mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-28 13:10:19 +00:00
5f44fdd9cf
The latest CCR patches had rendered the planner not usable for CCR dives. This patch corrects this (and reenables the CCR set point column for segments). The problem was that a new member setpoint of struct divepoint had been introduced, but there was already po2 which had the same meaning. This patch merges the two and renames them setpoint to prevent future confusion. Signed-off-by: Robert C. Helling <helling@atdotde.de> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
1283 lines
41 KiB
C
1283 lines
41 KiB
C
/* profile.c */
|
|
/* creates all the necessary data for drawing the dive profile
|
|
*/
|
|
#include "gettext.h"
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "dive.h"
|
|
#include "display.h"
|
|
#include "divelist.h"
|
|
|
|
#include "profile.h"
|
|
#include "gaspressures.h"
|
|
#include "deco.h"
|
|
#include "libdivecomputer/parser.h"
|
|
#include "libdivecomputer/version.h"
|
|
#include "membuffer.h"
|
|
|
|
|
|
//#define DEBUG_GAS 1
|
|
|
|
int selected_dive = -1; /* careful: 0 is a valid value */
|
|
unsigned int dc_number = 0;
|
|
|
|
static struct plot_data *last_pi_entry_new = NULL;
|
|
double calculate_ccr_po2(struct plot_data *entry, struct divecomputer *dc);
|
|
|
|
void fill_missing_segment_pressures(pr_track_t *);
|
|
struct pr_interpolate_struct get_pr_interpolate_data(pr_track_t *, struct plot_info *, int);
|
|
void fill_missing_tank_pressures(struct dive *, struct plot_info *, pr_track_t **, int);
|
|
void populate_pressure_information(struct dive *, struct divecomputer *, struct plot_info *, int);
|
|
|
|
#ifdef DEBUG_PI
|
|
/* debugging tool - not normally used */
|
|
static void dump_pi(struct plot_info *pi)
|
|
{
|
|
int i;
|
|
|
|
printf("pi:{nr:%d maxtime:%d meandepth:%d maxdepth:%d \n"
|
|
" maxpressure:%d mintemp:%d maxtemp:%d\n",
|
|
pi->nr, pi->maxtime, pi->meandepth, pi->maxdepth,
|
|
pi->maxpressure, pi->mintemp, pi->maxtemp);
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = &pi->entry[i];
|
|
printf(" entry[%d]:{cylinderindex:%d sec:%d pressure:{%d,%d}\n"
|
|
" time:%d:%02d temperature:%d depth:%d stopdepth:%d stoptime:%d ndl:%d smoothed:%d po2:%lf phe:%lf pn2:%lf sum-pp %lf}\n",
|
|
i, entry->cylinderindex, entry->sec,
|
|
entry->pressure[0], entry->pressure[1],
|
|
entry->sec / 60, entry->sec % 60,
|
|
entry->temperature, entry->depth, entry->stopdepth, entry->stoptime, entry->ndl, entry->smoothed,
|
|
entry->pressures.o2, entry->pressures.he, entry->pressures.n2,
|
|
entry->pressures.o2 + entry->pressures.he + entry->pressures.n2);
|
|
}
|
|
printf(" }\n");
|
|
}
|
|
#endif
|
|
|
|
#define ROUND_UP(x, y) ((((x) + (y) - 1) / (y)) * (y))
|
|
#define DIV_UP(x, y) (((x) + (y) - 1) / (y))
|
|
|
|
/*
|
|
* When showing dive profiles, we scale things to the
|
|
* current dive. However, we don't scale past less than
|
|
* 30 minutes or 90 ft, just so that small dives show
|
|
* up as such unless zoom is enabled.
|
|
* We also need to add 180 seconds at the end so the min/max
|
|
* plots correctly
|
|
*/
|
|
int get_maxtime(struct plot_info *pi)
|
|
{
|
|
int seconds = pi->maxtime;
|
|
if (prefs.zoomed_plot) {
|
|
/* Rounded up to one minute, with at least 2.5 minutes to
|
|
* spare.
|
|
* For dive times shorter than 10 minutes, we use seconds/4 to
|
|
* calculate the space dynamically.
|
|
* This is seamless since 600/4 = 150.
|
|
*/
|
|
if (seconds < 600)
|
|
return ROUND_UP(seconds + seconds / 4, 60);
|
|
else
|
|
return ROUND_UP(seconds + 150, 60);
|
|
} else {
|
|
/* min 30 minutes, rounded up to 5 minutes, with at least 2.5 minutes to spare */
|
|
return MAX(30 * 60, ROUND_UP(seconds + 150, 60 * 5));
|
|
}
|
|
}
|
|
|
|
/* get the maximum depth to which we want to plot
|
|
* take into account the additional vertical space needed to plot
|
|
* partial pressure graphs */
|
|
int get_maxdepth(struct plot_info *pi)
|
|
{
|
|
unsigned mm = pi->maxdepth;
|
|
int md;
|
|
|
|
if (prefs.zoomed_plot) {
|
|
/* Rounded up to 10m, with at least 3m to spare */
|
|
md = ROUND_UP(mm + 3000, 10000);
|
|
} else {
|
|
/* Minimum 30m, rounded up to 10m, with at least 3m to spare */
|
|
md = MAX((unsigned)30000, ROUND_UP(mm + 3000, 10000));
|
|
}
|
|
md += pi->maxpp * 9000;
|
|
return md;
|
|
}
|
|
|
|
/* collect all event names and whether we display them */
|
|
struct ev_select *ev_namelist;
|
|
int evn_allocated;
|
|
int evn_used;
|
|
|
|
#if WE_DONT_USE_THIS /* we need to implement event filters in Qt */
|
|
int evn_foreach (void (*callback)(const char *, bool *, void *), void *data) {
|
|
int i;
|
|
|
|
for (i = 0; i < evn_used; i++) {
|
|
/* here we display an event name on screen - so translate */
|
|
callback(translate("gettextFromC", ev_namelist[i].ev_name), &ev_namelist[i].plot_ev, data);
|
|
}
|
|
return i;
|
|
}
|
|
#endif /* WE_DONT_USE_THIS */
|
|
|
|
void clear_events(void)
|
|
{
|
|
evn_used = 0;
|
|
}
|
|
|
|
void remember_event(const char *eventname)
|
|
{
|
|
int i = 0, len;
|
|
|
|
if (!eventname || (len = strlen(eventname)) == 0)
|
|
return;
|
|
while (i < evn_used) {
|
|
if (!strncmp(eventname, ev_namelist[i].ev_name, len))
|
|
return;
|
|
i++;
|
|
}
|
|
if (evn_used == evn_allocated) {
|
|
