mirror of
https://github.com/subsurface/subsurface.git
synced 2025-01-19 14:25:27 +00:00
ebddf95252
Calculate gfline using the gradient factor that is set by the planner preferences when in the planner, and by the general prefs when not in the planner. This is achieved by doing the gradient factor calculation in dive.c, where buehlmann_config is defined. Previously, the gfline was calculated using the general preferences gfhigh and gflow, even when in the planner. Signed-off-by: Rick Walsh <rickmwalsh@gmail.com> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
634 lines
24 KiB
C
634 lines
24 KiB
C
/* calculate deco values
|
|
* based on Bühlmann ZHL-16b
|
|
* based on an implemention by heinrichs weikamp for the DR5
|
|
* the original file was given to Subsurface under the GPLv2
|
|
* by Matthias Heinrichs
|
|
*
|
|
* The implementation below is a fairly complete rewrite since then
|
|
* (C) Robert C. Helling 2013 and released under the GPLv2
|
|
*
|
|
* add_segment() - add <seconds> at the given pressure, breathing gasmix
|
|
* deco_allowed_depth() - ceiling based on lead tissue, surface pressure, 3m increments or smooth
|
|
* set_gf() - set Buehlmann gradient factors
|
|
* set_vpmb_conservatism() - set VPM-B conservatism value
|
|
* clear_deco()
|
|
* cache_deco_state()
|
|
* restore_deco_state()
|
|
* dump_tissues()
|
|
*/
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include "dive.h"
|
|
#include <assert.h>
|
|
#include "core/planner.h"
|
|
|
|
#define cube(x) (x * x * x)
|
|
|
|
// Subsurface appears to produce marginally less conservative plans than our benchmarks
|
|
// Introduce 1.2% additional conservatism
|
|
#define subsurface_conservatism_factor 1.012
|
|
|
|
|
|
extern bool in_planner();
|
|
|
|
extern pressure_t first_ceiling_pressure;
|
|
|
|
//! Option structure for Buehlmann decompression.
|
|
struct buehlmann_config {
|
|
double satmult; //! safety at inert gas accumulation as percentage of effect (more than 100).
|
|
double desatmult; //! safety at inert gas depletion as percentage of effect (less than 100).
|
|
int last_deco_stop_in_mtr; //! depth of last_deco_stop.
|
|
double gf_high; //! gradient factor high (at surface).
|
|
double gf_low; //! gradient factor low (at bottom/start of deco calculation).
|
|
double gf_low_position_min; //! gf_low_position below surface_min_shallow.
|
|
bool gf_low_at_maxdepth; //! if true, gf_low applies at max depth instead of at deepest ceiling.
|
|
};
|
|
|
|
struct buehlmann_config buehlmann_config = {
|
|
.satmult = 1.0,
|
|
.desatmult = 1.01,
|
|
.last_deco_stop_in_mtr = 0,
|
|
.gf_high = 0.75,
|
|
.gf_low = 0.35,
|
|
.gf_low_position_min = 1.0,
|
|
.gf_low_at_maxdepth = false
|
|
};
|
|
|
|
//! Option structure for VPM-B decompression.
|
|
struct vpmb_config {
|
|
double crit_radius_N2; //! Critical radius of N2 nucleon (microns).
|
|
double crit_radius_He; //! Critical radius of He nucleon (microns).
|
|
double crit_volume_lambda; //! Constant corresponding to critical gas volume (bar * min).
|
|
double gradient_of_imperm; //! Gradient after which bubbles become impermeable (bar).
|
|
double surface_tension_gamma; //! Nucleons surface tension constant (N / bar = m2).
|
|
double skin_compression_gammaC; //! Skin compression gammaC (N / bar = m2).
|
|
double regeneration_time; //! Time needed for the bubble to regenerate to the start radius (min).
|
|
double other_gases_pressure; //! Always present pressure of other gasses in tissues (bar).
