subsurface/libdivecomputer.c
Dirk Hohndel 29b242c703 Converting the device_info list into a Qt data structure
This data structure was quite fragile and made 'undo' when editing
rather hard to implement. So instead I decided to turn this into a
QMultiMap which seemed like the ideal data structure for it.

This map holds all the dive computer related data indexed by the model. As
QMultiMap it allows multiple entries per key (model string) and
disambiguates between them with the deviceId.

This commit turned out much larger than I wanted. But I didn't manage to
find a clean way to break it up and make the pieces make sense.

So this brings back the Ok / Cancel button for the dive computer edit
dialog. And it makes those two buttons actually do the right thing (which
is what started this whole process). For this to work we simply copy the
map to a working copy and do all edits on that one - and then copy that
over the 'real' map when we accept the changes.

Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
2013-06-18 00:24:28 -07:00

704 lines
19 KiB
C

#include <stdio.h>
#include <unistd.h>
#include <inttypes.h>
#include <glib/gi18n.h>
#include "dive.h"
#include "device.h"
#include "divelist.h"
#include "display.h"
#include "display-gtk.h"
#include "libdivecomputer.h"
#include "libdivecomputer/version.h"
/* Christ. Libdivecomputer has the worst configuration system ever. */
#ifdef HW_FROG_H
#define NOT_FROG , 0
#define LIBDIVECOMPUTER_SUPPORTS_FROG
#else
#define NOT_FROG
#endif
const char *progress_bar_text = "";
double progress_bar_fraction = 0.0;
static int stoptime, stopdepth, ndl, po2, cns;
static gboolean in_deco, first_temp_is_air;
#if USE_GTK_UI
static GError *error(const char *fmt, ...)
{
va_list args;
GError *error;
va_start(args, fmt);
error = g_error_new_valist(
g_quark_from_string("subsurface"),
DIVE_ERROR_PARSE, fmt, args);
va_end(args);
return error;
}
#endif
static dc_status_t create_parser(device_data_t *devdata, dc_parser_t **parser)
{
return dc_parser_new(parser, devdata->device);
}
/* Atomics Aquatics Cobalt specific parsing of tank information
* realistically this REALLY needs to be done in libdivecomputer - but the
* current API doesn't even have the notion of tank size, so for now I do
* this here, but I need to work with Jef to make sure this gets added in
* the new libdivecomputer API */
#define COBALT_HEADER 228
struct atomics_gas_info {
uint8_t gas_nr;
uint8_t po2imit;
uint8_t tankspecmethod; /* 1: CF@psi 2: CF@bar 3: wet vol in deciliter */
uint8_t gasmixtype;
uint8_t fo2;
uint8_t fhe;
uint16_t startpressure; /* in psi */
uint16_t tanksize; /* CF or dl */
uint16_t workingpressure;
uint16_t sensorid;
uint16_t endpressure; /* in psi */
uint16_t totalconsumption; /* in liters */
};
#define COBALT_CFATPSI 1
#define COBALT_CFATBAR 2
#define COBALT_WETINDL 3
static void get_tanksize(device_data_t *devdata, const unsigned char *data, cylinder_t *cyl, int idx)
{
/* I don't like this kind of match... I'd love to have an ID and
* a firmware version or... something; and even better, just get
* this from libdivecomputer */
if (!strcmp(devdata->vendor, "Atomic Aquatics") &&
!strcmp(devdata->product, "Cobalt")) {
struct atomics_gas_info *atomics_gas_info;
double airvolume;
int mbar;
/* at least some quick sanity check to make sure this is the
