subsurface/core/libdivecomputer.cpp
Berthold Stoeger 576d3a3bc6 core: move has_dive() function into struct divelist
Seems natural in a C++ code base.

Signed-off-by: Berthold Stoeger <bstoeger@mail.tuwien.ac.at>
2024-08-13 19:28:30 +02:00

1615 lines
51 KiB
C++

// SPDX-License-Identifier: GPL-2.0
#ifdef __clang__
// Clang has a bug on zero-initialization of C structs.
#pragma clang diagnostic ignored "-Wmissing-field-initializers"
#endif
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <inttypes.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <chrono>
#include "gettext.h"
#include "divelog.h"
#include "divesite.h"
#include "sample.h"
#include "subsurface-float.h"
#include "subsurface-string.h"
#include "format.h"
#include "device.h"
#include "dive.h"
#include "errorhelper.h"
#include "event.h"
#include "sha1.h"
#include "subsurface-time.h"
#include <libdivecomputer/version.h>
#include <libdivecomputer/usbhid.h>
#include <libdivecomputer/usb.h>
#include <libdivecomputer/serial.h>
#include <libdivecomputer/irda.h>
#include <libdivecomputer/bluetooth.h>
#include "libdivecomputer.h"
#include "core/version.h"
#include "core/qthelper.h"
#include "core/file.h"
#include <array>
#include <charconv>
std::string dumpfile_name;
std::string logfile_name;
std::string progress_bar_text;
void (*progress_callback)(const std::string &text) = NULL;
double progress_bar_fraction = 0.0;
static int stoptime, stopdepth, ndl, po2, cns, heartbeat, bearing;
static bool in_deco, first_temp_is_air;
static int current_gas_index;
#define INFO(fmt, ...) report_info("INFO: " fmt, ##__VA_ARGS__)
#define ERROR(fmt, ...) report_info("ERROR: " fmt, ##__VA_ARGS__)
device_data_t::device_data_t()
{
}
device_data_t::~device_data_t()
{
if (descriptor)
dc_descriptor_free(descriptor);
}
/*
* Directly taken from libdivecomputer's examples/common.c to improve
* the error messages resulting from libdc's return codes
*/
const char *errmsg (dc_status_t rc)
{
switch (rc) {
case DC_STATUS_SUCCESS:
return "Success";
case DC_STATUS_UNSUPPORTED:
return "Unsupported operation";
case DC_STATUS_INVALIDARGS:
return "Invalid arguments";
case DC_STATUS_NOMEMORY:
return "Out of memory";
case DC_STATUS_NODEVICE:
return "No device found";
case DC_STATUS_NOACCESS:
return "Access denied";
case DC_STATUS_IO:
return "Input/output error";
case DC_STATUS_TIMEOUT:
return "Timeout";
case DC_STATUS_PROTOCOL:
return "Protocol error";
case DC_STATUS_DATAFORMAT:
return "Data format error";
case DC_STATUS_CANCELLED:
return "Cancelled";
default:
return "Unknown error";
}
}
/**
* @brief get_deeper_gasmix Returns the gas mix with the deeper MOD.
* NOTE: Parameters are passed by value in order to use them as local working
* storage.
* Invalid gas mixes are converted to air for the purpose of this operation.
* The gas mix with the lower MOD is taken as the one with the lower O2 content,
* or, if equal, the one with the higher HE content. No actual MOD calculations
* are performed.
* @param a The first gas mix to compare.
* @param b The second gas mix to compare.
* @return The gas mix with the deeper MOD.
*/
static struct gasmix get_deeper_gasmix(struct gasmix a, struct gasmix b)
{
if (same_gasmix(a, gasmix_invalid)) {
a = gasmix_air;
}
if (same_gasmix(b, gasmix_invalid)) {
b = gasmix_air;
}
if (get_o2(a) < get_o2(b)) {
return a;
}
if (get_o2(a) > get_o2(b)) {
return b;
}
return get_he(a) < get_he(b) ? b : a;
}
/**
* @brief parse_gasmixes matches gas mixes with cylinders
* This function retrieves all tanks and gas mixes reported by libdivecomputer
* and attepmts to match them. The matching logic assigns the mixes to the
* tanks in a 1:1 ordering.
* If there are more gas mixes than tanks, additional tanks are created.
* If there are fewer gas mixes than tanks, the remaining tanks are assigned to
* the gas mix with the lowest (deepest) MOD.
* @param devdata The dive computer data.
* @param dive The dive to which these tanks and gas mixes will be assigned.
* @param parser The libdivecomputer parser data.
* @param ngases The number of gas mixes to process.
* @return DC_STATUS_SUCCESS on success, otherwise an error code.
*/
static dc_status_t parse_gasmixes(device_data_t *devdata, struct dive *dive, dc_parser_t *parser, unsigned int ngases)
{
static bool shown_warning = false;
unsigned int i;
dc_status_t rc;
unsigned int ntanks = 0;
rc = dc_parser_get_field(parser, DC_FIELD_TANK_COUNT, 0, &ntanks);
if (rc == DC_STATUS_SUCCESS) {
if (ntanks && ntanks < ngases) {
shown_warning = true;
report_error("Warning: different number of gases (%d) and cylinders (%d)", ngases, ntanks);
} else if (ntanks > ngases) {
shown_warning = true;
report_error("Warning: smaller number of gases (%d) than cylinders (%d).", ngases, ntanks);
}
}
bool no_volume = true;
struct gasmix bottom_gas = { {1000}, {0} }; /* Default to pure O2, or air if there are no mixes defined */
if (ngases == 0) {
bottom_gas = gasmix_air;
}
dive->cylinders.clear();
for (i = 0; i < std::max(ngases, ntanks); i++) {
cylinder_t cyl;
cyl.cylinder_use = NOT_USED;
if (i < ngases) {
dc_gasmix_t gasmix = { 0 };
int o2, he;
rc = dc_parser_get_field(parser, DC_FIELD_GASMIX, i, &gasmix);
if (rc == DC_STATUS_SUCCESS) {
o2 = lrint(gasmix.oxygen * 1000);
he = lrint(gasmix.helium * 1000);
/* Ignore bogus data - libdivecomputer does some crazy stuff */
if (o2 + he <= O2_IN_AIR || o2 > 1000) {
if (!shown_warning) {
shown_warning = true;
report_error("unlikely dive gas data from libdivecomputer: o2 = %.3f he = %.3f", gasmix.oxygen, gasmix.helium);
}
o2 = 0;
}
if (he < 0 || o2 + he > 1000) {
if (!shown_warning) {
shown_warning = true;
report_error("unlikely dive gas data from libdivecomputer: o2 = %.3f he = %.3f", gasmix.oxygen, gasmix.helium);
}
he = 0;
}
cyl.gasmix.o2.permille = o2;
cyl.gasmix.he.permille = he;
bottom_gas = get_deeper_gasmix(bottom_gas, cyl.gasmix);
switch (gasmix.usage) {
case DC_USAGE_DILUENT:
cyl.cylinder_use = DILUENT;
break;
case DC_USAGE_OXYGEN:
cyl.cylinder_use = OXYGEN;
break;
case DC_USAGE_OPEN_CIRCUIT:
cyl.cylinder_use = OC_GAS;
break;
default:
if (dive->dcs[0].divemode == CCR)
cyl.cylinder_use = DILUENT;
else
cyl.cylinder_use = OC_GAS;
break;
}
}
}
if (i < ntanks) {
// If we've run out of gas mixes, assign this cylinder to bottom
// gas. Note that this can be overridden below if the dive computer
// explicitly reports a gas mix for this tank.
if (i >= ngases) {
cyl.gasmix = bottom_gas;
}
dc_tank_t tank = { 0 };
rc = dc_parser_get_field(parser, DC_FIELD_TANK, i, &tank);
if (rc == DC_STATUS_SUCCESS) {
cyl.type.size.mliter = lrint(tank.volume * 1000);
cyl.type.workingpressure.mbar = lrint(tank.workpressure * 1000);
if (tank.type & DC_TANKVOLUME_IMPERIAL) {
if (devdata->model == "Suunto EON Steel") {
/* Suunto EON Steele gets this wrong. Badly.