|
|
short conservatism; //! VPM-B conservatism level (0-4)
|
|
};
|
|
|
|
struct vpmb_config vpmb_config = {
|
|
.crit_radius_N2 = 0.55,
|
|
.crit_radius_He = 0.45,
|
|
.crit_volume_lambda = 199.58,
|
|
.gradient_of_imperm = 8.30865, // = 8.2 atm
|
|
.surface_tension_gamma = 0.18137175, // = 0.0179 N/msw
|
|
.skin_compression_gammaC = 2.6040525, // = 0.257 N/msw
|
|
.regeneration_time = 20160.0,
|
|
.other_gases_pressure = 0.1359888,
|
|
.conservatism = 3
|
|
};
|
|
|
|
const double buehlmann_N2_a[] = { 1.1696, 1.0, 0.8618, 0.7562,
|
|
0.62, 0.5043, 0.441, 0.4,
|
|
0.375, 0.35, 0.3295, 0.3065,
|
|
0.2835, 0.261, 0.248, 0.2327 };
|
|
|
|
const double buehlmann_N2_b[] = { 0.5578, 0.6514, 0.7222, 0.7825,
|
|
0.8126, 0.8434, 0.8693, 0.8910,
|
|
0.9092, 0.9222, 0.9319, 0.9403,
|
|
0.9477, 0.9544, 0.9602, 0.9653 };
|
|
|
|
const double buehlmann_N2_t_halflife[] = { 5.0, 8.0, 12.5, 18.5,
|
|
27.0, 38.3, 54.3, 77.0,
|
|
109.0, 146.0, 187.0, 239.0,
|
|
305.0, 390.0, 498.0, 635.0 };
|
|
|
|
// 1 - exp(-1 / (halflife * 60) * ln(2))
|
|
const double buehlmann_N2_factor_expositon_one_second[] = {
|
|
2.30782347297664E-003, 1.44301447809736E-003, 9.23769302935806E-004, 6.24261986779007E-004,
|
|
4.27777107246730E-004, 3.01585140931371E-004, 2.12729727268379E-004, 1.50020603047807E-004,
|
|
1.05980191127841E-004, 7.91232600646508E-005, 6.17759153688224E-005, 4.83354552742732E-005,
|
|
3.78761777920511E-005, 2.96212356654113E-005, 2.31974277413727E-005, 1.81926738960225E-005
|
|
};
|
|
|
|
const double buehlmann_He_a[] = { 1.6189, 1.383, 1.1919, 1.0458,
|
|
0.922, 0.8205, 0.7305, 0.6502,
|
|
0.595, 0.5545, 0.5333, 0.5189,
|
|
0.5181, 0.5176, 0.5172, 0.5119 };
|
|
|
|
const double buehlmann_He_b[] = { 0.4770, 0.5747, 0.6527, 0.7223,
|
|
0.7582, 0.7957, 0.8279, 0.8553,
|
|
0.8757, 0.8903, 0.8997, 0.9073,
|
|
0.9122, 0.9171, 0.9217, 0.9267 };
|
|
|
|
const double buehlmann_He_t_halflife[] = { 1.88, 3.02, 4.72, 6.99,
|
|
10.21, 14.48, 20.53, 29.11,
|
|
41.20, 55.19, 70.69, 90.34,
|
|
115.29, 147.42, 188.24, 240.03 };
|
|
|
|
const double buehlmann_He_factor_expositon_one_second[] = {
|
|
6.12608039419837E-003, 3.81800836683133E-003, 2.44456078654209E-003, 1.65134647076792E-003,
|
|
1.13084424730725E-003, 7.97503165599123E-004, 5.62552521860549E-004, 3.96776399429366E-004,
|
|
2.80360036664540E-004, 2.09299583354805E-004, 1.63410794820518E-004, 1.27869320250551E-004,
|
|
1.00198406028040E-004, 7.83611475491108E-005, 6.13689891868496E-005, 4.81280465299827E-005
|
|
};
|
|
|
|
const double vpmb_conservatism_lvls[] = { 1.0, 1.05, 1.12, 1.22, 1.35 };
|
|
|
|
/* Inspired gas loading equations depend on the partial pressure of inert gas in the alveolar.
|
|
* P_alv = (P_amb - P_H2O + (1 - Rq) / Rq * P_CO2) * f
|
|
* where:
|
|
* P_alv alveolar partial pressure of inert gas
|
|
* P_amb ambient pressure
|
|
* P_H2O water vapour partial pressure = ~0.0627 bar
|
|
* P_CO2 carbon dioxide partial pressure = ~0.0534 bar
|
|
* Rq respiratory quotient (O2 consumption / CO2 production)
|
|
* f fraction of inert gas
|
|
*
|
|
* In our calculations, we simplify this to use an effective water vapour pressure
|
|
* WV = P_H20 - (1 - Rq) / Rq * P_CO2
|
|
*
|
|
* Buhlmann ignored the contribution of CO2 (i.e. Rq = 1.0), whereas Schreiner adopted Rq = 0.8.