* right data */
if (*(uint32_t *)data != 0xFFFEFFFE) {
printf("incorrect header for Atomics dive\n");
return;
}
atomics_gas_info = (void*)(data + COBALT_HEADER);
switch (atomics_gas_info[idx].tankspecmethod) {
case COBALT_CFATPSI:
airvolume = cuft_to_l(atomics_gas_info[idx].tanksize) * 1000.0;
mbar = psi_to_mbar(atomics_gas_info[idx].workingpressure);
cyl[idx].type.size.mliter = airvolume / bar_to_atm(mbar / 1000.0) + 0.5;
cyl[idx].type.workingpressure.mbar = mbar;
break;
case COBALT_CFATBAR:
airvolume = cuft_to_l(atomics_gas_info[idx].tanksize) * 1000.0;
mbar = atomics_gas_info[idx].workingpressure * 1000;
cyl[idx].type.size.mliter = airvolume / bar_to_atm(mbar / 1000.0) + 0.5;
cyl[idx].type.workingpressure.mbar = mbar;
break;
case COBALT_WETINDL:
cyl[idx].type.size.mliter = atomics_gas_info[idx].tanksize * 100;
break;
}
}
}
static int parse_gasmixes(device_data_t *devdata, struct dive *dive, dc_parser_t *parser, int ngases,
const unsigned char *data)
{
int i;
for (i = 0; i < ngases; i++) {
int rc;
dc_gasmix_t gasmix = {0};
int o2, he;
rc = dc_parser_get_field(parser, DC_FIELD_GASMIX, i, &gasmix);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED)
return rc;
if (i >= MAX_CYLINDERS)
continue;
o2 = gasmix.oxygen * 1000 + 0.5;
he = gasmix.helium * 1000 + 0.5;
/* Ignore bogus data - libdivecomputer does some crazy stuff */
if (o2 + he <= O2_IN_AIR || o2 >= 1000)
o2 = 0;
if (he < 0 || he >= 800 || o2+he >= 1000)
he = 0;
dive->cylinder[i].gasmix.o2.permille = o2;
dive->cylinder[i].gasmix.he.permille = he;
get_tanksize(devdata, data, dive->cylinder, i);
}
return DC_STATUS_SUCCESS;
}
static void handle_event(struct divecomputer *dc, struct sample *sample, dc_sample_value_t value)
{
int type, time;
/* we mark these for translation here, but we store the untranslated strings
* and only translate them when they are displayed on screen */
static const char *events[] = {
N_("none"), N_("deco stop"), N_("rbt"), N_("ascent"), N_("ceiling"), N_("workload"),
N_("transmitter"), N_("violation"), N_("bookmark"), N_("surface"), N_("safety stop"),
N_("gaschange"), N_("safety stop (voluntary)"), N_("safety stop (mandatory)"),
N_("deepstop"), N_("ceiling (safety stop)"), N_("unknown"), N_("divetime"),
N_("maxdepth"), N_("OLF"), N_("PO2"), N_("airtime"), N_("rgbm"), N_("heading"),
N_("tissue level warning"), N_("gaschange"), N_("non stop time")
};
const int nr_events = sizeof(events) / sizeof(const char *);
const char *name;
/*
* Just ignore surface events. They are pointless. What "surface"
* means depends on the dive computer (and possibly even settings
* in the dive computer). It does *not* necessarily mean "depth 0",
* so don't even turn it into that.
*/
if (value.event.type == SAMPLE_EVENT_SURFACE)
return;
/*
* Other evens might be more interesting, but for now we just print them out.
*/
type = value.event.type;
name = N_("invalid event number");
if (type < nr_events)
name = events[type];
time = value.event.time;
if (sample)
time += sample->time.seconds;
add_event(dc, time, type, value.event.flags, value.event.value, name);
}
void
sample_cb(dc_sample_type_t type, dc_sample_value_t value, void *userdata)
{
int i;
struct divecomputer *dc = userdata;
struct sample *sample;
/*
* We fill in the "previous" sample - except for DC_SAMPLE_TIME,
* which creates a new one.
