mirror of
https://github.com/subsurface/subsurface.git
synced 2025-01-23 00:05:27 +00:00
82fc9de40b
No more users of this, since we switched to C++ containers. Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
398 lines
11 KiB
C++
398 lines
11 KiB
C++
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "divecomputer.h"
|
|
#include "errorhelper.h"
|
|
#include "event.h"
|
|
#include "extradata.h"
|
|
#include "pref.h"
|
|
#include "sample.h"
|
|
#include "subsurface-string.h"
|
|
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
|
|
divecomputer::divecomputer() = default;
|
|
divecomputer::~divecomputer() = default;
|
|
divecomputer::divecomputer(const divecomputer &) = default;
|
|
divecomputer::divecomputer(divecomputer &&) = default;
|
|
divecomputer &divecomputer::operator=(const divecomputer &) = default;
|
|
|
|
/*
|
|
* Good fake dive profiles are hard.
|
|
*
|
|
* "depthtime" is the integral of the dive depth over
|
|
* time ("area" of the dive profile). We want that
|
|
* area to match the average depth (avg_d*max_t).
|
|
*
|
|
* To do that, we generate a 6-point profile:
|
|
*
|
|
* (0, 0)
|
|
* (t1, max_d)
|
|
* (t2, max_d)
|
|
* (t3, d)
|
|
* (t4, d)
|
|
* (max_t, 0)
|
|
*
|
|
* with the same ascent/descent rates between the
|
|
* different depths.
|
|
*
|
|
* NOTE: avg_d, max_d and max_t are given constants.
|
|
* The rest we can/should play around with to get a
|
|
* good-looking profile.
|
|
*
|
|
* That six-point profile gives a total area of:
|
|
*
|
|
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3)
|
|
*
|
|
* And the "same ascent/descent rates" requirement
|
|
* gives us (time per depth must be same):
|
|
*
|
|
* t1 / max_d = (t3-t2) / (max_d-d)
|
|
* t1 / max_d = (max_t-t4) / d
|
|
*
|
|
* We also obviously require:
|
|
*
|
|
* 0 <= t1 <= t2 <= t3 <= t4 <= max_t
|
|
*
|
|
* Let us call 'd_frac = d / max_d', and we get:
|
|
*
|
|
* Total area must match average depth-time:
|
|
*
|
|
* (max_d*max_t) - (max_d*t1) - (max_d-d)*(t4-t3) = avg_d*max_t
|
|
* max_d*(max_t-t1-(1-d_frac)*(t4-t3)) = avg_d*max_t
|
|
* max_t-t1-(1-d_frac)*(t4-t3) = avg_d*max_t/max_d
|
|
* t1+(1-d_frac)*(t4-t3) = max_t*(1-avg_d/max_d)
|
|
*
|
|
* and descent slope must match ascent slopes:
|
|
*
|
|
* t1 / max_d = (t3-t2) / (max_d*(1-d_frac))
|
|
* t1 = (t3-t2)/(1-d_frac)
|
|
*
|
|
* and
|
|
*
|
|
* t1 / max_d = (max_t-t4) / (max_d*d_frac)
|
|
* t1 = (max_t-t4)/d_frac
|
|
*
|
|
* In general, we have more free variables than we have constraints,
|
|
* but we can aim for certain basics, like a good ascent slope.