evn_allocated += 10;
|
|
ev_namelist = realloc(ev_namelist, evn_allocated * sizeof(struct ev_select));
|
|
if (!ev_namelist)
|
|
/* we are screwed, but let's just bail out */
|
|
return;
|
|
}
|
|
ev_namelist[evn_used].ev_name = strdup(eventname);
|
|
ev_namelist[evn_used].plot_ev = true;
|
|
evn_used++;
|
|
}
|
|
|
|
/* Get local sac-rate (in ml/min) between entry1 and entry2 */
|
|
static int get_local_sac(struct plot_data *entry1, struct plot_data *entry2, struct dive *dive)
|
|
{
|
|
int index = entry1->cylinderindex;
|
|
cylinder_t *cyl;
|
|
int duration = entry2->sec - entry1->sec;
|
|
int depth, airuse;
|
|
pressure_t a, b;
|
|
double atm;
|
|
|
|
if (entry2->cylinderindex != index)
|
|
return 0;
|
|
if (duration <= 0)
|
|
return 0;
|
|
a.mbar = GET_PRESSURE(entry1);
|
|
b.mbar = GET_PRESSURE(entry2);
|
|
if (!b.mbar || a.mbar <= b.mbar)
|
|
return 0;
|
|
|
|
/* Mean pressure in ATM */
|
|
depth = (entry1->depth + entry2->depth) / 2;
|
|
atm = depth_to_atm(depth, dive);
|
|
|
|
cyl = dive->cylinder + index;
|
|
|
|
airuse = gas_volume(cyl, a) - gas_volume(cyl, b);
|
|
|
|
/* milliliters per minute */
|
|
return airuse / atm * 60 / duration;
|
|
}
|
|
|
|
static void analyze_plot_info_minmax_minute(struct plot_data *entry, struct plot_data *first, struct plot_data *last, int index)
|
|
{
|
|
struct plot_data *p = entry;
|
|
int time = entry->sec;
|
|
int seconds = 90 * (index + 1);
|
|
struct plot_data *min, *max;
|
|
int avg, nr;
|
|
|
|
/* Go back 'seconds' in time */
|
|
while (p > first) {
|
|
if (p[-1].sec < time - seconds)
|
|
break;
|
|
p--;
|
|
}
|
|
|
|
/* Then go forward until we hit an entry past the time */
|
|
min = max = p;
|
|
avg = p->depth;
|
|
nr = 1;
|
|
while (++p < last) {
|
|
int depth = p->depth;
|
|
if (p->sec > time + seconds)
|
|
break;
|
|
avg += depth;
|
|
nr++;
|
|
if (depth < min->depth)
|
|
min = p;
|
|
if (depth > max->depth)
|
|
max = p;
|
|
}
|
|
entry->min[index] = min;
|
|
entry->max[index] = max;
|
|
entry->avg[index] = (avg + nr / 2) / nr;
|
|
}
|
|
|
|
static void analyze_plot_info_minmax(struct plot_data *entry, struct plot_data *first, struct plot_data *last)
|
|
{
|
|
analyze_plot_info_minmax_minute(entry, first, last, 0);
|
|
analyze_plot_info_minmax_minute(entry, first, last, 1);
|
|
analyze_plot_info_minmax_minute(entry, first, last, 2);
|
|
}
|
|
|
|
static velocity_t velocity(int speed)
|
|
{
|
|
velocity_t v;
|
|
|
|
if (speed < -304) /* ascent faster than -60ft/min */
|
|
v = CRAZY;
|
|
else if (speed < -152) /* above -30ft/min */
|
|
v = FAST;
|
|
else if (speed < -76) /* -15ft/min */
|
|
v = MODERATE;
|
|
else if (speed < -25) /* -5ft/min */
|
|
v = SLOW;
|
|
else if (speed < 25) /* very hard to find data, but it appears that the recommendations
|
|
for descent are usually about 2x ascent rate; still, we want
|
|
stable to mean stable */
|
|
v = STABLE;
|
|
else if (speed < 152) /* between 5 and 30ft/min is considered slow */
|
|
v = SLOW;
|
|
else if (speed < 304) /* up to 60ft/min is moderate */
|
|
v = MODERATE;
|
|
else if (speed < 507) /* up to 100ft/min is fast */
|
|
v = FAST;
|
|
else /* more than that is just crazy - you'll blow your ears out */
|
|
v = CRAZY;
|
|
|
|
return v;
|
|
}
|
|
|
|
struct plot_info *analyze_plot_info(struct plot_info *pi)
|
|
{
|
|
int i;
|
|
int nr = pi->nr;
|
|
|
|
/* Smoothing function: 5-point triangular smooth */
|
|
for (i = 2; i < nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
int depth;
|
|
|
|
if (i < nr - 2) {
|
|
depth = entry[-2].depth + 2 * entry[-1].depth + 3 * entry[0].depth + 2 * entry[1].depth + entry[2].depth;
|
|
entry->smoothed = (depth + 4) / 9;
|
|
}
|
|
/* vertical velocity in mm/sec */
|
|
/* Linus wants to smooth this - let's at least look at the samples that aren't FAST or CRAZY */
|
|
if (entry[0].sec - entry[-1].sec) {
|
|
entry->speed = (entry[0].depth - entry[-1].depth) / (entry[0].sec - entry[-1].sec);
|
|
entry->velocity = velocity(entry->speed);
|
|
/* if our samples are short and we aren't too FAST*/
|
|
if (entry[0].sec - entry[-1].sec < 15 && entry->velocity < FAST) {
|
|
int past = -2;
|
|
while (i + past > 0 && entry[0].sec - entry[past].sec < 15)
|
|
past--;
|
|
entry->velocity = velocity((entry[0].depth - entry[past].depth) /
|
|
(entry[0].sec - entry[past].sec));
|
|
}
|
|
} else {
|
|
entry->velocity = STABLE;
|
|
entry->speed = 0;
|
|
}
|
|
}
|
|
|
|
/* One-, two- and three-minute minmax data */
|
|
for (i = 0; i < nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
analyze_plot_info_minmax(entry, pi->entry, pi->entry + nr);
|
|
}
|
|
|
|
return pi;
|
|
}
|
|
|
|
/*
|
|
* If the event has an explicit cylinder index,
|
|
* we return that. If it doesn't, we return the best
|
|
* match based on the gasmix.
|
|
*
|
|
* Some dive computers give cylinder indexes, some
|
|
* give just the gas mix.
|
|
*/
|
|
int get_cylinder_index(struct dive *dive, struct event *ev)
|
|
{
|
|
int i;
|
|
int best = 0, score = INT_MAX;
|
|
int target_o2, target_he;
|
|
struct gasmix *g;
|
|
|
|
if (ev->gas.index >= 0)
|
|
return ev->gas.index;
|
|
|
|
g = get_gasmix_from_event(ev);
|
|
target_o2 = get_o2(g);
|
|
target_he = get_he(g);
|
|
|
|
/*
|
|
* Try to find a cylinder that best matches the target gas
|
|
* mix.