|
|
* WV_Buhlmann = PP_H2O = 0.0627 bar
|
|
* WV_Schreiner = 0.0627 - (1 - 0.8) / Rq * 0.0534 = 0.0493 bar
|
|
|
|
* Buhlmann calculations use the Buhlmann value, VPM-B calculations use the Schreiner value.
|
|
*/
|
|
#define WV_PRESSURE 0.0627 // water vapor pressure in bar, based on respiratory quotient Rq = 1.0 (Buhlmann value)
|
|
#define WV_PRESSURE_SCHREINER 0.0493 // water vapor pressure in bar, based on respiratory quotient Rq = 0.8 (Schreiner value)
|
|
|
|
#define DECO_STOPS_MULTIPLIER_MM 3000.0
|
|
#define NITROGEN_FRACTION 0.79
|
|
|
|
double tissue_n2_sat[16];
|
|
double tissue_he_sat[16];
|
|
int ci_pointing_to_guiding_tissue;
|
|
double gf_low_pressure_this_dive;
|
|
#define TISSUE_ARRAY_SZ sizeof(tissue_n2_sat)
|
|
|
|
double tolerated_by_tissue[16];
|
|
double tissue_inertgas_saturation[16];
|
|
double buehlmann_inertgas_a[16], buehlmann_inertgas_b[16];
|
|
|
|
double max_n2_crushing_pressure[16];
|
|
double max_he_crushing_pressure[16];
|
|
|
|
double crushing_onset_tension[16]; // total inert gas tension in the t* moment
|
|
double n2_regen_radius[16]; // rs
|
|
double he_regen_radius[16];
|
|
double max_ambient_pressure; // last moment we were descending
|
|
|
|
double bottom_n2_gradient[16];
|
|
double bottom_he_gradient[16];
|
|
|
|
double initial_n2_gradient[16];
|
|
double initial_he_gradient[16];
|
|
|
|
double get_crit_radius_He()
|
|
{
|
|
if (vpmb_config.conservatism <= 4)
|
|
return vpmb_config.crit_radius_He * vpmb_conservatism_lvls[vpmb_config.conservatism] * subsurface_conservatism_factor;
|
|
return vpmb_config.crit_radius_He;
|
|
}
|
|
|
|
double get_crit_radius_N2()
|
|
{
|
|
if (vpmb_config.conservatism <= 4)
|
|
return vpmb_config.crit_radius_N2 * vpmb_conservatism_lvls[vpmb_config.conservatism] * subsurface_conservatism_factor;
|
|
return vpmb_config.crit_radius_N2;
|
|
}
|
|
|
|
// Solve another cubic equation, this time
|
|
// x^3 - B x - C == 0
|
|
// Use trigonometric formula for negative discriminants (see Wikipedia for details)
|
|
|
|
double solve_cubic2(double B, double C)
|
|
{
|
|
double discriminant = 27 * C * C - 4 * cube(B);
|
|
if (discriminant < 0.0) {
|
|
return 2.0 * sqrt(B / 3.0) * cos(acos(3.0 * C * sqrt(3.0 / B) / (2.0 * B)) / 3.0);
|
|
}
|
|
|
|
double denominator = pow(9 * C + sqrt(3 * discriminant), 1 / 3.0);
|
|
|
|
return pow(2.0 / 3.0, 1.0 / 3.0) * B / denominator + denominator / pow(18.0, 1.0 / 3.0);
|
|
}
|
|
|
|
// This is a simplified formula avoiding radii. It uses the fact that Boyle's law says
|
|
// pV = (G + P_amb) / G^3 is constant to solve for the new gradient G.
