mirror of
https://github.com/subsurface/subsurface.git
synced 2024-11-30 22:20:21 +00:00
c8eb2dccc5
This patch responds to the side effects that the CCR code has had with respect to ceilings in OC dives and dive plans. Dive ceilings are now calculated correctly again. The following were performed: 1) remove the oxygen sensor and setpoint fields from the gas_pressures structure. 2) Re-insert setpoint and oxygen sensor fields in the plot_data structure. 3) Remove the algorithm that reads the o2 sensor data and calculates the pressures.po2 value from function fill_pressures() in dive.c and save it as a separate function calc_ccr_po2() in profile.c. 4) Activate calc_ccr_po2 from function fill_pressures() in profile.c. 5) Move the relative position of the call to fill_pressures() within the function create_polt_info_new() in profile.c. Signed-off-by: willem ferguson <willemferguson@zoology.up.ac.za> Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
300 lines
11 KiB
C
300 lines
11 KiB
C
/* calculate deco values
|
|
* based on Bühlmann ZHL-16b
|
|
* based on an implemention by heinrichs weikamp for the DR5
|
|
* the original file was given to Subsurface under the GPLv2
|
|
* by Matthias Heinrichs
|
|
*
|
|
* The implementation below is a fairly complete rewrite since then
|
|
* (C) Robert C. Helling 2013 and released under the GPLv2
|
|
*
|
|
* add_segment() - add <seconds> at the given pressure, breathing gasmix
|
|
* deco_allowed_depth() - ceiling based on lead tissue, surface pressure, 3m increments or smooth
|
|
* set_gf() - set Buehlmann gradient factors
|
|
* clear_deco()
|
|
* cache_deco_state()
|
|
* restore_deco_state()
|
|
* dump_tissues()
|
|
*/
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include "dive.h"
|
|
|
|
//! Option structure for Buehlmann decompression.
|
|
struct buehlmann_config {
|
|
double satmult; //! safety at inert gas accumulation as percentage of effect (more than 100).
|
|
double desatmult; //! safety at inert gas depletion as percentage of effect (less than 100).
|
|
unsigned int last_deco_stop_in_mtr; //! depth of last_deco_stop.
|
|
double gf_high; //! gradient factor high (at surface).
|
|
double gf_low; //! gradient factor low (at bottom/start of deco calculation).
|
|
double gf_low_position_min; //! gf_low_position below surface_min_shallow.
|
|
bool gf_low_at_maxdepth; //! if true, gf_low applies at max depth instead of at deepest ceiling.
|
|
};
|
|
struct buehlmann_config buehlmann_config = { 1.0, 1.01, 0, 0.75, 0.35, 1.0, false };
|
|
|
|
const double buehlmann_N2_a[] = { 1.1696, 1.0, 0.8618, 0.7562,
|
|
0.62, 0.5043, 0.441, 0.4,
|
|
0.375, 0.35, 0.3295, 0.3065,
|
|
0.2835, 0.261, 0.248, 0.2327 };
|
|
|
|
const double buehlmann_N2_b[] = { 0.5578, 0.6514, 0.7222, 0.7825,
|
|
0.8126, 0.8434, 0.8693, 0.8910,
|
|
0.9092, 0.9222, 0.9319, 0.9403,
|
|
0.9477, 0.9544, 0.9602, 0.9653 };
|
|
|
|
const double buehlmann_N2_t_halflife[] = { 5.0, 8.0, 12.5, 18.5,
|
|
27.0, 38.3, 54.3, 77.0,
|
|
109.0, 146.0, 187.0, 239.0,
|
|