|
|
*/
|
|
for (i = 0; i < MAX_CYLINDERS; i++) {
|
|
cylinder_t *cyl = dive->cylinder + i;
|
|
int delta_o2, delta_he, distance;
|
|
|
|
if (cylinder_nodata(cyl))
|
|
continue;
|
|
|
|
delta_o2 = get_o2(&cyl->gasmix) - target_o2;
|
|
delta_he = get_he(&cyl->gasmix) - target_he;
|
|
distance = delta_o2 * delta_o2;
|
|
distance += delta_he * delta_he;
|
|
|
|
if (distance >= score)
|
|
continue;
|
|
score = distance;
|
|
best = i;
|
|
}
|
|
return best;
|
|
}
|
|
|
|
struct event *get_next_event(struct event *event, char *name)
|
|
{
|
|
if (!name || !*name)
|
|
return NULL;
|
|
while (event) {
|
|
if (!strcmp(event->name, name))
|
|
return event;
|
|
event = event->next;
|
|
}
|
|
return event;
|
|
}
|
|
|
|
static int count_events(struct divecomputer *dc)
|
|
{
|
|
int result = 0;
|
|
struct event *ev = dc->events;
|
|
while (ev != NULL) {
|
|
result++;
|
|
ev = ev->next;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int set_cylinder_index(struct plot_info *pi, int i, int cylinderindex, unsigned int end)
|
|
{
|
|
while (i < pi->nr) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
if (entry->sec > end)
|
|
break;
|
|
if (entry->cylinderindex != cylinderindex) {
|
|
entry->cylinderindex = cylinderindex;
|
|
entry->pressure[0] = 0;
|
|
}
|
|
i++;
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static void check_gas_change_events(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int i = 0, cylinderindex = 0;
|
|
struct event *ev = get_next_event(dc->events, "gaschange");
|
|
|
|
if (!ev)
|
|
return;
|
|
|
|
do {
|
|
i = set_cylinder_index(pi, i, cylinderindex, ev->time.seconds);
|
|
cylinderindex = get_cylinder_index(dive, ev);
|
|
ev = get_next_event(ev->next, "gaschange");
|
|
} while (ev);
|
|
set_cylinder_index(pi, i, cylinderindex, ~0u);
|
|
}
|
|
|
|
|
|
struct plot_info calculate_max_limits_new(struct dive *dive, struct divecomputer *dc)
|
|
{
|
|
static struct plot_info pi;
|
|
int maxdepth = dive->maxdepth.mm;
|
|
int maxtime = 0;
|
|
int maxpressure = 0, minpressure = INT_MAX;
|
|
int maxhr = 0, minhr = INT_MAX;
|
|
int mintemp = dive->mintemp.mkelvin;
|
|
int maxtemp = dive->maxtemp.mkelvin;
|
|
int cyl;
|
|
|
|
/* Get the per-cylinder maximum pressure if they are manual */
|
|
for (cyl = 0; cyl < MAX_CYLINDERS; cyl++) {
|
|
int mbar = dive->cylinder[cyl].start.mbar;
|
|
if (mbar > maxpressure)
|
|
maxpressure = mbar;
|
|
if (mbar < minpressure)
|
|
minpressure = mbar;
|
|
}
|
|
|
|
/* Then do all the samples from all the dive computers */
|
|
do {
|
|
int i = dc->samples;
|
|
int lastdepth = 0;
|
|
struct sample *s = dc->sample;
|
|
|
|
while (--i >= 0) {
|
|
int depth = s->depth.mm;
|
|
int pressure = s->cylinderpressure.mbar;
|
|
int temperature = s->temperature.mkelvin;
|
|
int heartbeat = s->heartbeat;
|
|
|
|
if (!mintemp && temperature < mintemp)
|
|
mintemp = temperature;
|
|
if (temperature > maxtemp)
|
|
maxtemp = temperature;
|
|
|
|
if (pressure && pressure < minpressure)
|
|
minpressure = pressure;
|
|
if (pressure > maxpressure)
|
|
maxpressure = pressure;
|
|
if (heartbeat > maxhr)
|
|
maxhr = heartbeat;
|
|
if (heartbeat < minhr)
|
|
minhr = heartbeat;
|
|
|
|
if (depth > maxdepth)
|
|
maxdepth = s->depth.mm;
|
|
if ((depth > SURFACE_THRESHOLD || lastdepth > SURFACE_THRESHOLD) &&
|
|
s->time.seconds > maxtime)
|
|
maxtime = s->time.seconds;
|
|
lastdepth = depth;
|
|
s++;
|
|
}
|
|
} while ((dc = dc->next) != NULL);
|
|
|
|
if (minpressure > maxpressure)
|
|
minpressure = 0;
|
|
if (minhr > maxhr)
|
|
minhr = 0;
|
|
|
|
memset(&pi, 0, sizeof(pi));
|
|
pi.maxdepth = maxdepth;
|
|
pi.maxtime = maxtime;
|
|
pi.maxpressure = maxpressure;
|
|
pi.minpressure = minpressure;
|
|
pi.minhr = minhr;
|
|
pi.maxhr = maxhr;
|
|
pi.mintemp = mintemp;
|
|
pi.maxtemp = maxtemp;
|
|
return pi;
|
|
}
|
|
|
|
/* copy the previous entry (we know this exists), update time and depth
|
|
* and zero out the sensor pressure (since this is a synthetic entry)
|
|
* increment the entry pointer and the count of synthetic entries. */
|
|
#define INSERT_ENTRY(_time, _depth) \
|
|
*entry = entry[-1]; \
|
|
entry->sec = _time; \
|
|
entry->depth = _depth; \
|
|
SENSOR_PRESSURE(entry) = 0; \
|
|
entry++; \
|
|
idx++
|
|
|
|
struct plot_data *populate_plot_entries(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int idx, maxtime, nr, i;
|
|
int lastdepth, lasttime, lasttemp = 0;
|
|
struct plot_data *plot_data;
|
|
struct event *ev = dc->events;
|
|
|
|
maxtime = pi->maxtime;
|
|
|
|
/*
|
|
* We want to have a plot_info event at least every 10s (so "maxtime/10+1"),
|
|
* but samples could be more dense than that (so add in dc->samples). We also
|
|
* need to have one for every event (so count events and add that) and
|
|
* additionally we want two surface events around the whole thing (thus the
|
|
* additional 4).