* but on the plus side it only supports a few imperial sizes,
* so let's try and guess at least the most common ones.
* First, the pressures are off by a constant factor. WTF?
* Then we can round the wet sizes so we get to multiples of 10
* for cuft sizes (as that's all that you can enter) */
cyl.type.workingpressure.mbar = lrint(
cyl.type.workingpressure.mbar * 206.843 / 206.7 );
char name_buffer[17];
int rounded_size = lrint(ml_to_cuft(gas_volume(&cyl,
cyl.type.workingpressure)));
rounded_size = (int)((rounded_size + 5) / 10) * 10;
switch (cyl.type.workingpressure.mbar) {
case 206843:
snprintf(name_buffer, sizeof(name_buffer), "AL%d", rounded_size);
break;
case 234422: /* this is wrong - HP tanks tend to be 3440, but Suunto only allows 3400 */
snprintf(name_buffer, sizeof(name_buffer), "HP%d", rounded_size);
break;
case 179263:
snprintf(name_buffer, sizeof(name_buffer), "LP+%d", rounded_size);
break;
case 165474:
snprintf(name_buffer, sizeof(name_buffer), "LP%d", rounded_size);
break;
default:
snprintf(name_buffer, sizeof(name_buffer), "%d cuft", rounded_size);
break;
}
cyl.type.description = name_buffer;
cyl.type.size.mliter = lrint(cuft_to_l(rounded_size) * 1000 /
mbar_to_atm(cyl.type.workingpressure.mbar));
}
}
if (tank.gasmix != DC_GASMIX_UNKNOWN && tank.gasmix != i) { // we don't handle this, yet
shown_warning = true;
report_error("gasmix %d for tank %d doesn't match", tank.gasmix, i);
}
}
if (!nearly_0(tank.volume))
no_volume = false;
// this new API also gives us the beginning and end pressure for the tank
// normally 0 is not a valid pressure, but for some Uwatec dive computers we
// don't get the actual start and end pressure, but instead a start pressure
// that matches the consumption and an end pressure of always 0
// In order to make this work, we arbitrary shift this up by 30bar so the
// rest of the code treats this as if they were valid values
if (!nearly_0(tank.beginpressure)) {
if (!nearly_0(tank.endpressure)) {
cyl.start.mbar = lrint(tank.beginpressure * 1000);
cyl.end.mbar = lrint(tank.endpressure * 1000);
} else if (devdata->vendor == "Uwatec") {
cyl.start.mbar = lrint(tank.beginpressure * 1000 + 30000);
cyl.end.mbar = 30000;
}
}
}
if (no_volume) {
/* for the first tank, if there is no tanksize available from the
* dive computer, fill in the default tank information (if set) */
fill_default_cylinder(dive, &cyl);
}
/* whatever happens, make sure there is a name for the cylinder */
if (cyl.type.description.empty())
cyl.type.description = translate("gettextFromC", "unknown");
dive->cylinders.push_back(std::move(cyl));
}
return DC_STATUS_SUCCESS;
}
static void handle_event(struct divecomputer *dc, const struct sample &sample, dc_sample_value_t value)
{
int type, time;
struct event *ev;
/* we mark these for translation here, but we store the untranslated strings
* and only translate them when they are displayed on screen */
static const char *events[] = {
[SAMPLE_EVENT_NONE] = QT_TRANSLATE_NOOP("gettextFromC", "none"),
[SAMPLE_EVENT_DECOSTOP] = QT_TRANSLATE_NOOP("gettextFromC", "deco stop"),
[SAMPLE_EVENT_RBT] = QT_TRANSLATE_NOOP("gettextFromC", "rbt"),
[SAMPLE_EVENT_ASCENT] = QT_TRANSLATE_NOOP("gettextFromC", "ascent"),
[SAMPLE_EVENT_CEILING] = QT_TRANSLATE_NOOP("gettextFromC", "ceiling"),
[SAMPLE_EVENT_WORKLOAD] = QT_TRANSLATE_NOOP("gettextFromC", "workload"),
[SAMPLE_EVENT_TRANSMITTER] = QT_TRANSLATE_NOOP("gettextFromC", "transmitter"),
[SAMPLE_EVENT_VIOLATION] = QT_TRANSLATE_NOOP("gettextFromC", "violation"),
[SAMPLE_EVENT_BOOKMARK] = QT_TRANSLATE_NOOP("gettextFromC", "bookmark"),
[SAMPLE_EVENT_SURFACE] = QT_TRANSLATE_NOOP("gettextFromC", "surface"),
[SAMPLE_EVENT_SAFETYSTOP] = QT_TRANSLATE_NOOP("gettextFromC", "safety stop"),
[SAMPLE_EVENT_GASCHANGE] = QT_TRANSLATE_NOOP("gettextFromC", "gaschange"),
[SAMPLE_EVENT_SAFETYSTOP_VOLUNTARY] = QT_TRANSLATE_NOOP("gettextFromC", "safety stop (voluntary)"),
[SAMPLE_EVENT_SAFETYSTOP_MANDATORY] = QT_TRANSLATE_NOOP("gettextFromC", "safety stop (mandatory)"),
[SAMPLE_EVENT_DEEPSTOP] = QT_TRANSLATE_NOOP("gettextFromC", "deepstop"),
[SAMPLE_EVENT_CEILING_SAFETYSTOP] = QT_TRANSLATE_NOOP("gettextFromC", "ceiling (safety stop)"),
[SAMPLE_EVENT_FLOOR] = std::array<const char *, 2>{QT_TRANSLATE_NOOP3("gettextFromC", "below floor", "event showing dive is below deco floor and adding deco time")}[1],
[SAMPLE_EVENT_DIVETIME] = QT_TRANSLATE_NOOP("gettextFromC", "divetime"),
[SAMPLE_EVENT_MAXDEPTH] = QT_TRANSLATE_NOOP("gettextFromC", "maxdepth"),
[SAMPLE_EVENT_OLF] = QT_TRANSLATE_NOOP("gettextFromC", "OLF"),
[SAMPLE_EVENT_PO2] = QT_TRANSLATE_NOOP("gettextFromC", "pO₂"),
[SAMPLE_EVENT_AIRTIME] = QT_TRANSLATE_NOOP("gettextFromC", "airtime"),
[SAMPLE_EVENT_RGBM] = QT_TRANSLATE_NOOP("gettextFromC", "rgbm"),
[SAMPLE_EVENT_HEADING] = QT_TRANSLATE_NOOP("gettextFromC", "heading"),
[SAMPLE_EVENT_TISSUELEVEL] = QT_TRANSLATE_NOOP("gettextFromC", "tissue level warning"),
[SAMPLE_EVENT_GASCHANGE2] = QT_TRANSLATE_NOOP("gettextFromC", "gaschange"),
};
const int nr_events = sizeof(events) / sizeof(const char *);
const char *name;
/*
* Other evens might be more interesting, but for now we just print them out.