305.0, 390.0, 498.0, 635.0 };
|
|
|
|
const double buehlmann_N2_factor_expositon_one_second[] = {
|
|
2.30782347297664E-003, 1.44301447809736E-003, 9.23769302935806E-004, 6.24261986779007E-004,
|
|
4.27777107246730E-004, 3.01585140931371E-004, 2.12729727268379E-004, 1.50020603047807E-004,
|
|
1.05980191127841E-004, 7.91232600646508E-005, 6.17759153688224E-005, 4.83354552742732E-005,
|
|
3.78761777920511E-005, 2.96212356654113E-005, 2.31974277413727E-005, 1.81926738960225E-005
|
|
};
|
|
|
|
const double buehlmann_He_a[] = { 1.6189, 1.383, 1.1919, 1.0458,
|
|
0.922, 0.8205, 0.7305, 0.6502,
|
|
0.595, 0.5545, 0.5333, 0.5189,
|
|
0.5181, 0.5176, 0.5172, 0.5119 };
|
|
|
|
const double buehlmann_He_b[] = { 0.4770, 0.5747, 0.6527, 0.7223,
|
|
0.7582, 0.7957, 0.8279, 0.8553,
|
|
0.8757, 0.8903, 0.8997, 0.9073,
|
|
0.9122, 0.9171, 0.9217, 0.9267 };
|
|
|
|
const double buehlmann_He_t_halflife[] = { 1.88, 3.02, 4.72, 6.99,
|
|
10.21, 14.48, 20.53, 29.11,
|
|
41.20, 55.19, 70.69, 90.34,
|
|
115.29, 147.42, 188.24, 240.03 };
|
|
|
|
const double buehlmann_He_factor_expositon_one_second[] = {
|
|
6.12608039419837E-003, 3.81800836683133E-003, 2.44456078654209E-003, 1.65134647076792E-003,
|
|
1.13084424730725E-003, 7.97503165599123E-004, 5.62552521860549E-004, 3.96776399429366E-004,
|
|
2.80360036664540E-004, 2.09299583354805E-004, 1.63410794820518E-004, 1.27869320250551E-004,
|
|
1.00198406028040E-004, 7.83611475491108E-005, 6.13689891868496E-005, 4.81280465299827E-005
|
|
};
|
|
|
|
#define WV_PRESSURE 0.0627 // water vapor pressure in bar
|
|
#define DECO_STOPS_MULTIPLIER_MM 3000.0
|
|
|
|
double tissue_n2_sat[16];
|
|
double tissue_he_sat[16];
|
|
int ci_pointing_to_guiding_tissue;
|
|
double gf_low_pressure_this_dive;
|
|
#define TISSUE_ARRAY_SZ sizeof(tissue_n2_sat)
|
|
|
|
double tolerated_by_tissue[16];
|
|
double tissue_inertgas_saturation[16];
|
|
double buehlmann_inertgas_a[16], buehlmann_inertgas_b[16];
|
|
|
|
static double tissue_tolerance_calc(const struct dive *dive)
|
|
{
|
|
int ci = -1;
|
|
double ret_tolerance_limit_ambient_pressure = 0.0;
|
|
double gf_high = buehlmann_config.gf_high;
|
|
double gf_low = buehlmann_config.gf_low;
|
|
double surface = get_surface_pressure_in_mbar(dive, true) / 1000.0;
|
|
double lowest_ceiling = 0.0;
|
|
double tissue_lowest_ceiling[16];
|
|
|
|
for (ci = 0; ci < 16; ci++) {
|
|
tissue_inertgas_saturation[ci] = tissue_n2_sat[ci] + tissue_he_sat[ci];
|
|
buehlmann_inertgas_a[ci] = ((buehlmann_N2_a[ci] * tissue_n2_sat[ci]) + (buehlmann_He_a[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation[ci];
|
|
buehlmann_inertgas_b[ci] = ((buehlmann_N2_b[ci] * tissue_n2_sat[ci]) + (buehlmann_He_b[ci] * tissue_he_sat[ci])) / tissue_inertgas_saturation[ci];
|
|
|
|
|
|
/* tolerated = (tissue_inertgas_saturation - buehlmann_inertgas_a) * buehlmann_inertgas_b; */
|
|
|
|
tissue_lowest_ceiling[ci] = (buehlmann_inertgas_b[ci] * tissue_inertgas_saturation[ci] - gf_low * buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci]) /
|
|