|
|
*/
|
|
nr = dc->samples + 5 + maxtime / 10 + count_events(dc);
|
|
plot_data = calloc(nr, sizeof(struct plot_data));
|
|
pi->entry = plot_data;
|
|
if (!plot_data)
|
|
return NULL;
|
|
pi->nr = nr;
|
|
idx = 2; /* the two extra events at the start */
|
|
|
|
lastdepth = 0;
|
|
lasttime = 0;
|
|
/* skip events at time = 0 */
|
|
while (ev && ev->time.seconds == 0)
|
|
ev = ev->next;
|
|
for (i = 0; i < dc->samples; i++) {
|
|
struct plot_data *entry = plot_data + idx;
|
|
struct sample *sample = dc->sample + i;
|
|
int time = sample->time.seconds;
|
|
int offset, delta;
|
|
int depth = sample->depth.mm;
|
|
|
|
/* Add intermediate plot entries if required */
|
|
delta = time - lasttime;
|
|
if (delta < 0) {
|
|
time = lasttime;
|
|
delta = 0;
|
|
}
|
|
for (offset = 10; offset < delta; offset += 10) {
|
|
if (lasttime + offset > maxtime)
|
|
break;
|
|
|
|
/* Add events if they are between plot entries */
|
|
while (ev && ev->time.seconds < lasttime + offset) {
|
|
INSERT_ENTRY(ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta));
|
|
ev = ev->next;
|
|
}
|
|
|
|
/* now insert the time interpolated entry */
|
|
INSERT_ENTRY(lasttime + offset, interpolate(lastdepth, depth, offset, delta));
|
|
|
|
/* skip events that happened at this time */
|
|
while (ev && ev->time.seconds == lasttime + offset)
|
|
ev = ev->next;
|
|
}
|
|
|
|
/* Add events if they are between plot entries */
|
|
while (ev && ev->time.seconds < time) {
|
|
INSERT_ENTRY(ev->time.seconds, interpolate(lastdepth, depth, ev->time.seconds - lasttime, delta));
|
|
ev = ev->next;
|
|
}
|
|
|
|
if (time > maxtime)
|
|
break;
|
|
|
|
entry->sec = time;
|
|
entry->depth = depth;
|
|
|
|
entry->stopdepth = sample->stopdepth.mm;
|
|
entry->stoptime = sample->stoptime.seconds;
|
|
entry->ndl = sample->ndl.seconds;
|
|
pi->has_ndl |= sample->ndl.seconds;
|
|
entry->in_deco = sample->in_deco;
|
|
entry->cns = sample->cns;
|
|
if (dc->dctype == CCR) {
|
|
entry->o2setpoint = sample->setpoint.mbar / 1000.0; // for rebreathers
|
|
entry->o2sensor[0] = sample->o2sensor[0].mbar / 1000.0; // for up to three rebreather O2 sensors
|
|
entry->o2sensor[1] = sample->o2sensor[1].mbar / 1000.0;
|
|
entry->o2sensor[2] = sample->o2sensor[2].mbar / 1000.0;
|
|
} else {
|
|
entry->pressures.o2 = sample->setpoint.mbar / 1000.0;
|
|
}
|
|
/* FIXME! sensor index -> cylinder index translation! */
|
|
entry->cylinderindex = sample->sensor;
|
|
SENSOR_PRESSURE(entry) = sample->cylinderpressure.mbar;
|
|
DILUENT_PRESSURE(entry) = sample->diluentpressure.mbar;
|
|
if (sample->temperature.mkelvin)
|
|
entry->temperature = lasttemp = sample->temperature.mkelvin;
|
|
else
|
|
entry->temperature = lasttemp;
|
|
entry->heartbeat = sample->heartbeat;
|
|
entry->bearing = sample->bearing.degrees;
|
|
|
|
/* skip events that happened at this time */
|
|
while (ev && ev->time.seconds == time)
|
|
ev = ev->next;
|
|
lasttime = time;
|
|
lastdepth = depth;
|
|
idx++;
|
|
}
|
|
|
|
/* Add two final surface events */
|
|
plot_data[idx++].sec = lasttime + 1;
|
|
plot_data[idx++].sec = lasttime + 2;
|
|
pi->nr = idx;
|
|
|
|
return plot_data;
|
|
}
|
|
|
|
#undef INSERT_ENTRY
|
|
|
|
static void populate_cylinder_pressure_data(int idx, int start, int end, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
|
|
/* First: check that none of the entries has sensor pressure for this cylinder index */
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
if (entry->cylinderindex != idx)
|
|
continue;
|
|
if (SENSOR_PRESSURE(entry))
|
|
return;
|
|
}
|
|
|
|
/* Then: populate the first entry with the beginning cylinder pressure */
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
if (entry->cylinderindex != idx)
|
|
continue;
|
|
SENSOR_PRESSURE(entry) = start;
|
|
break;
|
|
}
|
|
|
|
/* .. and the last entry with the ending cylinder pressure */
|
|
for (i = pi->nr; --i >= 0; /* nothing */) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
if (entry->cylinderindex != idx)
|
|
continue;
|
|
SENSOR_PRESSURE(entry) = end;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void calculate_sac(struct dive *dive, struct plot_info *pi)
|
|
{
|
|
int i = 0, last = 0;
|
|
struct plot_data *last_entry = NULL;
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
if (!last_entry || last_entry->cylinderindex != entry->cylinderindex) {
|
|
last = i;
|
|
last_entry = entry;
|
|
entry->sac = get_local_sac(entry, pi->entry + i + 1, dive);
|
|
} else {
|
|
int j;
|
|
entry->sac = 0;
|
|
for (j = last; j < i; j++)
|
|
entry->sac += get_local_sac(pi->entry + j, pi->entry + j + 1, dive);
|
|
entry->sac /= (i - last);
|
|
if (entry->sec - last_entry->sec >= SAC_WINDOW) {
|
|
last++;
|
|
last_entry = pi->entry + last;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void populate_secondary_sensor_data(struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
/* We should try to see if it has interesting pressure data here */
|
|
}
|
|
|
|
static void setup_gas_sensor_pressure(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
struct divecomputer *secondary;
|
|
|
|
/* First, populate the pressures with the manual cylinder data.. */
|
|
for (i = 0; i < MAX_CYLINDERS; i++) {
|
|
cylinder_t *cyl = dive->cylinder + i;
|
|
int start = cyl->start.mbar ?: cyl->sample_start.mbar;
|
|
int end = cyl->end.mbar ?: cyl->sample_end.mbar;
|
|
|
|
if (!start || !end)
|
|
continue;
|
|
|
|
populate_cylinder_pressure_data(i, start, end, pi);
|
|
}
|
|
|
|
/*
|
|
* Here, we should try to walk through all the dive computers,
|
|
* and try to see if they have sensor data different from the
|
|
* primary dive computer (dc).
|
|
*/
|
|
secondary = &dive->dc;
|
|
do {
|
|
if (secondary == dc)
|
|
continue;
|
|
populate_secondary_sensor_data(dc, pi);
|
|
} while ((secondary = secondary->next) != NULL);
|
|
}
|
|
|
|
/* calculate DECO STOP / TTS / NDL */
|
|
static void calculate_ndl_tts(double tissue_tolerance, struct plot_data *entry, struct dive *dive, double surface_pressure)
|
|
{
|
|
/* FIXME: This should be configurable */
|
|
/* ascent speed up to first deco stop */
|
|
const int ascent_s_per_step = 1;
|
|
const int ascent_mm_per_step = 200; /* 12 m/min */
|
|
/* ascent speed between deco stops */
|
|
const int ascent_s_per_deco_step = 1;
|
|
const int ascent_mm_per_deco_step = 16; /* 1 m/min */
|
|
/* how long time steps in deco calculations? */
|
|
const int time_stepsize = 60;
|
|
const int deco_stepsize = 3000;
|
|
/* at what depth is the current deco-step? */
|
|
int next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1), deco_stepsize);
|
|
int ascent_depth = entry->depth;
|
|
/* at what time should we give up and say that we got enuff NDL? */
|
|
const int max_ndl = 7200;
|
|
int cylinderindex = entry->cylinderindex;
|
|
|
|
/* If we don't have a ceiling yet, calculate ndl. Don't try to calculate
|
|
* a ndl for lower values than 3m it would take forever */
|
|
if (next_stop == 0) {
|
|
if (entry->depth < 3000) {
|
|
entry->ndl = max_ndl;
|
|
return;
|
|
}
|
|
/* stop if the ndl is above max_ndl seconds, and call it plenty of time */
|
|
while (entry->ndl_calc < max_ndl && deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1) <= 0) {
|
|
entry->ndl_calc += time_stepsize;
|
|
tissue_tolerance = add_segment(depth_to_mbar(entry->depth, dive) / 1000.0,
|
|
&dive->cylinder[cylinderindex].gasmix, time_stepsize, entry->pressures.o2 * 1000, dive);
|
|
}
|
|
/* we don't need to calculate anything else */
|
|
return;
|
|
}
|
|
|
|
/* We are in deco */
|
|
entry->in_deco_calc = true;
|
|
|
|
/* Add segments for movement to stopdepth */
|
|
for (; ascent_depth > next_stop; ascent_depth -= ascent_mm_per_step, entry->tts_calc += ascent_s_per_step) {
|
|
tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0,
|
|
&dive->cylinder[cylinderindex].gasmix, ascent_s_per_step, entry->pressures.o2 * 1000, dive);
|
|
next_stop = ROUND_UP(deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1), deco_stepsize);
|
|
}
|
|
ascent_depth = next_stop;
|
|
|
|
/* And how long is the current deco-step? */
|
|
entry->stoptime_calc = 0;
|
|
entry->stopdepth_calc = next_stop;
|
|
next_stop -= deco_stepsize;
|
|
|
|
/* And how long is the total TTS */
|
|
while (next_stop >= 0) {
|
|
/* save the time for the first stop to show in the graph */
|
|
if (ascent_depth == entry->stopdepth_calc)
|
|
entry->stoptime_calc += time_stepsize;
|
|
|
|
entry->tts_calc += time_stepsize;
|
|
tissue_tolerance = add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0,
|
|
&dive->cylinder[cylinderindex].gasmix, time_stepsize, entry->pressures.o2 * 1000, dive);
|
|
|
|
if (deco_allowed_depth(tissue_tolerance, surface_pressure, dive, 1) <= next_stop) {
|
|
/* move to the next stop and add the travel between stops */
|
|
for (; ascent_depth > next_stop; ascent_depth -= ascent_mm_per_deco_step, entry->tts_calc += ascent_s_per_deco_step)
|
|
add_segment(depth_to_mbar(ascent_depth, dive) / 1000.0,
|
|
&dive->cylinder[cylinderindex].gasmix, ascent_s_per_deco_step, entry->pressures.o2 * 1000, dive);
|
|
ascent_depth = next_stop;
|
|
next_stop -= deco_stepsize;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Let's try to do some deco calculations.