*/
sample = dc->samples ? dc->sample+dc->samples-1 : NULL;
switch (type) {
case DC_SAMPLE_TIME:
if (sample) {
sample->in_deco = in_deco;
sample->ndl.seconds = ndl;
sample->stoptime.seconds = stoptime;
sample->stopdepth.mm = stopdepth;
sample->po2 = po2;
sample->cns = cns;
}
sample = prepare_sample(dc);
sample->time.seconds = value.time;
finish_sample(dc);
break;
case DC_SAMPLE_DEPTH:
sample->depth.mm = value.depth * 1000 + 0.5;
break;
case DC_SAMPLE_PRESSURE:
sample->sensor = value.pressure.tank;
sample->cylinderpressure.mbar = value.pressure.value * 1000 + 0.5;
break;
case DC_SAMPLE_TEMPERATURE:
sample->temperature.mkelvin = value.temperature * 1000 + ZERO_C_IN_MKELVIN + 0.5;
break;
case DC_SAMPLE_EVENT:
handle_event(dc, sample, value);
break;
case DC_SAMPLE_RBT:
printf(" <rbt>%u</rbt>\n", value.rbt);
break;
case DC_SAMPLE_HEARTBEAT:
printf(" <heartbeat>%u</heartbeat>\n", value.heartbeat);
break;
case DC_SAMPLE_BEARING:
printf(" <bearing>%u</bearing>\n", value.bearing);
break;
case DC_SAMPLE_VENDOR:
printf(" <vendor time='%u:%02u' type=\"%u\" size=\"%u\">", FRACTION(sample->time.seconds, 60),
value.vendor.type, value.vendor.size);
for (i = 0; i < value.vendor.size; ++i)
printf("%02X", ((unsigned char *) value.vendor.data)[i]);
printf("</vendor>\n");
break;
#if DC_VERSION_CHECK(0, 3, 0)
case DC_SAMPLE_SETPOINT:
/* for us a setpoint means constant pO2 from here */
sample->po2 = po2 = value.setpoint * 1000 + 0.5;
break;
case DC_SAMPLE_PPO2:
sample->po2 = po2 = value.ppo2 * 1000 + 0.5;
break;
case DC_SAMPLE_CNS:
sample->cns = cns = value.cns * 100 + 0.5;
break;
case DC_SAMPLE_DECO:
if (value.deco.type == DC_DECO_NDL) {
sample->ndl.seconds = ndl = value.deco.time;
sample->stopdepth.mm = stopdepth = value.deco.depth * 1000.0 + 0.5;
sample->in_deco = in_deco = FALSE;
} else if (value.deco.type == DC_DECO_DECOSTOP ||
value.deco.type == DC_DECO_DEEPSTOP) {
sample->in_deco = in_deco = TRUE;
sample->stopdepth.mm = stopdepth = value.deco.depth * 1000.0 + 0.5;
sample->stoptime.seconds = stoptime = value.deco.time;
ndl = 0;
} else if (value.deco.type == DC_DECO_SAFETYSTOP) {
sample->in_deco = in_deco = FALSE;
sample->stopdepth.mm = stopdepth = value.deco.depth * 1000.0 + 0.5;
sample->stoptime.seconds = stoptime = value.deco.time;
}
#endif
default:
break;
}
}
static void dev_info(device_data_t *devdata, const char *fmt, ...)
{
static char buffer[1024];
va_list ap;
va_start(ap, fmt);
vsnprintf(buffer, sizeof(buffer), fmt, ap);
va_end(ap);
progress_bar_text = buffer;
}
static int import_dive_number = 0;
static int parse_samples(device_data_t *devdata, struct divecomputer *dc, dc_parser_t *parser)
{
// Parse the sample data.
return dc_parser_samples_foreach(parser, sample_cb, dc);
}
static int might_be_same_dc(struct divecomputer *a, struct divecomputer *b)
{
if (!a->model || !b->model)
return 1;
if (strcasecmp(a->model, b->model))
return 0;
if (!a->deviceid || !b->deviceid)
return 1;
return a->deviceid == b->deviceid;
}
static int match_one_dive(struct divecomputer *a, struct dive *dive)
{
struct divecomputer *b = &dive->dc;
/*
* Walk the existing dive computer data,
* see if we have a match (or an anti-match:
* the same dive computer but a different
* dive ID).