*/
type = value.event.type;
name = QT_TRANSLATE_NOOP("gettextFromC", "invalid event number");
if (type < nr_events && events[type])
name = events[type];
#ifdef SAMPLE_EVENT_STRING
if (type == SAMPLE_EVENT_STRING)
name = value.event.name;
#endif
time = value.event.time;
time += sample.time.seconds;
ev = add_event(dc, time, type, value.event.flags, value.event.value, name);
if (ev->is_gaschange() && ev->gas.index >= 0)
current_gas_index = ev->gas.index;
}
static void handle_gasmix(struct divecomputer *dc, const struct sample &sample, int idx)
{
/* TODO: Verify that index is not higher than the number of cylinders */
if (idx < 0)
return;
add_event(dc, sample.time.seconds, SAMPLE_EVENT_GASCHANGE2, idx+1, 0, "gaschange");
current_gas_index = idx;
}
void
sample_cb(dc_sample_type_t type, const dc_sample_value_t *pvalue, void *userdata)
{
static unsigned int nsensor = 0;
struct divecomputer *dc = (divecomputer *)userdata;
dc_sample_value_t value = *pvalue;
/*
* DC_SAMPLE_TIME is special: it creates a new sample.
* Other types fill in an existing sample.
*/
if (type == DC_SAMPLE_TIME) {
nsensor = 0;
// Create a new sample.
// Mark depth as negative
struct sample *sample = prepare_sample(dc);
sample->time.seconds = value.time / 1000;
sample->depth.mm = -1;
// The current sample gets some sticky values
// that may have been around from before, these
// values will be overwritten by new data if available
sample->in_deco = in_deco;
sample->ndl.seconds = ndl;
sample->stoptime.seconds = stoptime;
sample->stopdepth.mm = stopdepth;
sample->setpoint.mbar = po2;
sample->cns = cns;
sample->heartbeat = heartbeat;
sample->bearing.degrees = bearing;
return;
}
if (dc->samples.empty())
prepare_sample(dc);
struct sample &sample = dc->samples.back();
switch (type) {
case DC_SAMPLE_DEPTH:
sample.depth.mm = lrint(value.depth * 1000);
break;
case DC_SAMPLE_PRESSURE:
add_sample_pressure(&sample, value.pressure.tank, lrint(value.pressure.value * 1000));
break;
case DC_SAMPLE_GASMIX:
handle_gasmix(dc, sample, value.gasmix);
break;
case DC_SAMPLE_TEMPERATURE:
sample.temperature.mkelvin = C_to_mkelvin(value.temperature);
break;
case DC_SAMPLE_EVENT:
handle_event(dc, sample, value);
break;
case DC_SAMPLE_RBT:
sample.rbt.seconds = (!strncasecmp(dc->model.c_str(), "suunto", 6)) ? value.rbt : value.rbt * 60;
break;
#ifdef DC_SAMPLE_TTS
case DC_SAMPLE_TTS:
sample.tts.seconds = value.time;
break;
#endif
case DC_SAMPLE_HEARTBEAT:
sample.heartbeat = heartbeat = value.heartbeat;
break;
case DC_SAMPLE_BEARING:
sample.bearing.degrees = bearing = value.bearing;
break;
#ifdef DEBUG_DC_VENDOR
case DC_SAMPLE_VENDOR:
printf(" <vendor time='%u:%02u' type=\"%u\" size=\"%u\">", FRACTION_TUPLE(sample.time.seconds, 60),
value.vendor.type, value.vendor.size);
for (int i = 0; i < value.vendor.size; ++i)
printf("%02X", ((unsigned char *)value.vendor.data)[i]);
printf("</vendor>\n");
break;
#endif
case DC_SAMPLE_SETPOINT:
/* for us a setpoint means constant pO2 from here */
sample.setpoint.mbar = po2 = lrint(value.setpoint * 1000);
break;
case DC_SAMPLE_PPO2:
if (nsensor < MAX_O2_SENSORS)
sample.o2sensor[nsensor].mbar = lrint(value.ppo2.value * 1000);
else
report_error("%d is more o2 sensors than we can handle", nsensor);
nsensor++;
// Set the amount of detected o2 sensors
if (nsensor > dc->no_o2sensors)
dc->no_o2sensors = nsensor;
break;
case DC_SAMPLE_CNS:
sample.cns = cns = lrint(value.cns * 100);
break;
case DC_SAMPLE_DECO:
if (value.deco.type == DC_DECO_NDL) {
sample.ndl.seconds = ndl = value.deco.time;
sample.stopdepth.mm = stopdepth = lrint(value.deco.depth * 1000.0);
sample.in_deco = in_deco = false;
} else if (value.deco.type == DC_DECO_DECOSTOP ||
value.deco.type == DC_DECO_DEEPSTOP) {
sample.stopdepth.mm = stopdepth = lrint(value.deco.depth * 1000.0);
sample.stoptime.seconds = stoptime = value.deco.time;
sample.in_deco = in_deco = stopdepth > 0;
ndl = 0;
} else if (value.deco.type == DC_DECO_SAFETYSTOP) {
sample.in_deco = in_deco = false;
sample.stopdepth.mm = stopdepth = lrint(value.deco.depth * 1000.0);
sample.stoptime.seconds = stoptime = value.deco.time;
}
sample.tts.seconds = value.deco.tts;
default:
break;
}
}
static void dev_info(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
progress_bar_text = vformat_string_std(fmt, ap);
va_end(ap);
if (verbose)
INFO("dev_info: %s", progress_bar_text.c_str());
if (progress_callback)
(*progress_callback)(progress_bar_text);
}
static int import_dive_number = 0;
static void download_error(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
std::string buffer = vformat_string_std(fmt, ap);
va_end(ap);
report_error("Dive %d: %s", import_dive_number, buffer.c_str());
}
static dc_status_t parse_samples(device_data_t *, struct divecomputer *dc, dc_parser_t *parser)
{
// Parse the sample data.
return dc_parser_samples_foreach(parser, sample_cb, dc);
}
static int might_be_same_dc(const struct divecomputer &a, const struct divecomputer &b)
{
if (a.model.empty() || b.model.empty())
return 1;
if (strcasecmp(a.model.c_str(), b.model.c_str()))
return 0;
if (!a.deviceid || !b.deviceid)
return 1;
return a.deviceid == b.deviceid;
}
static bool match_one_dive(const struct divecomputer &a, const struct dive &dive)
{
/*
* Walk the existing dive computer data,
* see if we have a match (or an anti-match:
* the same dive computer but a different
* dive ID).
*/
for (auto &b: dive.dcs) {
if (match_one_dc(a, b) > 0)
return true;
}
/* Ok, no exact dive computer match. Does the date match? */
for (auto &b: dive.dcs) {
if (a.when == b.when && might_be_same_dc(a, b))
return true;
}
return false;
}
/*
* Check if this dive already existed before the import
*/
static bool find_dive(const struct divecomputer &match)
{
return std::any_of(divelog.dives.rbegin(), divelog.dives.rend(),
[&match] (auto &old) { return match_one_dive(match, *old);} );
}
/*
* The dive ID for libdivecomputer dives is the first word of the
* SHA1 of the fingerprint, if it exists.