|
|
*/
|
|
void calculate_deco_information(struct dive *dive, struct divecomputer *dc, struct plot_info *pi, bool print_mode)
|
|
{
|
|
int i;
|
|
double surface_pressure = (dc->surface_pressure.mbar ? dc->surface_pressure.mbar : get_surface_pressure_in_mbar(dive, true)) / 1000.0;
|
|
double tissue_tolerance = 0;
|
|
int last_ndl_tts_calc_time = 0;
|
|
for (i = 1; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
int j, t0 = (entry - 1)->sec, t1 = entry->sec;
|
|
int time_stepsize = 20;
|
|
|
|
entry->ambpressure = (double) depth_to_mbar(entry->depth, dive) / 1000.0;
|
|
entry->gfline = MAX((double) prefs.gflow, (entry->ambpressure - surface_pressure) / (gf_low_pressure_this_dive - surface_pressure) *
|
|
(prefs.gflow - prefs.gfhigh) + prefs.gfhigh) * (100.0 - AMB_PERCENTAGE) / 100.0 + AMB_PERCENTAGE;
|
|
if (t0 != t1 && t1 - t0 < time_stepsize)
|
|
time_stepsize = t1 - t0;
|
|
for (j = t0 + time_stepsize; j <= t1; j += time_stepsize) {
|
|
int depth = interpolate(entry[-1].depth, entry[0].depth, j - t0, t1 - t0);
|
|
double min_pressure = add_segment(depth_to_mbar(depth, dive) / 1000.0,
|
|
&dive->cylinder[entry->cylinderindex].gasmix, time_stepsize, entry->pressures.o2 * 1000, dive);
|
|
tissue_tolerance = min_pressure;
|
|
if (j - t0 < time_stepsize)
|
|
time_stepsize = j - t0;
|
|
}
|
|
if (t0 == t1)
|
|
entry->ceiling = (entry - 1)->ceiling;
|
|
else
|
|
entry->ceiling = deco_allowed_depth(tissue_tolerance, surface_pressure, dive, !prefs.calcceiling3m);
|
|
for (j = 0; j < 16; j++) {
|
|
double m_value = buehlmann_inertgas_a[j] + entry->ambpressure / buehlmann_inertgas_b[j];
|
|
entry->ceilings[j] = deco_allowed_depth(tolerated_by_tissue[j], surface_pressure, dive, 1);
|
|
entry->percentages[j] = tissue_inertgas_saturation[j] < entry->ambpressure ?
|
|
tissue_inertgas_saturation[j] / entry->ambpressure * AMB_PERCENTAGE :
|
|
AMB_PERCENTAGE + (tissue_inertgas_saturation[j] - entry->ambpressure) / (m_value - entry->ambpressure) * (100.0 - AMB_PERCENTAGE);
|
|
}
|
|
|
|
/* should we do more calculations?
|
|
* We don't for print-mode because this info doesn't show up there */
|
|
if (prefs.calcndltts && !print_mode) {
|
|
/* only calculate ndl/tts on every 30 seconds */
|
|
if ((entry->sec - last_ndl_tts_calc_time) < 30) {
|
|
struct plot_data *prev_entry = (entry - 1);
|
|
entry->stoptime_calc = prev_entry->stoptime_calc;
|
|
entry->stopdepth_calc = prev_entry->stopdepth_calc;
|
|
entry->tts_calc = prev_entry->tts_calc;
|
|
entry->ndl_calc = prev_entry->ndl_calc;
|
|
continue;
|
|
}
|
|
last_ndl_tts_calc_time = entry->sec;
|
|
|
|
/* We are going to mess up deco state, so store it for later restore */
|
|
char *cache_data = NULL;
|
|
cache_deco_state(tissue_tolerance, &cache_data);
|
|
calculate_ndl_tts(tissue_tolerance, entry, dive, surface_pressure);
|
|
/* Restore "real" deco state for next real time step */
|
|
tissue_tolerance = restore_deco_state(cache_data);
|
|
free(cache_data);
|
|
}
|
|
}
|
|
#if DECO_CALC_DEBUG & 1
|
|
dump_tissues();
|
|
#endif
|
|
}
|
|
|
|
|
|
/* Function calculate_ccr_po2: This function takes information from one plot_data structure (i.e. one point on
|
|
* the dive profile), containing the oxygen sensor values of a CCR system and, for that plot_data structure,
|
|
* calculates the po2 value from the sensor data. Several rules are applied, depending on how many o2 sensors
|
|
* there are and the differences among the readings from these sensors.
|
|
*/
|
|
double calculate_ccr_po2(struct plot_data *entry, struct divecomputer *dc) {
|
|
double sump = 0.0, midp, minp = 999.9, maxp = -999.9;
|
|
double diff_limit = 100; // The limit beyond which O2 sensor differences are considered significant (default = 100 mbar)
|
|
int i, j, np = 0;
|
|
|
|
for (i=0; i < dc->no_o2sensors; i++)
|
|
if (entry->o2sensor[i]) { // Valid reading
|
|
++np;
|
|
sump += entry->o2sensor[i];
|
|
minp = MIN(minp, entry->o2sensor[i]);
|
|
maxp = MAX(maxp, entry->o2sensor[i]);
|
|
}
|
|
switch (np) {
|
|
case 0: // Uhoh
|
|
return entry->o2setpoint;
|
|
case 1: // Return what we have
|
|
return sump;
|
|
case 2: // Take the average
|
|
return sump / 2;
|
|
case 3: // Voting logic
|
|
if (2 * maxp - sump + minp < diff_limit) { // Upper difference acceptable...