|
|
|
|
double update_gradient(double next_stop_pressure, double first_gradient)
|
|
{
|
|
double B = cube(first_gradient) / (first_ceiling_pressure.mbar / 1000.0 + first_gradient);
|
|
double C = next_stop_pressure * B;
|
|
|
|
double new_gradient = solve_cubic2(B, C);
|
|
|
|
if (new_gradient < 0.0)
|
|
report_error("Negative gradient encountered!");
|
|
return new_gradient;
|
|
}
|
|
|
|
double vpmb_tolerated_ambient_pressure(double reference_pressure, int ci)
|
|
{
|
|
double n2_gradient, he_gradient, total_gradient;
|
|
|
|
if (reference_pressure >= first_ceiling_pressure.mbar / 1000.0 || !first_ceiling_pressure.mbar) {
|
|
n2_gradient = bottom_n2_gradient[ci];
|
|
he_gradient = bottom_he_gradient[ci];
|
|
} else {
|
|
n2_gradient = update_gradient(reference_pressure, bottom_n2_gradient[ci]);
|
|
he_gradient = update_gradient(reference_pressure, bottom_he_gradient[ci]);
|
|
}
|
|
|
|
total_gradient = ((n2_gradient * tissue_n2_sat[ci]) + (he_gradient * tissue_he_sat[ci])) / (tissue_n2_sat[ci] + tissue_he_sat[ci]);
|
|
|
|
return tissue_n2_sat[ci] + tissue_he_sat[ci] + vpmb_config.other_gases_pressure - total_gradient;
|
|
}
|
|
|
|
|
|
double tissue_tolerance_calc(const struct dive *dive, double pressure)
|
|
{
|
|
int ci = -1;
|
|
double ret_tolerance_limit_ambient_pressure = 0.0;
|
|
double gf_high = buehlmann_config.gf_high;
|
|
double gf_low = buehlmann_config.gf_low;
|
|
double surface = get_surface_pressure_in_mbar(dive, true) / 1000.0;
|
|
double lowest_ceiling = 0.0;
|
|
double tissue_lowest_ceiling[16];
|
|
|
|
for (ci = 0; ci < 16; ci++) {
|
|
buehlmann_inertgas_a[ci] = ((buehlmann_N2_a[ci] * tissue_n2_sat[ci]) + (buehlmann_He_a[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation[ci];
|
|
buehlmann_inertgas_b[ci] = ((buehlmann_N2_b[ci] * tissue_n2_sat[ci]) + (buehlmann_He_b[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation[ci];
|
|
}
|
|
|
|
if (prefs.deco_mode != VPMB) {
|
|
for (ci = 0; ci < 16; ci++) {
|
|
|
|
/* tolerated = (tissue_inertgas_saturation - buehlmann_inertgas_a) * buehlmann_inertgas_b; */
|
|
|
|
tissue_lowest_ceiling[ci] = (buehlmann_inertgas_b[ci] * tissue_inertgas_saturation[ci] - gf_low * buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci]) /
|
|
((1.0 - buehlmann_inertgas_b[ci]) * gf_low + buehlmann_inertgas_b[ci]);
|
|
if (tissue_lowest_ceiling[ci] > lowest_ceiling)
|
|
lowest_ceiling = tissue_lowest_ceiling[ci];
|
|
if (!buehlmann_config.gf_low_at_maxdepth) {
|
|
if (lowest_ceiling > gf_low_pressure_this_dive)
|
|
gf_low_pressure_this_dive = lowest_ceiling;
|
|
}
|
|
}
|
|
for (ci = 0; ci < 16; ci++) {
|
|
double tolerated;
|
|
|
|
if ((surface / buehlmann_inertgas_b[ci] + buehlmann_inertgas_a[ci] - surface) * gf_high + surface <
|
|
(gf_low_pressure_this_dive / buehlmann_inertgas_b[ci] + buehlmann_inertgas_a[ci] - gf_low_pressure_this_dive) * gf_low + gf_low_pressure_this_dive)
|
|
tolerated = (-buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci] * (gf_high * gf_low_pressure_this_dive - gf_low * surface) -
|
|
(1.0 - buehlmann_inertgas_b[ci]) * (gf_high - gf_low) * gf_low_pressure_this_dive * surface +
|
|
buehlmann_inertgas_b[ci] * (gf_low_pressure_this_dive - surface) * tissue_inertgas_saturation[ci]) /
|
|
(-buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci] * (gf_high - gf_low) +
|
|
(1.0 - buehlmann_inertgas_b[ci]) * (gf_low * gf_low_pressure_this_dive - gf_high * surface) +
|
|
buehlmann_inertgas_b[ci] * (gf_low_pressure_this_dive - surface));
|
|
else
|
|
tolerated = ret_tolerance_limit_ambient_pressure;
|
|
|
|
|
|
tolerated_by_tissue[ci] = tolerated;
|
|
|
|
if (tolerated >= ret_tolerance_limit_ambient_pressure) {
|
|
ci_pointing_to_guiding_tissue = ci;
|
|
ret_tolerance_limit_ambient_pressure = tolerated;
|
|
}
|
|
}
|
|
} else {
|
|
// VPM-B ceiling
|
|
double reference_pressure;
|
|
|
|
ret_tolerance_limit_ambient_pressure = pressure;
|
|
// The Boyle compensated gradient depends on ambient pressure. For the ceiling, this should set the ambient pressure.