*
* NOTE! This is byte-order dependent, and I don't care.
*/
static uint32_t calculate_diveid(const unsigned char *fingerprint, unsigned int fsize)
{
if (!fingerprint || !fsize)
return 0;
return SHA1_uint32(fingerprint, fsize);
}
uint32_t calculate_string_hash(const char *str)
{
return calculate_diveid((const unsigned char *)str, strlen(str));
}
static void parse_string_field(device_data_t *devdata, struct dive *dive, dc_field_string_t *str)
{
// Our dive ID is the string hash of the "Dive ID" string
if (!strcmp(str->desc, "Dive ID")) {
if (!dive->dcs[0].diveid)
dive->dcs[0].diveid = calculate_string_hash(str->value);
return;
}
// This will pick up serial number and firmware data
add_extra_data(&dive->dcs[0], str->desc, str->value);
/* GPS data? */
if (!strncmp(str->desc, "GPS", 3)) {
char *line = (char *) str->value;
location_t location;
/* Do we already have a divesite? */
if (dive->dive_site) {
/*
* "GPS1" always takes precedence, anything else
* we'll just pick the first "GPS*" that matches.
*/
if (strcmp(str->desc, "GPS1") != 0)
return;
}
parse_location(line, &location);
if (location.lat.udeg && location.lon.udeg) {
unregister_dive_from_dive_site(dive);
devdata->log->sites.create(std::string(str->value), location)->add_dive(dive);
}
}
}
static dc_status_t libdc_header_parser(dc_parser_t *parser, device_data_t *devdata, struct dive *dive)
{
dc_status_t rc = static_cast<dc_status_t>(0);
dc_datetime_t dt = { 0 };
struct tm tm;
rc = dc_parser_get_datetime(parser, &dt);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
download_error(translate("gettextFromC", "Error parsing the datetime"));
return rc;
}
// Our deviceid is the hash of the serial number
dive->dcs[0].deviceid = 0;
if (rc == DC_STATUS_SUCCESS) {
tm.tm_year = dt.year;
tm.tm_mon = dt.month - 1;
tm.tm_mday = dt.day;
tm.tm_hour = dt.hour;
tm.tm_min = dt.minute;
tm.tm_sec = dt.second;
dive->when = dive->dcs[0].when = utc_mktime(&tm);
}
// Parse the divetime.
std::string date_string = get_dive_date_c_string(dive->when);
dev_info(translate("gettextFromC", "Dive %d: %s"), import_dive_number, date_string.c_str());
unsigned int divetime = 0;
rc = dc_parser_get_field(parser, DC_FIELD_DIVETIME, 0, &divetime);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
download_error(translate("gettextFromC", "Error parsing the divetime"));
return rc;
}
if (rc == DC_STATUS_SUCCESS)
dive->dcs[0].duration.seconds = divetime;
// Parse the maxdepth.
double maxdepth = 0.0;
rc = dc_parser_get_field(parser, DC_FIELD_MAXDEPTH, 0, &maxdepth);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
download_error(translate("gettextFromC", "Error parsing the maxdepth"));
return rc;
}
if (rc == DC_STATUS_SUCCESS)
dive->dcs[0].maxdepth.mm = lrint(maxdepth * 1000);
// Parse temperatures
double temperature;
dc_field_type_t temp_fields[] = {DC_FIELD_TEMPERATURE_SURFACE,
DC_FIELD_TEMPERATURE_MAXIMUM,
DC_FIELD_TEMPERATURE_MINIMUM};
for (int i = 0; i < 3; i++) {
rc = dc_parser_get_field(parser, temp_fields[i], 0, &temperature);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
download_error(translate("gettextFromC", "Error parsing temperature"));
return rc;
}
if (rc == DC_STATUS_SUCCESS)
switch(i) {
case 0:
dive->dcs[0].airtemp.mkelvin = C_to_mkelvin(temperature);
break;
case 1: // we don't distinguish min and max water temp here, so take min if given, max otherwise
case 2:
dive->dcs[0].watertemp.mkelvin = C_to_mkelvin(temperature);
break;
}
}
// Parse the gas mixes.
unsigned int ngases = 0;
rc = dc_parser_get_field(parser, DC_FIELD_GASMIX_COUNT, 0, &ngases);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
download_error(translate("gettextFromC", "Error parsing the gas mix count"));
return rc;
}
// Check if the libdivecomputer version already supports salinity & atmospheric
dc_salinity_t salinity = {
.type = DC_WATER_SALT,
.density = SEAWATER_SALINITY / 10.0
};
rc = dc_parser_get_field(parser, DC_FIELD_SALINITY, 0, &salinity);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
download_error(translate("gettextFromC", "Error obtaining water salinity"));
return rc;
}
if (rc == DC_STATUS_SUCCESS) {
dive->dcs[0].salinity = lrint(salinity.density * 10.0);
if (dive->dcs[0].salinity == 0) {
// sometimes libdivecomputer gives us density values, sometimes just
// a water type and a density of zero; let's make this work as best as we can
switch (salinity.type) {
case DC_WATER_FRESH:
dive->dcs[0].salinity = FRESHWATER_SALINITY;
break;
default:
dive->dcs[0].salinity = SEAWATER_SALINITY;
break;
}
}
}
double surface_pressure = 0;
rc = dc_parser_get_field(parser, DC_FIELD_ATMOSPHERIC, 0, &surface_pressure);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
download_error(translate("gettextFromC", "Error obtaining surface pressure"));
return rc;
}
if (rc == DC_STATUS_SUCCESS)
dive->dcs[0].surface_pressure.mbar = lrint(surface_pressure * 1000.0);
// The dive parsing may give us more device information
int idx;
for (idx = 0; idx < 100; idx++) {
dc_field_string_t str = { NULL };
rc = dc_parser_get_field(parser, DC_FIELD_STRING, idx, &str);
if (rc != DC_STATUS_SUCCESS)
break;
if (!str.desc || !str.value)
break;
parse_string_field(devdata, dive, &str);
free((void *)str.value); // libdc gives us copies of the value-string.
}
dc_divemode_t divemode;
rc = dc_parser_get_field(parser, DC_FIELD_DIVEMODE, 0, &divemode);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
download_error(translate("gettextFromC", "Error obtaining dive mode"));
return rc;
}
if (rc == DC_STATUS_SUCCESS)
switch(divemode) {
case DC_DIVEMODE_FREEDIVE:
dive->dcs[0].divemode = FREEDIVE;
break;
case DC_DIVEMODE_GAUGE:
case DC_DIVEMODE_OC: /* Open circuit */
dive->dcs[0].divemode = OC;
break;
case DC_DIVEMODE_CCR: /* Closed circuit rebreather*/
dive->dcs[0].divemode = CCR;
break;
case DC_DIVEMODE_SCR: /* Semi-closed circuit rebreather */
dive->dcs[0].divemode = PSCR;
break;
}
rc = parse_gasmixes(devdata, dive, parser, ngases);
if (rc != DC_STATUS_SUCCESS && rc != DC_STATUS_UNSUPPORTED) {
download_error(translate("gettextFromC", "Error parsing the gas mix"));
return rc;
}
return DC_STATUS_SUCCESS;
}
/* returns true if we want libdivecomputer's dc_device_foreach() to continue,
* false otherwise */
static int dive_cb(const unsigned char *data, unsigned int size,
const unsigned char *fingerprint, unsigned int fsize,
void *userdata)
{
dc_status_t rc;
dc_parser_t *parser = NULL;
device_data_t *devdata = (device_data_t *)userdata;
/* reset static data, that is only valid per dive */
stoptime = stopdepth = po2 = cns = heartbeat = 0;
ndl = bearing = -1;
in_deco = false;
current_gas_index = -1;
import_dive_number++;
rc = dc_parser_new(&parser, devdata->device, data, size);
if (rc != DC_STATUS_SUCCESS) {
download_error(translate("gettextFromC", "Unable to create parser for %s %s: %d"), devdata->vendor.c_str(), devdata->product.c_str(), errmsg(rc));
return true;
}
auto dive = std::make_unique<struct dive>();
// Fill in basic fields
dive->dcs[0].model = devdata->model;
dive->dcs[0].diveid = calculate_diveid(fingerprint, fsize);
// Parse the dive's header data
rc = libdc_header_parser (parser, devdata, dive.get());
if (rc != DC_STATUS_SUCCESS) {
download_error(translate("getextFromC", "Error parsing the header: %s"), errmsg(rc));
goto error_exit;
}
// Initialize the sample data.