*/
do {
int match = match_one_dc(a, b);
if (match)
return match > 0;
b = b->next;
} while (b);
/* Ok, no exact dive computer match. Does the date match? */
b = &dive->dc;
do {
if (a->when == b->when && might_be_same_dc(a, b))
return 1;
b = b->next;
} while (b);
return 0;
}
/*
* Check if this dive already existed before the import
*/
static int find_dive(struct divecomputer *match)
{
int i;
for (i = 0; i < dive_table.preexisting; i++) {
struct dive *old = dive_table.dives[i];
if (match_one_dive(match, old))
return 1;
}
return 0;
}
static inline int year(int year)
{
if (year < 70)
return year + 2000;
if (year < 100)
return year + 1900;
return year;
}
/*
* Like g_strdup_printf(), but without the stupid g_malloc/g_free confusion.
* And we limit the string to some arbitrary size.
*/
static char *str_printf(const char *fmt, ...)
{
va_list args;
char buf[1024];
va_start(args, fmt);
vsnprintf(buf, sizeof(buf)-1, fmt, args);
va_end(args);
buf[sizeof(buf)-1] = 0;
return strdup(buf);
}
/*
* The dive ID for libdivecomputer dives is the first word of the
* SHA1 of the fingerprint, if it exists.
*
* NOTE! This is byte-order dependent, and I don't care.
*/
static uint32_t calculate_diveid(const unsigned char *fingerprint, unsigned int fsize)
{
uint32_t csum[5];
if (!fingerprint || !fsize)
return 0;
SHA1(fingerprint, fsize, (unsigned char *)csum);
return csum[0];
}
static int dive_cb(const unsigned char *data, unsigned int size,
const unsigned char *fingerprint, unsigned int fsize,
void *userdata)
{
int rc;
dc_parser_t *parser = NULL;
device_data_t *devdata = userdata;
dc_datetime_t dt = {0};
struct tm tm;
struct dive *dive;
/* reset the deco / ndl data */
ndl = stoptime = stopdepth = 0;
in_deco = FALSE;
rc = create_parser(devdata, &parser);
if (rc != DC_STATUS_SUCCESS) {
dev_info(devdata, _("Unable to create parser for %s %s"), devdata->vendor, devdata->product);
return rc;
}
rc = dc_parser_set_data(parser, data, size);
if (rc != DC_STATUS_SUCCESS) {
dev_info(devdata, _("Error registering the data"));
dc_parser_destroy(parser);
return rc;
}
import_dive_number++;
dive = alloc_dive();
rc = dc_parser_get_datetime(parser, &dt);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, _("Error parsing the datetime"));
dc_parser_destroy(parser);
return rc;
}
dive->dc.model = strdup(devdata->model);
dive->dc.deviceid = devdata->deviceid;
dive->dc.diveid = calculate_diveid(fingerprint, fsize);
tm.tm_year = dt.year;
tm.tm_mon = dt.month-1;
tm.tm_mday = dt.day;
tm.tm_hour = dt.hour;
tm.tm_min = dt.minute;
tm.tm_sec = dt.second;
dive->when = dive->dc.when = utc_mktime(&tm);
// Parse the divetime.
dev_info(devdata, _("Dive %d: %s %d %04d"), import_dive_number,
monthname(tm.tm_mon), tm.tm_mday, year(tm.tm_year));
unsigned int divetime = 0;
rc = dc_parser_get_field (parser, DC_FIELD_DIVETIME, 0, &divetime);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, _("Error parsing the divetime"));
dc_parser_destroy(parser);
return rc;
}
dive->dc.duration.seconds = divetime;
// Parse the maxdepth.
double maxdepth = 0.0;
rc = dc_parser_get_field(parser, DC_FIELD_MAXDEPTH, 0, &maxdepth);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, _("Error parsing the maxdepth"));
dc_parser_destroy(parser);
return rc;
}
dive->dc.maxdepth.mm = maxdepth * 1000 + 0.5;
// Parse the gas mixes.
