATUS_SUCCESS) {
//Byte5-6:
//Gas 1 default (%O2=21, %He=0)
gas gas1 = m_deviceDetails->gas1();
data[6] = gas1.oxygen;
data[7] = gas1.helium;
//Byte9-10:
//Gas 2 default (%O2=21, %He=0)
gas gas2 = m_deviceDetails->gas2();
data[10] = gas2.oxygen;
data[11] = gas2.helium;
//Byte13-14:
//Gas 3 default (%O2=21, %He=0)
gas gas3 = m_deviceDetails->gas3();
data[14] = gas3.oxygen;
data[15] = gas3.helium;
//Byte17-18:
//Gas 4 default (%O2=21, %He=0)
gas gas4 = m_deviceDetails->gas4();
data[18] = gas4.oxygen;
data[19] = gas4.helium;
//Byte21-22:
//Gas 5 default (%O2=21, %He=0)
gas gas5 = m_deviceDetails->gas5();
data[22] = gas5.oxygen;
data[23] = gas5.helium;
//Byte25-26:
//Gas 6 current (%O2, %He)
data[26] = m_deviceDetails->salinity();
// Gas types, 0=Disabled, 1=Active, 2=Fist
// Active Gas Flag Register
data[27] = 0;
if (gas1.type)
data[27] ^= 0x01;
if (gas2.type)
data[27] ^= 0x02;
if (gas3.type)
data[27] ^= 0x04;
if (gas4.type)
data[27] ^= 0x08;
if (gas5.type)
data[27] ^= 0x10;
// Gas switch depths
data[28] = gas1.depth;
data[29] = gas2.depth;
data[30] = gas3.depth;
data[31] = gas4.depth;
data[32] = gas5.depth;
// 33 which gas is Fist gas
if (gas1.type == 2)
data[33] = 1;
else if (gas2.type == 2)
data[33] = 2;
else if (gas3.type == 2)
data[33] = 3;
else if (gas4.type == 2)
data[33] = 4;
else if (gas5.type == 2)
data[33] = 5;
else {
// FIXME: No gas was First?
// Set gas 1 to first
data[33] = 1;
}
data[34] = m_deviceDetails->decoType();
//Byte36:
//Use O2 Sensor Module in CC Modes (0= OFF, 1= ON) (Only available in old OSTC1 - unused for OSTC Mk.2/2N)
//m_deviceDetails->setCcrMode(data[35]);
data[36] = m_deviceDetails->sp1().sp;
data[37] = m_deviceDetails->sp2().sp;
data[38] = m_deviceDetails->sp3().sp;
// Byte41-42:
// Lowest Battery voltage seen (in mV)
// Byte43:
// Lowest Battery voltage seen at (Month)
// Byte44:
// Lowest Battery voltage seen at (Day)
// Byte45:
// Lowest Battery voltage seen at (Year)
// Byte46-47:
// Lowest Battery voltage seen at (Temperature in 0.1 °C)
// Byte48:
// Last complete charge at (Month)
// Byte49:
// Last complete charge at (Day)
// Byte50:
// Last complete charge at (Year)
// Byte51-52:
// Total charge cycles
// Byte53-54:
// Total complete charge cycles
// Byte55-56:
// Temperature Extrema minimum (Temperature in 0.1 °C)
// Byte57:
// Temperature Extrema minimum at (Month)
// Byte58:
// Temperature Extrema minimum at (Day)
// Byte59:
// Temperature Extrema minimum at (Year)
// Byte60-61:
// Temperature Extrema maximum (Temperature in 0.1 °C)
// Byte62:
// Temperature Extrema maximum at (Month)
// Byte63:
// Temperature Extrema maximum at (Day)
// Byte64:
// Temperature Extrema maximum at (Year)
// Byte65:
// Custom Text active (=1), Custom Text Disabled (<>1)
// Byte66-90:
// (25Bytes): Custom Text for Surfacemode (Real text must end with "}")
// Example: OSTC Dive Computer} (19 Characters incl. "}") Bytes 85-90 will be ignored.
if (m_deviceDetails->customText() == "")
data[64] = 0;
else {
data[64] = 1;
// Copy the string to the right place in the memory, padded with 0x20 (" ")
strncpy((char *) data + 65, QString("%1").arg(m_deviceDetails->customText(), -23, QChar(' ')).toUtf8().data(), 23);
// And terminate the string.