|
|
*/
|
|
static int fill_samples(std::vector<sample> &s, int max_d, int avg_d, int max_t, double slope, double d_frac)
|
|
{
|
|
double t_frac = max_t * (1 - avg_d / (double)max_d);
|
|
int t1 = lrint(max_d / slope);
|
|
int t4 = lrint(max_t - t1 * d_frac);
|
|
int t3 = lrint(t4 - (t_frac - t1) / (1 - d_frac));
|
|
int t2 = lrint(t3 - t1 * (1 - d_frac));
|
|
|
|
if (t1 < 0 || t1 > t2 || t2 > t3 || t3 > t4 || t4 > max_t)
|
|
return 0;
|
|
|
|
s[1].time.seconds = t1;
|
|
s[1].depth.mm = max_d;
|
|
s[2].time.seconds = t2;
|
|
s[2].depth.mm = max_d;
|
|
s[3].time.seconds = t3;
|
|
s[3].depth.mm = lrint(max_d * d_frac);
|
|
s[4].time.seconds = t4;
|
|
s[4].depth.mm = lrint(max_d * d_frac);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* we have no average depth; instead of making up a random average depth
|
|
* we should assume either a PADI rectangular profile (for short and/or
|
|
* shallow dives) or more reasonably a six point profile with a 3 minute
|
|
* safety stop at 5m */
|
|
static void fill_samples_no_avg(std::vector<sample> &s, int max_d, int max_t, double slope)
|
|
{
|
|
// shallow or short dives are just trapecoids based on the given slope
|
|
if (max_d < 10000 || max_t < 600) {
|
|
s[1].time.seconds = lrint(max_d / slope);
|
|
s[1].depth.mm = max_d;
|
|
s[2].time.seconds = max_t - lrint(max_d / slope);
|
|
s[2].depth.mm = max_d;
|
|
} else {
|
|
s[1].time.seconds = lrint(max_d / slope);
|
|
s[1].depth.mm = max_d;
|
|
s[2].time.seconds = max_t - lrint(max_d / slope) - 180;
|
|
s[2].depth.mm = max_d;
|
|
s[3].time.seconds = max_t - lrint(5000 / slope) - 180;
|
|
s[3].depth.mm = 5000;
|
|
s[4].time.seconds = max_t - lrint(5000 / slope);
|
|
s[4].depth.mm = 5000;
|
|
}
|
|
}
|
|
|
|
void fake_dc(struct divecomputer *dc)
|
|
{
|
|
/* The dive has no samples, so create a few fake ones */
|
|
int max_t = dc->duration.seconds;
|
|
int max_d = dc->maxdepth.mm;
|
|
int avg_d = dc->meandepth.mm;
|
|
|
|
if (!max_t || !max_d) {
|
|
dc->samples.clear();
|
|
return;
|
|
}
|
|
|
|
std::vector<struct sample> &fake = dc->samples;
|
|
fake.resize(6);
|
|
|
|
fake[5].time.seconds = max_t;
|
|
for (int i = 0; i < 6; i++) {
|
|
fake[i].bearing.degrees = -1;
|
|
fake[i].ndl.seconds = -1;
|
|
}
|
|
|
|
/* Set last manually entered time to the total dive length */
|
|
dc->last_manual_time = dc->duration;
|
|
|
|
/*
|
|
* We want to fake the profile so that the average
|
|
* depth ends up correct. However, in the absence of
|
|
* a reasonable average, let's just make something
|
|
* up. Note that 'avg_d == max_d' is _not_ a reasonable
|
|
* average.
|
|
* We explicitly treat avg_d == 0 differently */
|
|
if (avg_d == 0) {
|
|
/* we try for a sane slope, but bow to the insanity of
|
|
* the user supplied data */
|
|
fill_samples_no_avg(fake, max_d, max_t, std::max(2.0 * max_d / max_t, (double)prefs.ascratelast6m));
|
|
if (fake[3].time.seconds == 0) { // just a 4 point profile
|
|
dc->samples.resize(4);
|
|
fake[3].time.seconds = max_t;
|
|
}
|
|
return;
|
|
}
|
|
if (avg_d < max_d / 10 || avg_d >= max_d) {
|
|
avg_d = (max_d + 10000) / 3;
|
|
if (avg_d > max_d)
|
|
avg_d = max_d * 2 / 3;
|
|
}
|
|
if (!avg_d)
|
|
avg_d = 1;
|
|
|
|
/*
|
|
* Ok, first we try a basic profile with a specific ascent
|
|
* rate (5 meters per minute) and d_frac (1/3).