rc = parse_samples(devdata, &dive->dcs[0], parser);
if (rc != DC_STATUS_SUCCESS) {
download_error(translate("gettextFromC", "Error parsing the samples: %s"), errmsg(rc));
goto error_exit;
}
dc_parser_destroy(parser);
/*
* Save off fingerprint data.
*
* NOTE! We do this after parsing the dive fully, so that
* we have the final deviceid here.
*/
if (fingerprint && fsize && !devdata->fingerprint) {
devdata->fingerprint = (unsigned char *)calloc(fsize, 1);
if (devdata->fingerprint) {
devdata->fsize = fsize;
devdata->fdeviceid = dive->dcs[0].deviceid;
devdata->fdiveid = dive->dcs[0].diveid;
memcpy(devdata->fingerprint, fingerprint, fsize);
}
}
/* If we already saw this dive, abort. */
if (!devdata->force_download && find_dive(dive->dcs[0])) {
std::string date_string = get_dive_date_c_string(dive->when);
dev_info(translate("gettextFromC", "Already downloaded dive at %s"), date_string.c_str());
return false;
}
/* Various libdivecomputer interface fixups */
if (dive->dcs[0].airtemp.mkelvin == 0 && first_temp_is_air && !dive->dcs[0].samples.empty()) {
dive->dcs[0].airtemp = dive->dcs[0].samples[0].temperature;
dive->dcs[0].samples[0].temperature.mkelvin = 0;
}
/* special case for bug in Tecdiving DiveComputer.eu
* often the first sample has a water temperature of 0C, followed by the correct
* temperature in the next sample */
if (dive->dcs[0].model == "Tecdiving DiveComputer.eu" && !dive->dcs[0].samples.empty() &&
dive->dcs[0].samples[0].temperature.mkelvin == ZERO_C_IN_MKELVIN &&
dive->dcs[0].samples[1].temperature.mkelvin > dive->dcs[0].samples[0].temperature.mkelvin)
dive->dcs[0].samples[0].temperature.mkelvin = dive->dcs[0].samples[1].temperature.mkelvin;
devdata->log->dives.record_dive(std::move(dive));
return true;
error_exit:
dc_parser_destroy(parser);
return true;
}
#ifndef O_BINARY
#define O_BINARY 0
#endif
static void do_save_fingerprint(device_data_t *devdata, const char *tmp, const char *final)
{
int fd, written = -1;
fd = subsurface_open(tmp, O_WRONLY | O_BINARY | O_CREAT | O_TRUNC, 0666);
if (fd < 0)
return;
if (verbose)
dev_info("Saving fingerprint for %08x:%08x to '%s'",
devdata->fdeviceid, devdata->fdiveid, final);
/* The fingerprint itself.. */
written = write(fd, devdata->fingerprint, devdata->fsize);
/* ..followed by the device ID and dive ID of the fingerprinted dive */
if (write(fd, &devdata->fdeviceid, 4) != 4 || write(fd, &devdata->fdiveid, 4) != 4)
written = -1;
/* I'd like to do fsync() here too, but does Windows support it? */
if (close(fd) < 0)
written = -1;
if (written == (int)devdata->fsize) {
if (!subsurface_rename(tmp, final))
return;
}
unlink(tmp);
}
static std::string fingerprint_file(device_data_t *devdata)
{
uint32_t model, serial;
// Model hash and libdivecomputer 32-bit 'serial number' for the file name
model = calculate_string_hash(devdata->model.c_str());
serial = devdata->devinfo.serial;
return format_string_std("%s/fingerprints/%04x.%u",
system_default_directory().c_str(),
model, serial);
}
/*
* Save the fingerprint after a successful download
*
* NOTE! At this point, we have the final device ID for the divecomputer
* we downloaded from. But that 'deviceid' is actually not useful, because
* at the point where we want to _load_ this, we only have the libdivecomputer
* DC_EVENT_DEVINFO state (devdata->devinfo).
*
* Now, we do have the devdata->devinfo at save time, but at load time we
* need to verify not only that it's the proper fingerprint file: we also
* need to check that we actually have the particular dive that was
* associated with that fingerprint state.
*
* That means that the fingerprint save file needs to include not only the
* fingerprint data itself, but also enough data to look up a dive unambiguously
* when loading the fingerprint. And the fingerprint data needs to be looked
* up using the DC_EVENT_DEVINFO data.
*
* End result:
*
* - fingerprint filename depends on the model name and 'devinfo.serial'
* so that we can look it up at DC_EVENT_DEVINFO time before the full
* info has been parsed.
*
* - the fingerprint file contains the 'diveid' of the fingerprinted dive,
* which is just a hash of the fingerprint itself.
*
* - we also save the final 'deviceid' in the fingerprint file, so that
* looking up the dive associated with the fingerprint is possible.
*/
static void save_fingerprint(device_data_t *devdata)
{
// Don't try to save nonexistent fingerprint data
if (!devdata->fingerprint || !devdata->fdiveid)
return;
// Make sure the fingerprints directory exists
std::string dir = system_default_directory() + "/fingerprints";
subsurface_mkdir(dir.c_str());
std::string final = fingerprint_file(devdata);
std::string tmp = final + ".tmp";
do_save_fingerprint(devdata, tmp.c_str(), final.c_str());
}
/*
* The fingerprint cache files contain the actual libdivecomputer
* fingerprint, followed by 8 bytes of (deviceid,diveid) data.
*
* Before we use the fingerprint data, verify that we actually
* do have that fingerprinted dive.
*/
static void verify_fingerprint(dc_device_t *device, device_data_t *devdata, const unsigned char *buffer, size_t size)
{
uint32_t diveid, deviceid;
if (size <= 8)
return;
size -= 8;
/* Get the dive ID from the end of the fingerprint cache file.. */
memcpy(&deviceid, buffer + size, 4);
memcpy(&diveid, buffer + size + 4, 4);
if (verbose)
dev_info(" ... fingerprinted dive %08x:%08x", deviceid, diveid);
/* Only use it if we *have* that dive! */
if (!divelog.dives.has_dive(deviceid, diveid)) {
if (verbose)
dev_info(" ... dive not found");
return;
}
dc_device_set_fingerprint(device, buffer, size);
if (verbose)
dev_info(" ... fingerprint of size %zu", size);
}
/*
* Look up the fingerprint from the fingerprint caches, and
* give it to libdivecomputer to avoid downloading already
* downloaded dives.