|
|
if (2 * minp - sump + maxp) // ...and lower difference acceptable
|
|
return sump / 3;
|
|
else
|
|
return (sump - minp) / 2;
|
|
} else {
|
|
if (2 * minp - sump + maxp) // ...but lower difference acceptable
|
|
return (sump - maxp) / 2;
|
|
else
|
|
return sump / 3;
|
|
}
|
|
default: // This should not happen
|
|
assert(np <= 3);
|
|
return 0.0;
|
|
}
|
|
}
|
|
|
|
static void calculate_gas_information_new(struct dive *dive, struct plot_info *pi)
|
|
{
|
|
int i;
|
|
double amb_pressure;
|
|
|
|
for (i = 1; i < pi->nr; i++) {
|
|
int fo2, fhe;
|
|
struct plot_data *entry = pi->entry + i;
|
|
int cylinderindex = entry->cylinderindex;
|
|
|
|
amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0;
|
|
fo2 = get_o2(&dive->cylinder[cylinderindex].gasmix);
|
|
fhe = get_he(&dive->cylinder[cylinderindex].gasmix);
|
|
|
|
fill_pressures(&entry->pressures, amb_pressure, &dive->cylinder[cylinderindex].gasmix, entry->pressures.o2);
|
|
|
|
/* Calculate MOD, EAD, END and EADD based on partial pressures calculated before
|
|
* so there is no difference in calculating between OC and CC
|
|
* END takes O₂ + N₂ (air) into account ("Narcotic" for trimix dives)
|
|
* EAD just uses N₂ ("Air" for nitrox dives) */
|
|
pressure_t modpO2 = { .mbar = (int)(prefs.modpO2 * 1000) };
|
|
entry->mod = (double)gas_mod(&dive->cylinder[cylinderindex].gasmix, modpO2, 1).mm;
|
|
entry->end = (entry->depth + 10000) * (1000 - fhe) / 1000.0 - 10000;
|
|
entry->ead = (entry->depth + 10000) * (1000 - fo2 - fhe) / (double)N2_IN_AIR - 10000;
|
|
entry->eadd = (entry->depth + 10000) *
|
|
(entry->pressures.o2 / amb_pressure * O2_DENSITY +
|
|
entry->pressures.n2 / amb_pressure * N2_DENSITY +
|
|
entry->pressures.he / amb_pressure * HE_DENSITY) /
|
|
(O2_IN_AIR * O2_DENSITY + N2_IN_AIR * N2_DENSITY) * 1000 - 10000;
|
|
if (entry->mod < 0)
|
|
entry->mod = 0;
|
|
if (entry->ead < 0)
|
|
entry->ead = 0;
|
|
if (entry->end < 0)
|
|
entry->end = 0;
|
|
if (entry->eadd < 0)
|
|
entry->eadd = 0;
|
|
}
|
|
}
|
|
|
|
void fill_o2_values(struct divecomputer *dc, struct plot_info *pi, struct dive *dive)
|
|
/* For CCR:
|
|
* In the samples from each dive computer, any duplicate values for the
|
|
* oxygen sensors were removed (i.e. set to 0) in order to conserve
|
|
* storage space (see function fixup_dive_dc). But for drawing the profile
|
|
* a complete series of valid o2 pressure values is required. This function
|
|
* takes the oxygen sensor data and setpoint values from the structures
|
|
* of plotinfo and re-inserts the duplicate values set to 0 so
|
|
* that the oxygen sensor data are complete and ready for plotting.
|
|
* The original sequence of oxygen values are recreated without attempting
|
|
* any interpolations for values set to zero, recreating the raw data from
|
|
* the CCR dive log. This function called by: create_plot_info_new() */
|
|
{
|
|
int i, j;
|
|
double last_setpoint, last_sensor[3], o2pressure, amb_pressure;
|
|
struct gas_pressures *pressures;
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
struct plot_data *entry = pi->entry + i;
|
|
pressures = &(entry->pressures);
|
|
// For 1st iteration, initialise the last_ values
|
|
if (dc->dctype == CCR) {
|
|
if (i == 0) {
|
|
last_setpoint = pi->entry->o2setpoint;
|
|
for (j = 0; j < dc->no_o2sensors; j++)
|
|
last_sensor[j] = pi->entry->o2sensor[j];
|
|
} else {
|
|
// Now re-insert the missing oxygen pressure values
|
|
if (entry->o2setpoint)
|
|
last_setpoint = entry->o2setpoint;
|
|
else
|
|
entry->o2setpoint = last_setpoint;
|
|
for (j = 0; j < dc->no_o2sensors; j++)
|
|
if (entry->o2sensor[j])
|
|
last_sensor[j] = entry->o2sensor[j];
|
|
else
|
|
entry->o2sensor[j] = last_sensor[j];
|
|
} // having initialised the empty o2 sensor values for this point on the profile,
|
|
amb_pressure = depth_to_mbar(entry->depth, dive) / 1000.0;
|
|
o2pressure = calculate_ccr_po2(entry,dc); // ...calculate the po2 based on the sensor data
|
|
entry->pressures.o2 = MIN(o2pressure, amb_pressure);
|
|
} else {
|
|
entry->pressures.o2 = 0.0; // initialise po2 to zero for dctype = OC
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_GAS
|
|
/* A CCR debug function that writes the cylinder pressure and the oxygen values to the file debug_print_profiledata.dat:
|
|
* Called in create_plot_info_new()
|
|
*/
|
|
static void debug_print_profiledata(struct plot_info *pi)
|
|
{
|
|
FILE *f1;
|
|
struct plot_data *entry;
|
|
int i;
|
|
if (!(f1 = fopen("debug_print_profiledata.dat", "w")))
|
|
printf("File open error for: debug_print_profiledata.dat\n");
|
|
else {
|
|
fprintf(f1, "id t1 gas gasint t2 t3 dil dilint t4 t5 setpoint sensor1 sensor2 sensor3 t6 po2 fo2\n");
|
|
for (i = 0; i < pi->nr; i++) {
|
|
entry = pi->entry + i;
|
|
fprintf(f1, "%d gas=%8d %8d ; dil=%8d %8d ; o2_sp= %f %f %f %f PO2= %f\n", i, SENSOR_PRESSURE(entry),
|
|
INTERPOLATED_PRESSURE(entry), DILUENT_PRESSURE(entry), INTERPOLATED_DILUENT_PRESSURE(entry),
|
|
entry->o2setpoint, entry->o2sensor[0], entry->o2sensor[1], entry->o2sensor[2], entry->pressures.o2);
|
|
}
|
|
fclose(f1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Create a plot-info with smoothing and ranged min/max
|
|
*
|
|
* This also makes sure that we have extra empty events on both
|
|
* sides, so that you can do end-points without having to worry
|
|
* about it.