unsigned int ngases = 0;
rc = dc_parser_get_field(parser, DC_FIELD_GASMIX_COUNT, 0, &ngases);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, _("Error parsing the gas mix count"));
dc_parser_destroy(parser);
return rc;
}
#ifdef DC_FIELD_SALINITY
// Check if the libdivecomputer version already supports salinity
double salinity = 1.03;
rc = dc_parser_get_field(parser, DC_FIELD_SALINITY, 0, &salinity);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
dev_info(devdata, _("Error obtaining water salinity"));
dc_parser_destroy(parser);
return rc;
}
dive->salinity = salinity * 10000.0 + 0.5;
#endif
rc = parse_gasmixes(devdata, dive, parser, ngases, data);
if (rc != DC_STATUS_SUCCESS) {
dev_info(devdata, _("Error parsing the gas mix"));
dc_parser_destroy(parser);
return rc;
}
// Initialize the sample data.
rc = parse_samples(devdata, &dive->dc, parser);
if (rc != DC_STATUS_SUCCESS) {
dev_info(devdata, _("Error parsing the samples"));
dc_parser_destroy(parser);
return rc;
}
dc_parser_destroy(parser);
/* If we already saw this dive, abort. */
if (!devdata->force_download && find_dive(&dive->dc))
return 0;
/* Various libdivecomputer interface fixups */
if (first_temp_is_air && dive->dc.samples) {
dive->dc.airtemp = dive->dc.sample[0].temperature;
dive->dc.sample[0].temperature.mkelvin = 0;
}
dive->downloaded = TRUE;
record_dive(dive);
mark_divelist_changed(TRUE);
return 1;
}
static dc_status_t import_device_data(dc_device_t *device, device_data_t *devicedata)
{
return dc_device_foreach(device, dive_cb, devicedata);
}
/*
* The device ID for libdivecomputer devices is the first 32-bit word
* of the SHA1 hash of the model/firmware/serial numbers.
*
* NOTE! This is byte-order-dependent. And I can't find it in myself to
* care.
*/
static uint32_t calculate_sha1(unsigned int model, unsigned int firmware, unsigned int serial)
{
SHA_CTX ctx;
uint32_t csum[5];
SHA1_Init(&ctx);
SHA1_Update(&ctx, &model, sizeof(model));
SHA1_Update(&ctx, &firmware, sizeof(firmware));
SHA1_Update(&ctx, &serial, sizeof(serial));
SHA1_Final((unsigned char *)csum, &ctx);
return csum[0];
}
/*
* libdivecomputer has returned two different serial numbers for the
* same device in different versions. First it used to just do the four
* bytes as one 32-bit number, then it turned it into a decimal number
* with each byte giving two digits (0-99).
*
* The only way we can tell is by looking at the format of the number,
* so we'll just fix it to the first format.