((1.0 - buehlmann_inertgas_b[ci]) * gf_low + buehlmann_inertgas_b[ci]);
|
|
if (tissue_lowest_ceiling[ci] > lowest_ceiling)
|
|
lowest_ceiling = tissue_lowest_ceiling[ci];
|
|
if (!buehlmann_config.gf_low_at_maxdepth) {
|
|
if (lowest_ceiling > gf_low_pressure_this_dive)
|
|
gf_low_pressure_this_dive = lowest_ceiling;
|
|
}
|
|
}
|
|
for (ci = 0; ci <16; ci++) {
|
|
double tolerated;
|
|
|
|
if ((surface / buehlmann_inertgas_b[ci] + buehlmann_inertgas_a[ci] - surface) * gf_high + surface <
|
|
(gf_low_pressure_this_dive / buehlmann_inertgas_b[ci] + buehlmann_inertgas_a[ci] - gf_low_pressure_this_dive) * gf_low + gf_low_pressure_this_dive)
|
|
tolerated = (-buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci] * (gf_high * gf_low_pressure_this_dive - gf_low * surface) -
|
|
(1.0 - buehlmann_inertgas_b[ci]) * (gf_high - gf_low) * gf_low_pressure_this_dive * surface +
|
|
buehlmann_inertgas_b[ci] * (gf_low_pressure_this_dive - surface) * tissue_inertgas_saturation[ci]) /
|
|
(-buehlmann_inertgas_a[ci] * buehlmann_inertgas_b[ci] * (gf_high - gf_low) +
|
|
(1.0 - buehlmann_inertgas_b[ci]) * (gf_low * gf_low_pressure_this_dive - gf_high * surface) +
|
|
buehlmann_inertgas_b[ci] * (gf_low_pressure_this_dive - surface));
|
|
else
|
|
tolerated = ret_tolerance_limit_ambient_pressure;
|
|
|
|
|
|
tolerated_by_tissue[ci] = tolerated;
|
|
|
|
if (tolerated >= ret_tolerance_limit_ambient_pressure) {
|
|
ci_pointing_to_guiding_tissue = ci;
|
|
ret_tolerance_limit_ambient_pressure = tolerated;
|
|
}
|
|
}
|
|
return ret_tolerance_limit_ambient_pressure;
|
|
}
|
|
|
|
/*
|
|
* Return buelman factor for a particular period and tissue index.
|
|
*
|
|
* We cache the last factor, since we commonly call this with the
|
|
* same values... We have a special "fixed cache" for the one second
|
|
* case, although I wonder if that's even worth it considering the
|
|
* more general-purpose cache.
|
|
*/
|
|
struct factor_cache {
|
|
int last_period;
|
|
double last_factor;
|
|
};
|
|
|
|
double n2_factor(int period_in_seconds, int ci)
|
|
{
|
|
static struct factor_cache cache[16];
|
|
|
|
if (period_in_seconds == 1)
|
|
return buehlmann_N2_factor_expositon_one_second[ci];
|
|
|
|
if (period_in_seconds != cache[ci].last_period) {
|
|
cache[ci].last_period = period_in_seconds;
|
|
cache[ci].last_factor = 1 - pow(2.0, -period_in_seconds / (buehlmann_N2_t_halflife[ci] * 60));
|
|
}
|
|
|
|
return cache[ci].last_factor;
|
|
}
|
|
|
|
double he_factor(int period_in_seconds, int ci)
|
|
{
|
|
static struct factor_cache cache[16];
|
|
|
|
if (period_in_seconds == 1)
|
|
return buehlmann_He_factor_expositon_one_second[ci];
|
|
|
|
if (period_in_seconds != cache[ci].last_period) {
|
|
cache[ci].last_period = period_in_seconds;
|
|
cache[ci].last_factor = 1 - pow(2.0, -period_in_seconds / (buehlmann_He_t_halflife[ci] * 60));
|
|
}
|
|
|
|
return cache[ci].last_factor;
|
|
}
|
|
|
|
/* add period_in_seconds at the given pressure and gas to the deco calculation */
|
|