if (m_deviceDetails->customText().length() <= 23)
data[65 + m_deviceDetails->customText().length()] = '}';
else
data[90] = '}';
}
// Byte91:
// Dim OLED in Divemode (>0), Normal mode (=0)
// Byte92:
// Date format for all outputs:
// =0: MM/DD/YY
// =1: DD/MM/YY
// =2: YY/MM/DD
data[91] = m_deviceDetails->dateFormat();
// Byte93:
// Total number of CF used in installed firmware
max_CF = data[92];
// Byte94:
// Last selected view for customview area in surface mode
// Byte95:
// Last selected view for customview area in dive mode
// Byte96-97:
// Diluent 1 Default (%O2,%He)
// Byte98-99:
// Diluent 1 Current (%O2,%He)
gas dil1 = m_deviceDetails->dil1();
data[97] = dil1.oxygen;
data[98] = dil1.helium;
// Byte100-101:
// Gasuent 2 Default (%O2,%He)
// Byte102-103:
// Gasuent 2 Current (%O2,%He)
gas dil2 = m_deviceDetails->dil2();
data[101] = dil2.oxygen;
data[102] = dil2.helium;
// Byte104-105:
// Gasuent 3 Default (%O2,%He)
// Byte106-107:
// Gasuent 3 Current (%O2,%He)
gas dil3 = m_deviceDetails->dil3();
data[105] = dil3.oxygen;
data[106] = dil3.helium;
// Byte108-109:
// Gasuent 4 Default (%O2,%He)
// Byte110-111:
// Gasuent 4 Current (%O2,%He)
gas dil4 = m_deviceDetails->dil4();
data[109] = dil4.oxygen;
data[110] = dil4.helium;
// Byte112-113:
// Gasuent 5 Default (%O2,%He)
// Byte114-115:
// Gasuent 5 Current (%O2,%He)
gas dil5 = m_deviceDetails->dil5();
data[113] = dil5.oxygen;
data[114] = dil5.helium;
// Byte116:
// First Diluent (1-5)
if (dil1.type == 2)
data[115] = 1;
else if (dil2.type == 2)
data[115] = 2;
else if (dil3.type == 2)
data[115] = 3;
else if (dil4.type == 2)
data[115] = 4;
else if (dil5.type == 2)
data[115] = 5;
else {
// FIXME: No first diluent?
// Set gas 1 to fist
data[115] = 1;
}
// Byte117-128:
// not used/reserved
// Byte129-256:
// 32 custom Functions (CF0-CF31)
// Write the relevant ones
// CF11: Factor for saturation processes
write_ostc_cf(data, 11, max_CF, m_deviceDetails->saturation());
// CF12: Factor for desaturation processes
write_ostc_cf(data, 12, max_CF, m_deviceDetails->desaturation());
// CF17: Lower threshold for ppO2 warning
write_ostc_cf(data, 17, max_CF, m_deviceDetails->ppO2Min());
// CF18: Upper threshold for ppO2 warning
write_ostc_cf(data, 18, max_CF, m_deviceDetails->ppO2Max());
// CF20: Depth sampling rate for Profile storage
write_ostc_cf(data, 20, max_CF, m_deviceDetails->samplingRate());
// CF29: Depth of last decompression stop
write_ostc_cf(data, 29, max_CF, m_deviceDetails->lastDeco());
#ifdef DEBUG_OSTC_CF
for(int cf = 0; cf <= 31 && cf <= max_CF; cf++)
printf("CF %d: %d\n", cf, read_ostc_cf(data, cf));
#endif
rc = hw_ostc_device_eeprom_write(m_data->device, 0, data, sizeof(data));
if (rc != DC_STATUS_SUCCESS) {
//FIXME: ERROR!
}
}
rc = hw_ostc_device_eeprom_read(m_data->device, 1, data, sizeof(data));
if (rc == DC_STATUS_SUCCESS) {
// Byte1:
// Logbook version indicator (Not writable!)
// Byte2-3:
// Last Firmware installed, 1st Byte.2nd Byte (e.g. „1.90“) (Not writable!)
// Byte4:
// OLED brightness (=0: Eco, =1 High) (Not writable!)
// Byte5-11:
// Time/Date vault during firmware updates
// Byte12-128
// not used/reserved
// Byte129-256:
// 32 custom Functions (CF 32-63)
// Decode the relevant ones
// CF32: Gradient Factor low
write_ostc_cf(data, 32, max_CF, m_deviceDetails->gfLow());
// CF33: Gradient Factor high
write_ostc_cf(data, 33, max_CF, m_deviceDetails->gfHigh());
// CF58: Future time to surface setFutureTTS
write_ostc_cf(data, 58, max_CF, m_deviceDetails->futureTTS());
#ifdef DEBUG_OSTC_CF
for(int cf = 32; cf <= 63 && cf <= max_CF; cf++)
printf("CF %d: %d\n", cf, read_ostc_cf(data, cf));
#endif
rc = hw_ostc_device_eeprom_write(m_data->device, 1, data, sizeof(data));
if (rc != DC_STATUS_SUCCESS) {
//FIXME: ERROR!