|
|
*/
|
|
void create_plot_info_new(struct dive *dive, struct divecomputer *dc, struct plot_info *pi)
|
|
{
|
|
int o2, he, o2low;
|
|
init_decompression(dive);
|
|
/* Create the new plot data */
|
|
free((void *)last_pi_entry_new);
|
|
|
|
get_dive_gas(dive, &o2, &he, &o2low);
|
|
if (he > 0) {
|
|
pi->dive_type = TRIMIX;
|
|
} else {
|
|
if (o2)
|
|
pi->dive_type = NITROX;
|
|
else
|
|
pi->dive_type = AIR;
|
|
}
|
|
last_pi_entry_new = populate_plot_entries(dive, dc, pi);
|
|
|
|
check_gas_change_events(dive, dc, pi); /* Populate the gas index from the gas change events */
|
|
setup_gas_sensor_pressure(dive, dc, pi); /* Try to populate our gas pressure knowledge */
|
|
populate_pressure_information(dive, dc, pi, NONDILUENT); /* .. calculate missing pressure entries for all gasses except diluent */
|
|
if (dc->dctype == CCR) /* For CCR dives.. */
|
|
populate_pressure_information(dive, dc, pi, DILUENT); /* .. calculate missing diluent gas pressure entries */
|
|
|
|
fill_o2_values(dc, pi, dive); /* .. and insert the O2 sensor data having 0 values. */
|
|
calculate_sac(dive, pi); /* Calculate sac */
|
|
calculate_deco_information(dive, dc, pi, false); /* and ceiling information, using gradient factor values in Preferences) */
|
|
calculate_gas_information_new(dive, pi); /* Calculate gas partial pressures */
|
|
|
|
#ifdef DEBUG_GAS
|
|
debug_print_profiledata(pi);
|
|
#endif
|
|
|
|
pi->meandepth = dive->dc.meandepth.mm;
|
|
analyze_plot_info(pi);
|
|
}
|
|
|
|
struct divecomputer *select_dc(struct dive *dive)
|
|
{
|
|
unsigned int max = number_of_computers(dive);
|
|
unsigned int i = dc_number;
|
|
|
|
/* Reset 'dc_number' if we've switched dives and it is now out of range */
|
|
if (i >= max)
|
|
dc_number = i = 0;
|
|
|
|
return get_dive_dc(dive, i);
|
|
}
|
|
|
|
static void plot_string(struct plot_info *pi, struct plot_data *entry, struct membuffer *b, bool has_ndl)
|
|
{
|
|
int pressurevalue, mod, ead, end, eadd;
|
|
const char *depth_unit, *pressure_unit, *temp_unit, *vertical_speed_unit;
|
|
double depthvalue, tempvalue, speedvalue, sacvalue;
|
|
int decimals;
|
|
const char *unit;
|
|
|
|
depthvalue = get_depth_units(entry->depth, NULL, &depth_unit);
|
|
put_format(b, translate("gettextFromC", "@: %d:%02d\nD: %.1f%s\n"), FRACTION(entry->sec, 60), depthvalue, depth_unit);
|
|
if (GET_PRESSURE(entry)) {
|
|
pressurevalue = get_pressure_units(GET_PRESSURE(entry), &pressure_unit);
|
|
put_format(b, translate("gettextFromC", "P: %d%s\n"), pressurevalue, pressure_unit);
|
|
}
|
|
if (entry->temperature) {
|
|
tempvalue = get_temp_units(entry->temperature, &temp_unit);
|
|
put_format(b, translate("gettextFromC", "T: %.1f%s\n"), tempvalue, temp_unit);
|
|
}
|
|
speedvalue = get_vertical_speed_units(abs(entry->speed), NULL, &vertical_speed_unit);
|
|
/* Ascending speeds are positive, descending are negative */
|
|
if (entry->speed > 0)
|
|
speedvalue *= -1;
|
|
put_format(b, translate("gettextFromC", "V: %.1f%s\n"), speedvalue, vertical_speed_unit);
|
|
sacvalue = get_volume_units(entry->sac, &decimals, &unit);
|
|
if (entry->sac && prefs.show_sac)
|
|
put_format(b, translate("gettextFromC", "SAC: %.*f%s/min\n"), decimals, sacvalue, unit);
|
|
if (entry->cns)
|
|
put_format(b, translate("gettextFromC", "CNS: %u%%\n"), entry->cns);
|
|
if (prefs.pp_graphs.po2)
|
|
put_format(b, translate("gettextFromC", "pO%s: %.2fbar\n"), UTF8_SUBSCRIPT_2, entry->pressures.o2);
|
|
if (prefs.pp_graphs.pn2)
|
|
put_format(b, translate("gettextFromC", "pN%s: %.2fbar\n"), UTF8_SUBSCRIPT_2, entry->pressures.n2);
|
|
if (prefs.pp_graphs.phe)
|
|
put_format(b, translate("gettextFromC", "pHe: %.2fbar\n"), entry->pressures.he);
|
|
if (prefs.mod) {
|
|
mod = (int)get_depth_units(entry->mod, NULL, &depth_unit);
|
|
put_format(b, translate("gettextFromC", "MOD: %d%s\n"), mod, depth_unit);
|
|
}
|
|
eadd = (int)get_depth_units(entry->eadd, NULL, &depth_unit);
|
|
if (prefs.ead) {
|
|
switch (pi->dive_type) {
|
|
case NITROX:
|
|
ead = (int)get_depth_units(entry->ead, NULL, &depth_unit);
|
|
put_format(b, translate("gettextFromC", "EAD: %d%s\nEADD: %d%s\n"), ead, depth_unit, eadd, depth_unit);
|
|
break;
|
|
case TRIMIX:
|
|
end = (int)get_depth_units(entry->end, NULL, &depth_unit);
|
|
put_format(b, translate("gettextFromC", "END: %d%s\nEADD: %d%s\n"), end, depth_unit, eadd, depth_unit);
|
|
break;
|
|
case AIR:
|
|
/* nothing */
|
|
break;
|
|
}
|
|
}
|
|
if (entry->stopdepth) {
|
|
depthvalue = get_depth_units(entry->stopdepth, NULL, &depth_unit);
|
|
if (entry->ndl) {
|
|
/* this is a safety stop as we still have ndl */
|
|
if (entry->stoptime)
|
|
put_format(b, translate("gettextFromC", "Safetystop: %umin @ %.0f%s\n"), DIV_UP(entry->stoptime, 60),
|
|
depthvalue, depth_unit);
|
|
else
|
|
put_format(b, translate("gettextFromC", "Safetystop: unkn time @ %.0f%s\n"),
|
|
depthvalue, depth_unit);
|
|
} else {
|
|
/* actual deco stop */
|
|
if (entry->stoptime)
|
|
put_format(b, translate("gettextFromC", "Deco: %umin @ %.0f%s\n"), DIV_UP(entry->stoptime, 60),
|
|
depthvalue, depth_unit);
|
|
else
|
|
put_format(b, translate("gettextFromC", "Deco: unkn time @ %.0f%s\n"),
|
|
depthvalue, depth_unit);
|
|
}
|
|
} else if (entry->in_deco) {
|
|
put_string(b, translate("gettextFromC", "In deco\n"));
|
|
} else if (has_ndl) {
|
|
put_format(b, translate("gettextFromC", "NDL: %umin\n"), DIV_UP(entry->ndl, 60));
|
|
}
|
|
if (entry->tts)
|
|
put_format(b, translate("gettextFromC", "TTS: %umin\n"), DIV_UP(entry->tts, 60));
|
|
if (entry->stopdepth_calc && entry->stoptime_calc) {
|
|
depthvalue = get_depth_units(entry->stopdepth_calc, NULL, &depth_unit);
|
|
put_format(b, translate("gettextFromC", "Deco: %umin @ %.0f%s (calc)\n"), DIV_UP(entry->stoptime_calc, 60),
|
|
depthvalue, depth_unit);
|
|
} else if (entry->in_deco_calc) {
|
|
/* This means that we have no NDL left,
|
|