|
|
do {
|
|
reference_pressure = ret_tolerance_limit_ambient_pressure;
|
|
ret_tolerance_limit_ambient_pressure = 0.0;
|
|
for (ci = 0; ci < 16; ci++) {
|
|
double tolerated = vpmb_tolerated_ambient_pressure(reference_pressure, ci);
|
|
if (tolerated >= ret_tolerance_limit_ambient_pressure) {
|
|
ci_pointing_to_guiding_tissue = ci;
|
|
ret_tolerance_limit_ambient_pressure = tolerated;
|
|
}
|
|
tolerated_by_tissue[ci] = tolerated;
|
|
}
|
|
// We are doing ok if the gradient was computed within ten centimeters of the ceiling.
|
|
} while (fabs(ret_tolerance_limit_ambient_pressure - reference_pressure) > 0.01);
|
|
}
|
|
return ret_tolerance_limit_ambient_pressure;
|
|
}
|
|
|
|
/*
|
|
* Return buelman factor for a particular period and tissue index.
|
|
*
|
|
* We cache the last factor, since we commonly call this with the
|
|
* same values... We have a special "fixed cache" for the one second
|
|
* case, although I wonder if that's even worth it considering the
|
|
* more general-purpose cache.
|
|
*/
|
|
struct factor_cache {
|
|
int last_period;
|
|
double last_factor;
|
|
};
|
|
|
|
double n2_factor(int period_in_seconds, int ci)
|
|
{
|
|
static struct factor_cache cache[16];
|
|
|
|
if (period_in_seconds == 1)
|
|
return buehlmann_N2_factor_expositon_one_second[ci];
|
|
|
|
if (period_in_seconds != cache[ci].last_period) {
|
|
cache[ci].last_period = period_in_seconds;
|
|
// ln(2)/60 = 1.155245301e-02
|
|
cache[ci].last_factor = 1 - exp(-period_in_seconds * 1.155245301e-02 / buehlmann_N2_t_halflife[ci]);
|
|
}
|
|
|
|
return cache[ci].last_factor;
|
|
}
|
|
|
|
double he_factor(int period_in_seconds, int ci)
|
|
{
|
|
static struct factor_cache cache[16];
|
|
|
|
if (period_in_seconds == 1)
|
|
return buehlmann_He_factor_expositon_one_second[ci];
|
|
|
|
if (period_in_seconds != cache[ci].last_period) {
|
|
cache[ci].last_period = period_in_seconds;
|
|
// ln(2)/60 = 1.155245301e-02
|
|
cache[ci].last_factor = 1 - exp(-period_in_seconds * 1.155245301e-02 / buehlmann_He_t_halflife[ci]);
|
|
}
|
|
|
|
return cache[ci].last_factor;
|
|
}
|
|
|
|
double calc_surface_phase(double surface_pressure, double he_pressure, double n2_pressure, double he_time_constant, double n2_time_constant)
|
|
{
|
|
double inspired_n2 = (surface_pressure - ((in_planner() && (prefs.deco_mode == VPMB)) ? WV_PRESSURE_SCHREINER : WV_PRESSURE)) * NITROGEN_FRACTION;
|
|
|
|
if (n2_pressure > inspired_n2)
|
|
return (he_pressure / he_time_constant + (n2_pressure - inspired_n2) / n2_time_constant) / (he_pressure + n2_pressure - inspired_n2);
|
|
|
|
if (he_pressure + n2_pressure >= inspired_n2){
|
|
double gradient_decay_time = 1.0 / (n2_time_constant - he_time_constant) * log ((inspired_n2 - n2_pressure) / he_pressure);
|
|
double gradients_integral = he_pressure / he_time_constant * (1.0 - exp(-he_time_constant * gradient_decay_time)) + (n2_pressure - inspired_n2) / n2_time_constant * (1.0 - exp(-n2_time_constant * gradient_decay_time));
|
|
return gradients_integral / (he_pressure + n2_pressure - inspired_n2);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void vpmb_start_gradient()
|
|
{
|
|
int ci;
|
|
|
|
for (ci = 0; ci < 16; ++ci) {
|
|
initial_n2_gradient[ci] = bottom_n2_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / n2_regen_radius[ci]);
|
|