}
}
rc = hw_ostc_device_eeprom_read(m_data->device, 2, data, sizeof(data));
if (rc == DC_STATUS_SUCCESS) {
// Byte1-4:
// not used/reserved (Not writable!)
// Byte5-128:
// not used/reserved
// Byte129-256:
// 32 custom Functions (CF 64-95)
// Decode the relevant ones
// CF65: Show safety stop
write_ostc_cf(data, 65, max_CF, m_deviceDetails->safetyStop());
// CF67: Alternaitve Gradient Factor low
write_ostc_cf(data, 67, max_CF, m_deviceDetails->aGFLow());
// CF68: Alternative Gradient Factor high
write_ostc_cf(data, 68, max_CF, m_deviceDetails->aGFHigh());
// CF69: Allow Gradient Factor change
write_ostc_cf(data, 69, max_CF, m_deviceDetails->aGFSelectable());
#ifdef DEBUG_OSTC_CF
for(int cf = 64; cf <= 95 && cf <= max_CF; cf++)
printf("CF %d: %d\n", cf, read_ostc_cf(data, cf));
#endif
rc = hw_ostc_device_eeprom_write(m_data->device, 2, data, sizeof(data));
if (rc != DC_STATUS_SUCCESS) {
//FIXME: ERROR!
}
}
//sync date and time
if (m_deviceDetails->syncTime()) {
QDateTime timeToSet = QDateTime::currentDateTime();
dc_datetime_t time;
time.year = timeToSet.date().year();
time.month = timeToSet.date().month();
time.day = timeToSet.date().day();
time.hour = timeToSet.time().hour();
time.minute = timeToSet.time().minute();
time.second = timeToSet.time().second();
rc = hw_ostc_device_clock(m_data->device, &time);
if (rc != DC_STATUS_SUCCESS) {
//FIXME: ERROR!
}
}
break;
}
default:
supported = false;
break;
}
dc_device_close(m_data->device);
if (!supported) {
lastError = tr("This feature is not yet available for the selected dive computer.");
emit error(lastError);
}
}
else {
lastError = tr("Could not a establish connection to the dive computer.");
emit error(lastError);
}
}
FirmwareUpdateThread::FirmwareUpdateThread(QObject *parent, device_data_t *data, QString fileName)
: QThread(parent), m_data(data), m_fileName(fileName)
{
}
void FirmwareUpdateThread::run()
{
bool supported = false;
dc_status_t rc;
rc = dc_device_open(&m_data->device, m_data->context, m_data->descriptor, m_data->devname);
if (rc == DC_STATUS_SUCCESS) {
switch (dc_device_get_type(m_data->device)) {
#if DC_VERSION_CHECK(0, 5, 0)
case DC_FAMILY_HW_OSTC3:
//Not Yet supported
//supported = true;
//rc = hw_ostc3_device_fwupdate(m_data->device, m_fileName.toUtf8().data());
break;
case DC_FAMILY_HW_OSTC:
supported = true;
rc = hw_ostc_device_fwupdate(m_data->device, m_fileName.toUtf8().data());
break;
#endif // divecomputer 0.5.0
default:
supported = false;
break;
}
dc_device_close(m_data->device);
if (!supported) {
lastError = tr("This feature is not yet available for the selected dive computer.");
emit error(lastError);
} else if (rc != DC_STATUS_SUCCESS) {
lastError = tr("Firmware update failed!");
}
}
else {
lastError = tr("Could not a establish connection to the dive computer.");
emit error(lastError);
}
}
ResetSettingsThread::ResetSettingsThread(QObject *parent, device_data_t *data)
: QThread(parent), m_data(data)
{
}
void ResetSettingsThread::run()
{
bool supported = false;
dc_status_t rc;
rc = dc_device_open(&m_data->device, m_data->context, m_data->descriptor, m_data->devname);
if (rc == DC_STATUS_SUCCESS) {
#if DC_VERSION_CHECK(0, 5, 0)
if (dc_device_get_type(m_data->device) == DC_FAMILY_HW_OSTC3) {
supported = true;
hw_ostc3_device_config_reset(m_data->device);
}
#endif // divecomputer 0.5.0
dc_device_close(m_data->device);
if (!supported) {
lastError = tr("This feature is not yet available for the selected dive computer.");
emit error(lastError);
}
}
else {
lastError = tr("Could not a establish connection to the dive computer.");
emit error(lastError);
}
}