*/
static unsigned int undo_libdivecomputer_suunto_nr_changes(unsigned int serial)
{
unsigned char b0, b1, b2, b3;
/*
* The second format will never have more than 8 decimal
* digits, so do a cheap check first
*/
if (serial >= 100000000)
return serial;
/* The original format seems to be four bytes of values 00-99 */
b0 = (serial >> 0) & 0xff;
b1 = (serial >> 8) & 0xff;
b2 = (serial >> 16) & 0xff;
b3 = (serial >> 24) & 0xff;
/* Looks like an old-style libdivecomputer serial number */
if ((b0 < 100) && (b1 < 100) && (b2 < 100) && (b3 < 100))
return serial;
/* Nope, it was converted. */
b0 = serial % 100; serial /= 100;
b1 = serial % 100; serial /= 100;
b2 = serial % 100; serial /= 100;
b3 = serial % 100; serial /= 100;
serial = b0 + (b1 << 8) + (b2 << 16) + (b3 << 24);
return serial;
}
static unsigned int fixup_suunto_versions(device_data_t *devdata, const dc_event_devinfo_t *devinfo)
{
unsigned int serial = devinfo->serial;
char serial_nr[13] = "";
char firmware[13] = "";
first_temp_is_air = 1;
serial = undo_libdivecomputer_suunto_nr_changes(serial);
if (serial) {
snprintf(serial_nr, sizeof(serial_nr), "%02d%02d%02d%02d",
(devinfo->serial >> 24) & 0xff,
(devinfo->serial >> 16) & 0xff,
(devinfo->serial >> 8) & 0xff,
(devinfo->serial >> 0) & 0xff);
}
if (devinfo->firmware) {
snprintf(firmware, sizeof(firmware), "%d.%d.%d",
(devinfo->firmware >> 16) & 0xff,
(devinfo->firmware >> 8) & 0xff,
(devinfo->firmware >> 0) & 0xff);
}
create_device_node(devdata->model, devdata->deviceid, serial_nr, firmware, "");
return serial;
}
static void event_cb(dc_device_t *device, dc_event_type_t event, const void *data, void *userdata)
{
const dc_event_progress_t *progress = data;
const dc_event_devinfo_t *devinfo = data;
const dc_event_clock_t *clock = data;
device_data_t *devdata = userdata;
unsigned int serial;
switch (event) {
case DC_EVENT_WAITING:
dev_info(devdata, _("Event: waiting for user action"));
break;
case DC_EVENT_PROGRESS:
if (!progress->maximum)
break;
progress_bar_fraction = (double) progress->current / (double) progress->maximum;
break;
case DC_EVENT_DEVINFO:
dev_info(devdata, _("model=%u (0x%08x), firmware=%u (0x%08x), serial=%u (0x%08x)"),
devinfo->model, devinfo->model,
devinfo->firmware, devinfo->firmware,
devinfo->serial, devinfo->serial);
/*
* libdivecomputer doesn't give serial numbers in the proper string form,
* so we have to see if we can do some vendor-specific munging.
*/
serial = devinfo->serial;
if (!strcmp(devdata->vendor, "Suunto"))
serial = fixup_suunto_versions(devdata, devinfo);
devdata->deviceid = calculate_sha1(devinfo->model, devinfo->firmware, serial);
break;
case DC_EVENT_CLOCK:
dev_info(devdata, _("Event: systime=%"PRId64", devtime=%u\n"),
(uint64_t)clock->systime, clock->devtime);
break;
default:
break;
}
}
int import_thread_cancelled;
static int
cancel_cb(void *userdata)
{
return import_thread_cancelled;
}
static const char *do_device_import(device_data_t *data)
{
dc_status_t rc;
dc_device_t *device = data->device;
data->model = str_printf("%s %s", data->vendor, data->product);
// Register the event handler.
int events = DC_EVENT_WAITING | DC_EVENT_PROGRESS | DC_EVENT_DEVINFO | DC_EVENT_CLOCK;
rc = dc_device_set_events(device, events, event_cb, data);
if (rc != DC_STATUS_SUCCESS)
return _("Error registering the event handler.");
// Register the cancellation handler.
rc = dc_device_set_cancel(device, cancel_cb, data);
if (rc != DC_STATUS_SUCCESS)
return _("Error registering the cancellation handler.");
rc = import_device_data(device, data);
if (rc != DC_STATUS_SUCCESS)
return _("Dive data import error");
/* All good */
return NULL;
}
const char *do_libdivecomputer_import(device_data_t *data)
{
dc_status_t rc;
const char *err;
import_dive_number = 0;
first_temp_is_air = 0;
data->device = NULL;
data->context = NULL;
rc = dc_context_new(&data->context);
if (rc != DC_STATUS_SUCCESS)
return _("Unable to create libdivecomputer context");
err = _("Unable to open %s %s (%s)");
rc = dc_device_open(&data->device, data->context, data->descriptor, data->devname);
if (rc == DC_STATUS_SUCCESS) {
err = do_device_import(data);
dc_device_close(data->device);
}
dc_context_free(data->context);
return err;
}