|
|
*/
|
|
if (fill_samples(fake, max_d, avg_d, max_t, (double)prefs.ascratelast6m, 0.33))
|
|
return;
|
|
|
|
/*
|
|
* Ok, assume that didn't work because we cannot make the
|
|
* average come out right because it was a quick deep dive
|
|
* followed by a much shallower region
|
|
*/
|
|
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0 / 60, 0.10))
|
|
return;
|
|
|
|
/*
|
|
* Uhhuh. That didn't work. We'd need to find a good combination that
|
|
* satisfies our constraints. Currently, we don't, we just give insane
|
|
* slopes.
|
|
*/
|
|
if (fill_samples(fake, max_d, avg_d, max_t, 10000.0, 0.01))
|
|
return;
|
|
|
|
/* Even that didn't work? Give up, there's something wrong */
|
|
}
|
|
|
|
divemode_loop::divemode_loop(const struct divecomputer &dc) :
|
|
dc(dc), last(dc.divemode), loop("modechange")
|
|
{
|
|
/* on first invocation, get first event (if any) */
|
|
ev = loop.next(dc);
|
|
}
|
|
|
|
divemode_t divemode_loop::next(int time)
|
|
{
|
|
while (ev && ev->time.seconds <= time) {
|
|
last = static_cast<divemode_t>(ev->value);
|
|
ev = loop.next(dc);
|
|
}
|
|
return last;
|
|
}
|
|
|
|
/* helper function to make it easier to work with our structures
|
|
* we don't interpolate here, just use the value from the last sample up to that time */
|
|
int get_depth_at_time(const struct divecomputer *dc, unsigned int time)
|
|
{
|
|
int depth = 0;
|
|
if (dc) {
|
|
for (const auto &sample: dc->samples) {
|
|
if (sample.time.seconds > (int)time)
|
|
break;
|
|
depth = sample.depth.mm;
|
|
}
|
|
}
|
|
return depth;
|
|
}
|
|
|
|
struct sample *prepare_sample(struct divecomputer *dc)
|
|
{
|
|
if (dc) {
|
|
dc->samples.emplace_back();
|
|
auto &sample = dc->samples.back();
|
|
|
|
// Copy the sensor numbers - but not the pressure values
|
|
// from the previous sample if any.
|
|
if (dc->samples.size() >= 2) {
|
|
auto &prev = dc->samples[dc->samples.size() - 2];
|
|
for (int idx = 0; idx < MAX_SENSORS; idx++)
|
|
sample.sensor[idx] = prev.sensor[idx];
|
|
}
|
|
// Init some values with -1
|
|
sample.bearing.degrees = -1;
|
|
sample.ndl.seconds = -1;
|
|
|
|
return &sample;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void append_sample(const struct sample &sample, struct divecomputer *dc)
|
|
{
|
|
dc->samples.push_back(sample);
|
|
}
|
|
|
|
/*
|
|
* Calculate how long we were actually under water, and the average
|
|
* depth while under water.
|
|
*
|
|
* This ignores any surface time in the middle of the dive.