initial_he_gradient[ci] = bottom_he_gradient[ci] = 2.0 * (vpmb_config.surface_tension_gamma / vpmb_config.skin_compression_gammaC) * ((vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma) / he_regen_radius[ci]);
|
|
}
|
|
}
|
|
|
|
void vpmb_next_gradient(double deco_time, double surface_pressure)
|
|
{
|
|
int ci;
|
|
double n2_b, n2_c;
|
|
double he_b, he_c;
|
|
double desat_time;
|
|
deco_time /= 60.0;
|
|
|
|
for (ci = 0; ci < 16; ++ci) {
|
|
desat_time = deco_time + calc_surface_phase(surface_pressure, tissue_he_sat[ci], tissue_n2_sat[ci], log(2.0) / buehlmann_He_t_halflife[ci], log(2.0) / buehlmann_N2_t_halflife[ci]);
|
|
|
|
n2_b = initial_n2_gradient[ci] + (vpmb_config.crit_volume_lambda * vpmb_config.surface_tension_gamma) / (vpmb_config.skin_compression_gammaC * desat_time);
|
|
he_b = initial_he_gradient[ci] + (vpmb_config.crit_volume_lambda * vpmb_config.surface_tension_gamma) / (vpmb_config.skin_compression_gammaC * desat_time);
|
|
|
|
n2_c = vpmb_config.surface_tension_gamma * vpmb_config.surface_tension_gamma * vpmb_config.crit_volume_lambda * max_n2_crushing_pressure[ci];
|
|
n2_c = n2_c / (vpmb_config.skin_compression_gammaC * vpmb_config.skin_compression_gammaC * desat_time);
|
|
he_c = vpmb_config.surface_tension_gamma * vpmb_config.surface_tension_gamma * vpmb_config.crit_volume_lambda * max_he_crushing_pressure[ci];
|
|
he_c = he_c / (vpmb_config.skin_compression_gammaC * vpmb_config.skin_compression_gammaC * desat_time);
|
|
|
|
bottom_n2_gradient[ci] = 0.5 * ( n2_b + sqrt(n2_b * n2_b - 4.0 * n2_c));
|
|
bottom_he_gradient[ci] = 0.5 * ( he_b + sqrt(he_b * he_b - 4.0 * he_c));
|
|
}
|
|
}
|
|
|
|
// A*r^3 - B*r^2 - C == 0
|
|
// Solved with the help of mathematica
|
|
|
|
double solve_cubic(double A, double B, double C)
|
|
{
|
|
double BA = B/A;
|
|
double CA = C/A;
|
|
|
|
double discriminant = CA * (4 * cube(BA) + 27 * CA);
|
|
|
|
// Let's make sure we have a real solution:
|
|
if (discriminant < 0.0) {
|
|
// This should better not happen
|
|
report_error("Complex solution for inner pressure encountered!\n A=%f\tB=%f\tC=%f\n", A, B, C);
|
|
return 0.0;
|
|
}
|
|
double denominator = pow(cube(BA) + 1.5 * (9 * CA + sqrt(3.0) * sqrt(discriminant)), 1/3.0);
|
|
return (BA + BA * BA / denominator + denominator) / 3.0;
|
|
|
|
}
|
|
|
|
|
|
void nuclear_regeneration(double time)
|
|
{
|
|
time /= 60.0;
|
|
int ci;
|
|
double crushing_radius_N2, crushing_radius_He;
|
|
for (ci = 0; ci < 16; ++ci) {
|
|
//rm
|
|
crushing_radius_N2 = 1.0 / (max_n2_crushing_pressure[ci] / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / get_crit_radius_N2());
|
|
crushing_radius_He = 1.0 / (max_he_crushing_pressure[ci] / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / get_crit_radius_He());
|
|
//rs
|
|
n2_regen_radius[ci] = crushing_radius_N2 + (get_crit_radius_N2() - crushing_radius_N2) * (1.0 - exp (-time / vpmb_config.regeneration_time));
|
|
he_regen_radius[ci] = crushing_radius_He + (get_crit_radius_He() - crushing_radius_He) * (1.0 - exp (-time / vpmb_config.regeneration_time));
|
|
}
|
|
}
|
|
|
|
|
|
// Calculates the nucleons inner pressure during the impermeable period
|
|
double calc_inner_pressure(double crit_radius, double onset_tension, double current_ambient_pressure)
|
|
{
|
|
double onset_radius = 1.0 / (vpmb_config.gradient_of_imperm / (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) + 1.0 / crit_radius);
|
|
|
|
|
|