*/
static void lookup_fingerprint(dc_device_t *device, device_data_t *devdata)
{
if (devdata->force_download)
return;
/* first try our in memory data - raw_data is owned by the table, the dc_device_set_fingerprint function copies the data */
auto [fsize, raw_data] = get_fingerprint_data(fingerprints, calculate_string_hash(devdata->model.c_str()), devdata->devinfo.serial);
if (fsize) {
if (verbose)
dev_info("... found fingerprint in dive table");
dc_device_set_fingerprint(device, raw_data, fsize);
return;
}
/* now check if we have a fingerprint on disk */
std::string cachename = fingerprint_file(devdata);
if (verbose)
dev_info("Looking for fingerprint in '%s'", cachename.c_str());
auto [mem, err] = readfile(cachename.c_str());
if (err > 0) {
if (verbose)
dev_info(" ... got %zu bytes", mem.size());
verify_fingerprint(device, devdata, (unsigned char *)mem.data(), mem.size());
}
}
static void event_cb(dc_device_t *device, dc_event_type_t event, const void *data, void *userdata)
{
static unsigned int last = 0;
const dc_event_progress_t *progress = (dc_event_progress_t *)data;
const dc_event_devinfo_t *devinfo = (dc_event_devinfo_t *)data;
const dc_event_clock_t *clock = (dc_event_clock_t *)data;
const dc_event_vendor_t *vendor = (dc_event_vendor_t *)data;
device_data_t *devdata = (device_data_t *)userdata;
switch (event) {
case DC_EVENT_WAITING:
dev_info(translate("gettextFromC", "Event: waiting for user action"));
break;
case DC_EVENT_PROGRESS:
/* this seems really dumb... but having no idea what is happening on long
* downloads makes people think that the app is hung;
* since the progress is in bytes downloaded (usually), simply give updates in 10k increments
*/
if (progress->current < last)
/* this is a new communication with the divecomputer */
last = progress->current;
if (progress->current > last + 10240) {
last = progress->current;
dev_info(translate("gettextFromC", "read %dkb"), progress->current / 1024);
}
if (progress->maximum)
progress_bar_fraction = (double)progress->current / (double)progress->maximum;
break;
case DC_EVENT_DEVINFO:
if (dc_descriptor_get_model(devdata->descriptor) != devinfo->model) {
dc_descriptor_t *better_descriptor = get_descriptor(dc_descriptor_get_type(devdata->descriptor), devinfo->model);
if (better_descriptor != NULL) {
report_info("EVENT_DEVINFO gave us a different detected product (model %d instead of %d), which we are using now.",
devinfo->model, dc_descriptor_get_model(devdata->descriptor));
devdata->descriptor = better_descriptor;
devdata->product = dc_descriptor_get_product(better_descriptor);
devdata->vendor = dc_descriptor_get_vendor(better_descriptor);
devdata->model = devdata->vendor + " " + devdata->product;
} else {
report_info("EVENT_DEVINFO gave us a different detected product (model %d instead of %d), but that one is unknown.",
devinfo->model, dc_descriptor_get_model(devdata->descriptor));
}
}
dev_info(translate("gettextFromC", "model=%s firmware=%u serial=%u"),
devdata->product.c_str(), devinfo->firmware, devinfo->serial);
if (devdata->libdc_logfile) {
fprintf(devdata->libdc_logfile, "Event: model=%u (0x%08x), firmware=%u (0x%08x), serial=%u (0x%08x)\n",
devinfo->model, devinfo->model,
devinfo->firmware, devinfo->firmware,
devinfo->serial, devinfo->serial);
}
devdata->devinfo = *devinfo;
lookup_fingerprint(device, devdata);
break;
case DC_EVENT_CLOCK:
dev_info(translate("gettextFromC", "Event: systime=%" PRId64 ", devtime=%u\n"),
(uint64_t)clock->systime, clock->devtime);
if (devdata->libdc_logfile) {
fprintf(devdata->libdc_logfile, "Event: systime=%" PRId64 ", devtime=%u\n",
(uint64_t)clock->systime, clock->devtime);
}
break;
case DC_EVENT_VENDOR:
if (devdata->libdc_logfile) {
fprintf(devdata->libdc_logfile, "Event: vendor=");
for (unsigned int i = 0; i < vendor->size; ++i)
fprintf(devdata->libdc_logfile, "%02X", vendor->data[i]);
fprintf(devdata->libdc_logfile, "\n");
}
break;
default:
break;
}
}
int import_thread_cancelled;
static int cancel_cb(void *)
{
return import_thread_cancelled;
}
static std::string do_device_import(device_data_t *data)
{
dc_status_t rc;
dc_device_t *device = data->device;
data->model = data->vendor + " " + data->product;
// Register the event handler.
int events = DC_EVENT_WAITING | DC_EVENT_PROGRESS | DC_EVENT_DEVINFO | DC_EVENT_CLOCK | DC_EVENT_VENDOR;
rc = dc_device_set_events(device, events, event_cb, data);
if (rc != DC_STATUS_SUCCESS) {
dev_info("Import error: %s", errmsg(rc));
return translate("gettextFromC", "Error registering the event handler.");
}
// Register the cancellation handler.
rc = dc_device_set_cancel(device, cancel_cb, data);
if (rc != DC_STATUS_SUCCESS) {
dev_info("Import error: %s", errmsg(rc));
return translate("gettextFromC", "Error registering the cancellation handler.");
}
if (data->libdc_dump) {
dc_buffer_t *buffer = dc_buffer_new(0);
rc = dc_device_dump(device, buffer);
if (rc == DC_STATUS_SUCCESS && !dumpfile_name.empty()) {
FILE *fp = subsurface_fopen(dumpfile_name.c_str(), "wb");
if (fp != NULL) {
fwrite(dc_buffer_get_data(buffer), 1, dc_buffer_get_size(buffer), fp);
fclose(fp);
}
}
dc_buffer_free(buffer);
if (rc != DC_STATUS_SUCCESS) {
progress_bar_fraction = 0.0;
if (rc == DC_STATUS_UNSUPPORTED)
return translate("gettextFromC", "Dumping not supported on this device");
dev_info("Import error: %s", errmsg(rc));
return translate("gettextFromC", "Dive data dumping error");
}
} else {
rc = dc_device_foreach(device, dive_cb, data);
if (rc != DC_STATUS_SUCCESS) {
progress_bar_fraction = 0.0;
dev_info("Import error: %s", errmsg(rc));
return translate("gettextFromC", "Dive data import error");
}
}
/* All good */
return std::string();
}
void logfunc(dc_context_t *, dc_loglevel_t loglevel, const char *file, unsigned int line, const char *function, const char *msg, void *userdata)
{
const char *loglevels[] = { "NONE", "ERROR", "WARNING", "INFO", "DEBUG", "ALL" };
static const auto start(std::chrono::steady_clock::now());
auto now(std::chrono::steady_clock::now());
double elapsed_seconds = std::chrono::duration<double>(now - start).count();
FILE *fp = (FILE *)userdata;
if (loglevel == DC_LOGLEVEL_ERROR || loglevel == DC_LOGLEVEL_WARNING) {
fprintf(fp, "[%.6f] %s: %s [in %s:%d (%s)]\n",
elapsed_seconds,
loglevels[loglevel], msg, file, line, function);
} else {
fprintf(fp, "[%6f] %s: %s\n", elapsed_seconds, loglevels[loglevel], msg);
}
}
/*
* Get the transports supported by us (as opposed to
* the list of transports supported by a particular
* dive computer).