|
|
*/
|
|
void fixup_dc_duration(struct divecomputer &dc)
|
|
{
|
|
int duration = 0;
|
|
int lasttime = 0, lastdepth = 0, depthtime = 0;
|
|
|
|
for (const auto &sample: dc.samples) {
|
|
int time = sample.time.seconds;
|
|
int depth = sample.depth.mm;
|
|
|
|
/* We ignore segments at the surface */
|
|
if (depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) {
|
|
duration += time - lasttime;
|
|
depthtime += (time - lasttime) * (depth + lastdepth) / 2;
|
|
}
|
|
lastdepth = depth;
|
|
lasttime = time;
|
|
}
|
|
if (duration) {
|
|
dc.duration.seconds = duration;
|
|
dc.meandepth.mm = (depthtime + duration / 2) / duration;
|
|
}
|
|
}
|
|
|
|
static bool operator<(const event &ev1, const event &ev2)
|
|
{
|
|
if (ev1.time.seconds < ev2.time.seconds)
|
|
return -1;
|
|
if (ev1.time.seconds > ev2.time.seconds)
|
|
return 1;
|
|
return ev1.name < ev2.name;
|
|
}
|
|
|
|
int add_event_to_dc(struct divecomputer *dc, struct event ev)
|
|
{
|
|
// Do a binary search for insertion point
|
|
auto it = std::lower_bound(dc->events.begin(), dc->events.end(), ev);
|
|
int idx = it - dc->events.begin();
|
|
dc->events.insert(it, ev);
|
|
return idx;
|
|
}
|
|
|
|
struct event *add_event(struct divecomputer *dc, unsigned int time, int type, int flags, int value, const std::string &name)
|
|
{
|
|
struct event ev(time, type, flags, value, name);
|
|
int idx = add_event_to_dc(dc, std::move(ev));
|
|
|
|
return &dc->events[idx];
|
|
}
|
|
|
|
/* Remove given event from dive computer. Returns the removed event. */
|
|
struct event remove_event_from_dc(struct divecomputer *dc, int idx)
|
|
{
|
|
if (idx < 0 || static_cast<size_t>(idx) > dc->events.size()) {
|
|
report_info("removing invalid event %d", idx);
|
|
return event();
|
|
}
|
|
event res = std::move(dc->events[idx]);
|
|
dc->events.erase(dc->events.begin() + idx);
|
|
return res;
|
|
}
|
|
|
|
struct event *get_event(struct divecomputer *dc, int idx)
|
|
{
|
|
if (idx < 0 || static_cast<size_t>(idx) > dc->events.size()) {
|
|
report_info("accessing invalid event %d", idx);
|
|
return nullptr;
|
|
}
|
|
return &dc->events[idx];
|
|
}
|
|
|
|
void add_extra_data(struct divecomputer *dc, const std::string &key, const std::string &value)
|
|
{
|
|
if (key == "Serial") {
|
|
dc->deviceid = calculate_string_hash(value.c_str());
|
|
dc->serial = value;
|
|
}
|
|
if (key == "FW Version")
|
|
dc->fw_version = value;
|
|
|
|
dc->extra_data.push_back(extra_data { key, value });
|
|
}
|
|
|
|
/*
|
|
* Match two dive computer entries against each other, and
|
|
* tell if it's the same dive. Return 0 if "don't know",
|
|
* positive for "same dive" and negative for "definitely
|
|
* not the same dive"
|
|
*/
|
|
int match_one_dc(const struct divecomputer &a, const struct divecomputer &b)
|
|
{
|
|
/* Not same model? Don't know if matching.. */
|
|
if (a.model.empty() || b.model.empty())
|
|
return 0;
|
|
if (strcasecmp(a.model.c_str(), b.model.c_str()))
|
|
return 0;
|
|
|
|
/* Different device ID's? Don't know */
|
|
if (a.deviceid != b.deviceid)
|
|
return 0;
|
|
|
|
/* Do we have dive IDs? */
|
|
if (!a.diveid || !b.diveid)
|
|
return 0;
|
|
|
|
/*
|
|
* If they have different dive ID's on the same
|
|
* dive computer, that's a definite "same or not"
|
|
*/
|
|
return a.diveid == b.diveid && a.when == b.when ? 1 : -1;
|
|
}
|
|
|
|
static const char *planner_dc_name = "planned dive";
|
|
|
|
bool is_dc_planner(const struct divecomputer *dc)
|
|
{
|
|
return dc->model == planner_dc_name;
|
|
}
|
|
|
|
void make_planner_dc(struct divecomputer *dc)
|
|
{
|
|
dc->model = planner_dc_name;
|
|
}
|
|
|
|
const char *manual_dc_name = "manually added dive";
|
|
|
|
bool is_dc_manually_added_dive(const struct divecomputer *dc)
|
|
{
|
|
return dc->model == manual_dc_name;
|
|
}
|
|
|
|
void make_manually_added_dive_dc(struct divecomputer *dc)
|
|
{
|
|
dc->model = manual_dc_name;
|
|
}
|