* and we have no deco stop,
|
|
* so if we just accend to the surface slowly
|
|
* (ascent_mm_per_step / ascent_s_per_step)
|
|
* everything will be ok. */
|
|
put_string(b, translate("gettextFromC", "In deco (calc)\n"));
|
|
} else if (prefs.calcndltts && entry->ndl_calc != 0) {
|
|
put_format(b, translate("gettextFromC", "NDL: %umin (calc)\n"), DIV_UP(entry->ndl_calc, 60));
|
|
}
|
|
if (entry->tts_calc)
|
|
put_format(b, translate("gettextFromC", "TTS: %umin (calc)\n"), DIV_UP(entry->tts_calc, 60));
|
|
if (entry->ceiling) {
|
|
depthvalue = get_depth_units(entry->ceiling, NULL, &depth_unit);
|
|
put_format(b, translate("gettextFromC", "Calculated ceiling %.0f%s\n"), depthvalue, depth_unit);
|
|
if (prefs.calcalltissues) {
|
|
int k;
|
|
for (k = 0; k < 16; k++) {
|
|
if (entry->ceilings[k]) {
|
|
depthvalue = get_depth_units(entry->ceilings[k], NULL, &depth_unit);
|
|
put_format(b, translate("gettextFromC", "Tissue %.0fmin: %.0f%s\n"), buehlmann_N2_t_halflife[k], depthvalue, depth_unit);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (entry->heartbeat && prefs.hrgraph)
|
|
put_format(b, translate("gettextFromC", "heartbeat: %d\n"), entry->heartbeat);
|
|
if (entry->bearing)
|
|
put_format(b, translate("gettextFromC", "bearing: %d\n"), entry->bearing);
|
|
strip_mb(b);
|
|
}
|
|
|
|
struct plot_data *get_plot_details_new(struct plot_info *pi, int time, struct membuffer *mb)
|
|
{
|
|
struct plot_data *entry = NULL;
|
|
int i;
|
|
|
|
for (i = 0; i < pi->nr; i++) {
|
|
entry = pi->entry + i;
|
|
if (entry->sec >= time)
|
|
break;
|
|
}
|
|
if (entry)
|
|
plot_string(pi, entry, mb, pi->has_ndl);
|
|
return (entry);
|
|
}
|
|
|
|
/* Compare two plot_data entries and writes the results into a string */
|
|
void compare_samples(struct plot_data *e1, struct plot_data *e2, char *buf, int bufsize, int sum)
|
|
{
|
|
struct plot_data *start, *stop, *data;
|
|
const char *depth_unit, *pressure_unit, *vertical_speed_unit;
|
|
char *buf2 = malloc(bufsize);
|
|
int avg_speed, max_asc_speed, max_desc_speed;
|
|
int delta_depth, avg_depth, max_depth, min_depth;
|
|
int bar_used, last_pressure, pressurevalue;
|
|
int count, last_sec, delta_time;
|
|
|
|
double depthvalue, speedvalue;
|
|
|
|
if (bufsize > 0)
|
|
buf[0] = '\0';
|
|
if (e1 == NULL || e2 == NULL) {
|
|
free(buf2);
|
|
return;
|
|
}
|
|
|
|
if (e1->sec < e2->sec) {
|
|
start = e1;
|
|
stop = e2;
|
|
} else if (e1->sec > e2->sec) {
|
|
start = e2;
|
|
stop = e1;
|
|
} else {
|
|
free(buf2);
|
|
return;
|
|
}
|
|
count = 0;
|
|
avg_speed = 0;
|
|
max_asc_speed = 0;
|
|
max_desc_speed = 0;
|
|
|
|
delta_depth = abs(start->depth - stop->depth);
|
|
delta_time = abs(start->sec - stop->sec);
|
|
avg_depth = 0;
|
|
max_depth = 0;
|
|
min_depth = INT_MAX;
|
|
bar_used = 0;
|
|
|
|
last_sec = start->sec;
|
|
last_pressure = GET_PRESSURE(start);
|
|
|
|
data = start;
|
|
while (data != stop) {
|
|
data = start + count;
|
|
if (sum)
|
|
avg_speed += abs(data->speed) * (data->sec - last_sec);
|
|
else
|
|
avg_speed += data->speed * (data->sec - last_sec);
|
|
avg_depth += data->depth * (data->sec - last_sec);
|
|
|
|
if (data->speed > max_desc_speed)
|
|
max_desc_speed = data->speed;
|
|
if (data->speed < max_asc_speed)
|
|
max_asc_speed = data->speed;
|
|
|
|
if (data->depth < min_depth)
|
|
min_depth = data->depth;
|
|
if (data->depth > max_depth)
|
|
max_depth = data->depth;
|
|
/* Try to detect gas changes */
|
|
if (GET_PRESSURE(data) < last_pressure + 2000)
|
|
bar_used += last_pressure - GET_PRESSURE(data);
|
|
|
|
count += 1;
|
|
last_sec = data->sec;
|
|
last_pressure = GET_PRESSURE(data);
|
|
}
|
|
avg_depth /= stop->sec - start->sec;
|
|
avg_speed /= stop->sec - start->sec;
|
|
|
|
snprintf(buf, bufsize, translate("gettextFromC", "%sT: %d:%02d min"), UTF8_DELTA, delta_time / 60, delta_time % 60);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
depthvalue = get_depth_units(delta_depth, NULL, &depth_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC", "%s %sD:%.1f%s"), buf2, UTF8_DELTA, depthvalue, depth_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
depthvalue = get_depth_units(min_depth, NULL, &depth_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC", "%s %sD:%.1f%s"), buf2, UTF8_DOWNWARDS_ARROW, depthvalue, depth_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
depthvalue = get_depth_units(max_depth, NULL, &depth_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC", "%s %sD:%.1f%s"), buf2, UTF8_UPWARDS_ARROW, depthvalue, depth_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
depthvalue = get_depth_units(avg_depth, NULL, &depth_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC", "%s %sD:%.1f%s\n"), buf2, UTF8_AVERAGE, depthvalue, depth_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
speedvalue = get_vertical_speed_units(abs(max_desc_speed), NULL, &vertical_speed_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC", "%s%sV:%.2f%s"), buf2, UTF8_DOWNWARDS_ARROW, speedvalue, vertical_speed_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
speedvalue = get_vertical_speed_units(abs(max_asc_speed), NULL, &vertical_speed_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC", "%s %sV:%.2f%s"), buf2, UTF8_UPWARDS_ARROW, speedvalue, vertical_speed_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
speedvalue = get_vertical_speed_units(abs(avg_speed), NULL, &vertical_speed_unit);
|
|
snprintf(buf, bufsize, translate("gettextFromC", "%s %sV:%.2f%s"), buf2, UTF8_AVERAGE, speedvalue, vertical_speed_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
|
|
/* Only print if gas has been used */
|
|
if (bar_used) {
|
|
pressurevalue = get_pressure_units(bar_used, &pressure_unit);
|
|
memcpy(buf2, buf, bufsize);
|
|
snprintf(buf, bufsize, translate("gettextFromC", "%s %sP:%d %s"), buf2, UTF8_DELTA, pressurevalue, pressure_unit);
|
|
}
|
|
|
|
free(buf2);
|
|
}
|