*
* This could have various platform rules too..
*/
unsigned int get_supported_transports(device_data_t *data)
{
#if defined(Q_OS_IOS)
// BLE only - don't bother with being clever.
return DC_TRANSPORT_BLE;
#endif
// start out with the list of transports that libdivecomputer claims to support
// dc_context_get_transports ignores its context argument...
unsigned int supported = dc_context_get_transports(NULL);
// then add the ones that we have our own implementations for
#if defined(BT_SUPPORT)
supported |= DC_TRANSPORT_BLUETOOTH;
#endif
#if defined(BLE_SUPPORT)
supported |= DC_TRANSPORT_BLE;
#endif
#if defined(Q_OS_ANDROID)
// we cannot support transports that need libusb, hid, filesystem access, or IRDA on Android
supported &= ~(DC_TRANSPORT_USB | DC_TRANSPORT_USBHID | DC_TRANSPORT_IRDA | DC_TRANSPORT_USBSTORAGE);
#endif
if (data) {
/*
* If we have device data available, we can refine this:
* We don't support BT or BLE unless bluetooth_mode was set,
* and if it was we won't try any of the other transports.
*/
if (data->bluetooth_mode) {
supported &= (DC_TRANSPORT_BLUETOOTH | DC_TRANSPORT_BLE);
if (starts_with(data->devname, "LE:"))
supported &= DC_TRANSPORT_BLE;
} else {
supported &= ~(DC_TRANSPORT_BLUETOOTH | DC_TRANSPORT_BLE);
}
}
return supported;
}
static dc_status_t usbhid_device_open(dc_iostream_t **iostream, dc_context_t *context, device_data_t *data)
{
dc_status_t rc;
dc_iterator_t *iterator = NULL;
dc_usbhid_device_t *device = NULL;
// Discover the usbhid device.
dc_usbhid_iterator_new (&iterator, context, data->descriptor);
while (dc_iterator_next (iterator, &device) == DC_STATUS_SUCCESS)
break;
dc_iterator_free (iterator);
if (!device) {
ERROR("didn't find HID device");
return DC_STATUS_NODEVICE;
}
dev_info("Opening USB HID device for %04x:%04x",
dc_usbhid_device_get_vid(device),
dc_usbhid_device_get_pid(device));
rc = dc_usbhid_open(iostream, context, device);
dc_usbhid_device_free(device);
return rc;
}
static dc_status_t usb_device_open(dc_iostream_t **iostream, dc_context_t *context, device_data_t *data)
{
dc_status_t rc;
dc_iterator_t *iterator = NULL;
dc_usb_device_t *device = NULL;
// Discover the usb device.
dc_usb_iterator_new (&iterator, context, data->descriptor);
while (dc_iterator_next (iterator, &device) == DC_STATUS_SUCCESS)
break;
dc_iterator_free (iterator);
if (!device)
return DC_STATUS_NODEVICE;
dev_info("Opening USB device for %04x:%04x",
dc_usb_device_get_vid(device),
dc_usb_device_get_pid(device));
rc = dc_usb_open(iostream, context, device);
dc_usb_device_free(device);
return rc;
}
static dc_status_t irda_device_open(dc_iostream_t **iostream, dc_context_t *context, device_data_t *data)
{
unsigned int address = 0;
dc_iterator_t *iterator = NULL;
dc_irda_device_t *device = NULL;
// Try to find the IRDA address
dc_irda_iterator_new (&iterator, context, data->descriptor);
while (dc_iterator_next (iterator, &device) == DC_STATUS_SUCCESS) {
address = dc_irda_device_get_address (device);
dc_irda_device_free (device);
break;
}
dc_iterator_free (iterator);
// If that fails, use the device name. This will
// use address 0 if it's not a number.
if (!address)
std::from_chars(data->devname.c_str(), data->devname.c_str() + data->devname.size(), address);
dev_info("Opening IRDA address %u", address);
return dc_irda_open(&data->iostream, context, address, 1);
}
#if defined(BT_SUPPORT) && !defined(__ANDROID__) && !defined(__APPLE__)
static dc_status_t bluetooth_device_open(dc_context_t *context, device_data_t *data)
{
dc_bluetooth_address_t address = 0;
dc_iterator_t *iterator = NULL;
dc_bluetooth_device_t *device = NULL;
// Try to find the rfcomm device address
dc_bluetooth_iterator_new (&iterator, context, data->descriptor);
while (dc_iterator_next (iterator, &device) == DC_STATUS_SUCCESS) {
address = dc_bluetooth_device_get_address (device);
dc_bluetooth_device_free (device);
break;
}
dc_iterator_free (iterator);
if (!address) {
dev_info("No rfcomm device found");
return DC_STATUS_NODEVICE;
}
dev_info("Opening rfcomm address %llu", address);
return dc_bluetooth_open(&data->iostream, context, address, 0);
}
#endif
dc_status_t divecomputer_device_open(device_data_t *data)
{
dc_status_t rc = DC_STATUS_UNSUPPORTED;
dc_context_t *context = data->context;
unsigned int transports, supported;
transports = dc_descriptor_get_transports(data->descriptor);
supported = get_supported_transports(data);
transports &= supported;
if (!transports) {
dev_info("Dive computer transport not supported");
return DC_STATUS_UNSUPPORTED;
}
#ifdef BT_SUPPORT
if (transports & DC_TRANSPORT_BLUETOOTH) {
dev_info("Opening rfcomm stream %s", data->devname.c_str());
#if defined(__ANDROID__) || defined(__APPLE__)
// we don't have BT on iOS in the first place, so this is for Android and macOS
rc = rfcomm_stream_open(&data->iostream, context, data->devname.c_str());
#else
rc = bluetooth_device_open(context, data);
#endif
if (rc == DC_STATUS_SUCCESS)
return rc;
}
#endif
#ifdef BLE_SUPPORT
if (transports & DC_TRANSPORT_BLE) {
dev_info("Connecting to BLE device %s", data->devname.c_str());
rc = ble_packet_open(&data->iostream, context, data->devname.c_str(), data);
if (rc == DC_STATUS_SUCCESS)
return rc;
}
#endif
if (transports & DC_TRANSPORT_USBHID) {
dev_info("Connecting to USB HID device");
rc = usbhid_device_open(&data->iostream, context, data);
if (rc == DC_STATUS_SUCCESS)
return rc;
}
if (transports & DC_TRANSPORT_USB) {
dev_info("Connecting to native USB device");
rc = usb_device_open(&data->iostream, context, data);
if (rc == DC_STATUS_SUCCESS)
return rc;
}
if (transports & DC_TRANSPORT_SERIAL) {
dev_info("Opening serial device %s", data->devname.c_str());
#ifdef SERIAL_FTDI
if (!strcasecmp(data->devname.c_str(), "ftdi"))
return ftdi_open(&data->iostream, context);
#endif
#ifdef __ANDROID__
if (data->androidUsbDeviceDescriptor)
return serial_usb_android_open(&data->iostream, context, data->androidUsbDeviceDescriptor);
#endif
rc = dc_serial_open(&data->iostream, context, data->devname.c_str());
if (rc == DC_STATUS_SUCCESS)
return rc;
}
if (transports & DC_TRANSPORT_IRDA) {
dev_info("Connecting to IRDA device");
rc = irda_device_open(&data->iostream, context, data);
if (rc == DC_STATUS_SUCCESS)
return rc;
}
if (transports & DC_TRANSPORT_USBSTORAGE) {
dev_info("Opening USB storage at %s", data->devname.c_str());