double A = current_ambient_pressure - vpmb_config.gradient_of_imperm + (2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma)) / onset_radius;
|
|
double B = 2.0 * (vpmb_config.skin_compression_gammaC - vpmb_config.surface_tension_gamma);
|
|
double C = onset_tension * pow(onset_radius, 3);
|
|
|
|
double current_radius = solve_cubic(A, B, C);
|
|
|
|
return onset_tension * onset_radius * onset_radius * onset_radius / (current_radius * current_radius * current_radius);
|
|
}
|
|
|
|
// Calculates the crushing pressure in the given moment. Updates crushing_onset_tension and critical radius if needed
|
|
void calc_crushing_pressure(double pressure)
|
|
{
|
|
int ci;
|
|
double gradient;
|
|
double gas_tension;
|
|
double n2_crushing_pressure, he_crushing_pressure;
|
|
double n2_inner_pressure, he_inner_pressure;
|
|
|
|
for (ci = 0; ci < 16; ++ci) {
|
|
gas_tension = tissue_n2_sat[ci] + tissue_he_sat[ci] + vpmb_config.other_gases_pressure;
|
|
gradient = pressure - gas_tension;
|
|
|
|
if (gradient <= vpmb_config.gradient_of_imperm) { // permeable situation
|
|
n2_crushing_pressure = he_crushing_pressure = gradient;
|
|
crushing_onset_tension[ci] = gas_tension;
|
|
}
|
|
else { // impermeable
|
|
if (max_ambient_pressure >= pressure)
|
|
return;
|
|
|
|
n2_inner_pressure = calc_inner_pressure(get_crit_radius_N2(), crushing_onset_tension[ci], pressure);
|
|
he_inner_pressure = calc_inner_pressure(get_crit_radius_He(), crushing_onset_tension[ci], pressure);
|
|
|
|
n2_crushing_pressure = pressure - n2_inner_pressure;
|
|
he_crushing_pressure = pressure - he_inner_pressure;
|
|
}
|
|
max_n2_crushing_pressure[ci] = MAX(max_n2_crushing_pressure[ci], n2_crushing_pressure);
|
|
max_he_crushing_pressure[ci] = MAX(max_he_crushing_pressure[ci], he_crushing_pressure);
|
|
}
|
|
max_ambient_pressure = MAX(pressure, max_ambient_pressure);
|
|
}
|
|
|
|
/* add period_in_seconds at the given pressure and gas to the deco calculation */
|
|
void add_segment(double pressure, const struct gasmix *gasmix, int period_in_seconds, int ccpo2, const struct dive *dive, int sac)
|
|
{
|
|
(void) sac;
|
|
int ci;
|
|
struct gas_pressures pressures;
|
|
|
|
fill_pressures(&pressures, pressure - ((in_planner() && (prefs.deco_mode == VPMB)) ? WV_PRESSURE_SCHREINER : WV_PRESSURE),
|
|
gasmix, (double) ccpo2 / 1000.0, dive->dc.divemode);
|
|
|
|
if (buehlmann_config.gf_low_at_maxdepth && pressure > gf_low_pressure_this_dive)
|
|
gf_low_pressure_this_dive = pressure;
|
|
|
|
for (ci = 0; ci < 16; ci++) {
|
|
double pn2_oversat = pressures.n2 - tissue_n2_sat[ci];
|
|
double phe_oversat = pressures.he - tissue_he_sat[ci];
|
|
double n2_f = n2_factor(period_in_seconds, ci);
|
|
double he_f = he_factor(period_in_seconds, ci);
|
|
double n2_satmult = pn2_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult;
|
|
double he_satmult = phe_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult;
|
|
|
|
tissue_n2_sat[ci] += n2_satmult * pn2_oversat * n2_f;
|
|
tissue_he_sat[ci] += he_satmult * phe_oversat * he_f;
|
|
tissue_inertgas_saturation[ci] = tissue_n2_sat[ci] + tissue_he_sat[ci];
|
|
|
|
}
|
|
if(prefs.deco_mode == VPMB)
|
|
calc_crushing_pressure(pressure);
|
|
return;
|
|
}
|
|
|
|
void dump_tissues()
|
|
{
|
|
int ci;
|
|
printf("N2 tissues:");
|
|
for (ci = 0; ci < 16; ci++)
|
|
printf(" %6.3e", tissue_n2_sat[ci]);
|
|
printf("\nHe tissues:");
|