rc = dc_usb_storage_open(&data->iostream, context, data->devname.c_str());
if (rc == DC_STATUS_SUCCESS)
return rc;
}
return rc;
}
static dc_status_t sync_divecomputer_time(dc_device_t *device)
{
dc_datetime_t now;
dc_datetime_localtime(&now, dc_datetime_now());
return dc_device_timesync(device, &now);
}
std::string do_libdivecomputer_import(device_data_t *data)
{
dc_status_t rc;
FILE *fp = NULL;
import_dive_number = 0;
first_temp_is_air = 0;
data->device = NULL;
data->context = NULL;
data->iostream = NULL;
data->fingerprint = NULL;
data->fsize = 0;
if (data->libdc_log && !logfile_name.empty())
fp = subsurface_fopen(logfile_name.c_str(), "w");
data->libdc_logfile = fp;
rc = dc_context_new(&data->context);
if (rc != DC_STATUS_SUCCESS)
return translate("gettextFromC", "Unable to create libdivecomputer context");
if (fp) {
dc_context_set_loglevel(data->context, DC_LOGLEVEL_ALL);
dc_context_set_logfunc(data->context, logfunc, fp);
fprintf(data->libdc_logfile, "Subsurface: v%s, ", subsurface_git_version());
fprintf(data->libdc_logfile, "built with libdivecomputer v%s\n", dc_version(NULL));
}
std::string err = translate("gettextFromC", "Unable to open %s %s (%s)");
rc = divecomputer_device_open(data);
if (rc != DC_STATUS_SUCCESS) {
dev_info("Import error: %s", errmsg(rc));
} else {
dev_info("Connecting ...");
rc = dc_device_open(&data->device, data->context, data->descriptor, data->iostream);
if (rc != DC_STATUS_SUCCESS) {
INFO("dc_device_open error value of %d", rc);
if (subsurface_access(data->devname.c_str(), R_OK | W_OK) != 0)
#if defined(SUBSURFACE_MOBILE)
err = translate("gettextFromC", "Error opening the device %s %s (%s).\nIn most cases, in order to debug this issue, it is useful to send the developers the log files. You can copy them to the clipboard in the About dialog.");
#else
err = translate("gettextFromC", "Error opening the device %s %s (%s).\nIn most cases, in order to debug this issue, a libdivecomputer logfile will be useful.\nYou can create this logfile by selecting the corresponding checkbox in the download dialog.");
#endif
} else {
dev_info("Starting import ...");
err = do_device_import(data);
/* TODO: Show the logfile to the user on error. */
dev_info("Import complete");
if (err.empty() && data->sync_time) {
dev_info("Syncing dive computer time ...");
rc = sync_divecomputer_time(data->device);
switch (rc) {
case DC_STATUS_SUCCESS:
dev_info("Time sync complete");
break;
case DC_STATUS_UNSUPPORTED:
dev_info("Time sync not supported by dive computer");
break;
default:
dev_info("Time sync failed");
break;
}
}
dc_device_close(data->device);
data->device = NULL;
if (data->log->dives.empty())
dev_info(translate("gettextFromC", "No new dives downloaded from dive computer"));
}
dc_iostream_close(data->iostream);
data->iostream = NULL;
}
dc_context_free(data->context);
data->context = NULL;
if (fp) {
fclose(fp);
}
/*
* Note that we save the fingerprint unconditionally.
* This is ok because we only have fingerprint data if
* we got a dive header, and because we will use the
* dive id to verify that we actually have the dive
* it refers to before we use the fingerprint data.
*
* For now we save the fingerprint both to the local file system
* and to the global fingerprint table (to be then saved out with
* the dive log data).
*/
save_fingerprint(data);
if (data->fingerprint && data->fdiveid)
create_fingerprint_node(fingerprints, calculate_string_hash(data->model.c_str()), data->devinfo.serial,
data->fingerprint, data->fsize, data->fdeviceid, data->fdiveid);
free(data->fingerprint);
data->fingerprint = NULL;
return err;
}
/*
* Parse data buffers instead of dc devices downloaded data.
* Intended to be used to parse profile data from binary files during import tasks.
* Actually included Uwatec families because of works on datatrak and smartrak logs
* and OSTC families for OSTCTools logs import.
* For others, simply include them in the switch (check parameters).
* Note that dc_descriptor_t in data *must* have been filled using dc_descriptor_iterator()
* calls.
*/
dc_status_t libdc_buffer_parser(struct dive *dive, device_data_t *data, unsigned char *buffer, int size)
{
dc_status_t rc;
dc_parser_t *parser = NULL;
switch (dc_descriptor_get_type(data->descriptor)) {
case DC_FAMILY_UWATEC_ALADIN:
case DC_FAMILY_UWATEC_MEMOMOUSE:
case DC_FAMILY_UWATEC_SMART:
case DC_FAMILY_UWATEC_MERIDIAN:
case DC_FAMILY_HW_OSTC:
case DC_FAMILY_HW_FROG:
case DC_FAMILY_HW_OSTC3:
rc = dc_parser_new2(&parser, data->context, data->descriptor, buffer, size);
break;
default:
report_error("Device type not handled!");
return DC_STATUS_UNSUPPORTED;
}
if (rc != DC_STATUS_SUCCESS) {
report_error("Error creating parser.");
dc_parser_destroy (parser);
return rc;
}
// Do not parse Aladin/Memomouse headers as they are fakes
// Do not return on error, we can still parse the samples
if (dc_descriptor_get_type(data->descriptor) != DC_FAMILY_UWATEC_ALADIN && dc_descriptor_get_type(data->descriptor) != DC_FAMILY_UWATEC_MEMOMOUSE) {
rc = libdc_header_parser (parser, data, dive);
if (rc != DC_STATUS_SUCCESS) {
report_error("Error parsing the dive header data. Dive # %d: %s", dive->number, errmsg(rc));
}
}
rc = dc_parser_samples_foreach (parser, sample_cb, &dive->dcs[0]);
if (rc != DC_STATUS_SUCCESS) {
report_error("Error parsing the sample data. Dive # %d: %s", dive->number, errmsg(rc));
dc_parser_destroy (parser);
return rc;
}
dc_parser_destroy(parser);
return DC_STATUS_SUCCESS;
}
/*
* Returns a dc_descriptor_t structure based on dc model's number and family.
*
* That dc_descriptor_t needs to be freed with dc_descriptor_free by the reciver.
*/
dc_descriptor_t *get_descriptor(dc_family_t type, unsigned int model)
{
dc_descriptor_t *descriptor = NULL, *needle = NULL;
dc_iterator_t *iterator = NULL;
dc_status_t rc;
rc = dc_descriptor_iterator(&iterator);
if (rc != DC_STATUS_SUCCESS) {
report_info("Error creating the device descriptor iterator: %s", errmsg(rc));
return NULL;
}
while ((dc_iterator_next(iterator, &descriptor)) == DC_STATUS_SUCCESS) {
unsigned int desc_model = dc_descriptor_get_model(descriptor);
dc_family_t desc_type = dc_descriptor_get_type(descriptor);
if (model == desc_model && type == desc_type) {
needle = descriptor;
break;
}
dc_descriptor_free(descriptor);
}
dc_iterator_free(iterator);
return needle;
}