|
for (ci = 0; ci < 16; ci++)
|
|
printf(" %6.3e", tissue_he_sat[ci]);
|
|
printf("\n");
|
|
}
|
|
|
|
void clear_deco(double surface_pressure)
|
|
{
|
|
int ci;
|
|
for (ci = 0; ci < 16; ci++) {
|
|
tissue_n2_sat[ci] = (surface_pressure - ((in_planner() && (prefs.deco_mode == VPMB)) ? WV_PRESSURE_SCHREINER : WV_PRESSURE)) * N2_IN_AIR / 1000;
|
|
tissue_he_sat[ci] = 0.0;
|
|
max_n2_crushing_pressure[ci] = 0.0;
|
|
max_he_crushing_pressure[ci] = 0.0;
|
|
n2_regen_radius[ci] = get_crit_radius_N2();
|
|
he_regen_radius[ci] = get_crit_radius_He();
|
|
}
|
|
gf_low_pressure_this_dive = surface_pressure;
|
|
if (!buehlmann_config.gf_low_at_maxdepth)
|
|
gf_low_pressure_this_dive += buehlmann_config.gf_low_position_min;
|
|
max_ambient_pressure = 0.0;
|
|
}
|
|
|
|
void cache_deco_state(char **cached_datap)
|
|
{
|
|
char *data = *cached_datap;
|
|
|
|
if (!data) {
|
|
data = malloc(2 * TISSUE_ARRAY_SZ + sizeof(double) + sizeof(int));
|
|
*cached_datap = data;
|
|
}
|
|
memcpy(data, tissue_n2_sat, TISSUE_ARRAY_SZ);
|
|
data += TISSUE_ARRAY_SZ;
|
|
memcpy(data, tissue_he_sat, TISSUE_ARRAY_SZ);
|
|
data += TISSUE_ARRAY_SZ;
|
|
memcpy(data, &gf_low_pressure_this_dive, sizeof(double));
|
|
data += sizeof(double);
|
|
memcpy(data, &ci_pointing_to_guiding_tissue, sizeof(int));
|
|
}
|
|
|
|
void restore_deco_state(char *data)
|
|
{
|
|
memcpy(tissue_n2_sat, data, TISSUE_ARRAY_SZ);
|
|
data += TISSUE_ARRAY_SZ;
|
|
memcpy(tissue_he_sat, data, TISSUE_ARRAY_SZ);
|
|
data += TISSUE_ARRAY_SZ;
|
|
memcpy(&gf_low_pressure_this_dive, data, sizeof(double));
|
|
data += sizeof(double);
|
|
memcpy(&ci_pointing_to_guiding_tissue, data, sizeof(int));
|
|
}
|
|
|
|
int deco_allowed_depth(double tissues_tolerance, double surface_pressure, struct dive *dive, bool smooth)
|
|
{
|
|
int depth;
|
|
double pressure_delta;
|
|
|
|
/* Avoid negative depths */
|
|
pressure_delta = tissues_tolerance > surface_pressure ? tissues_tolerance - surface_pressure : 0.0;
|
|
|
|
depth = rel_mbar_to_depth(pressure_delta * 1000, dive);
|
|
|
|
if (!smooth)
|
|
depth = ceil(depth / DECO_STOPS_MULTIPLIER_MM) * DECO_STOPS_MULTIPLIER_MM;
|
|
|
|
if (depth > 0 && depth < buehlmann_config.last_deco_stop_in_mtr * 1000)
|
|
depth = buehlmann_config.last_deco_stop_in_mtr * 1000;
|
|
|
|
return depth;
|
|
}
|
|
|
|
void set_gf(short gflow, short gfhigh, bool gf_low_at_maxdepth)
|
|
{
|
|
if (gflow != -1)
|
|
buehlmann_config.gf_low = (double)gflow / 100.0;
|
|
if (gfhigh != -1)
|
|
buehlmann_config.gf_high = (double)gfhigh / 100.0;
|
|
buehlmann_config.gf_low_at_maxdepth = gf_low_at_maxdepth;
|
|
}
|
|
|
|
void set_vpmb_conservatism(short conservatism)
|
|
{
|
|
if (conservatism < 0)
|
|
vpmb_config.conservatism = 0;
|
|
else if (conservatism > 4)
|
|
vpmb_config.conservatism = 4;
|
|
else
|
|
vpmb_config.conservatism = conservatism;
|
|
}
|
|
|
|
double get_gf(double ambpressure_bar, const struct dive *dive)
|
|
{
|
|
double surface_pressure_bar = get_surface_pressure_in_mbar(dive, true) / 1000.0;
|
|
double gf_low = buehlmann_config.gf_low;
|
|
double gf_high = buehlmann_config.gf_high;
|
|
double gf;
|
|
if (gf_low_pressure_this_dive > surface_pressure_bar)
|
|
gf = MAX((double)gf_low, (ambpressure_bar - surface_pressure_bar) /
|
|
(gf_low_pressure_this_dive - surface_pressure_bar) * (gf_low - gf_high) + gf_high);
|
|
else
|
|
gf = gf_low;
|
|
return gf;
|
|
}
|