double add_segment(double pressure, const struct gasmix *gasmix, int period_in_seconds, int ccpo2, const struct dive *dive)
|
|
{
|
|
int ci;
|
|
int fo2 = get_o2(gasmix), fhe = get_he(gasmix);
|
|
struct gas_pressures pressures;
|
|
|
|
fill_pressures(&pressures, pressure, gasmix, (double) ccpo2 / 1000.0);
|
|
|
|
if (buehlmann_config.gf_low_at_maxdepth && pressure > gf_low_pressure_this_dive)
|
|
gf_low_pressure_this_dive = pressure;
|
|
|
|
for (ci = 0; ci < 16; ci++) {
|
|
double pn2_oversat = pressures.n2 - tissue_n2_sat[ci];
|
|
double phe_oversat = pressures.he - tissue_he_sat[ci];
|
|
double n2_f = n2_factor(period_in_seconds, ci);
|
|
double he_f = he_factor(period_in_seconds, ci);
|
|
double n2_satmult = pn2_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult;
|
|
double he_satmult = phe_oversat > 0 ? buehlmann_config.satmult : buehlmann_config.desatmult;
|
|
|
|
tissue_n2_sat[ci] += n2_satmult * pn2_oversat * n2_f;
|
|
tissue_he_sat[ci] += he_satmult * phe_oversat * he_f;
|
|
}
|
|
return tissue_tolerance_calc(dive);
|
|
}
|
|
|
|
#ifdef DECO_CALC_DEBUG
|
|
void dump_tissues()
|
|
{
|
|
int ci;
|
|
printf("N2 tissues:");
|
|
for (ci = 0; ci < 16; ci++)
|
|
printf(" %6.3e", tissue_n2_sat[ci]);
|
|
printf("\nHe tissues:");
|
|
for (ci = 0; ci < 16; ci++)
|
|
printf(" %6.3e", tissue_he_sat[ci]);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
void clear_deco(double surface_pressure)
|
|
{
|
|
int ci;
|
|
for (ci = 0; ci < 16; ci++) {
|
|
tissue_n2_sat[ci] = (surface_pressure - WV_PRESSURE) * N2_IN_AIR / 1000;
|
|
tissue_he_sat[ci] = 0.0;
|
|
}
|
|
gf_low_pressure_this_dive = surface_pressure;
|
|
if (!buehlmann_config.gf_low_at_maxdepth)
|
|
gf_low_pressure_this_dive += buehlmann_config.gf_low_position_min;
|
|
}
|
|
|
|
void cache_deco_state(double tissue_tolerance, char **cached_datap)
|
|
{
|
|
char *data = *cached_datap;
|
|
|
|
if (!data) {
|
|
data = malloc(2 * TISSUE_ARRAY_SZ + 2 * sizeof(double) + sizeof(int));
|
|
*cached_datap = data;
|
|
}
|
|
memcpy(data, tissue_n2_sat, TISSUE_ARRAY_SZ);
|
|
data += TISSUE_ARRAY_SZ;
|
|
memcpy(data, tissue_he_sat, TISSUE_ARRAY_SZ);
|
|
data += TISSUE_ARRAY_SZ;
|
|
memcpy(data, &gf_low_pressure_this_dive, sizeof(double));
|
|
data += sizeof(double);
|
|
memcpy(data, &tissue_tolerance, sizeof(double));
|
|
data += sizeof(double);
|
|
memcpy(data, &ci_pointing_to_guiding_tissue, sizeof(int));
|
|
}
|
|
|
|
double restore_deco_state(char *data)
|
|
{
|
|
double tissue_tolerance;
|
|
|
|
memcpy(tissue_n2_sat, data, TISSUE_ARRAY_SZ);
|
|
data += TISSUE_ARRAY_SZ;
|
|
memcpy(tissue_he_sat, data, TISSUE_ARRAY_SZ);
|
|
data += TISSUE_ARRAY_SZ;
|
|
memcpy(&gf_low_pressure_this_dive, data, sizeof(double));
|
|
data += sizeof(double);
|
|
memcpy(&tissue_tolerance, data, sizeof(double));
|
|
data += sizeof(double);
|
|
memcpy(&ci_pointing_to_guiding_tissue, data, sizeof(int));
|
|
|
|
return tissue_tolerance;
|
|
}
|
|
|
|
unsigned int deco_allowed_depth(double tissues_tolerance, double surface_pressure, struct dive *dive, bool smooth)
|
|
{
|
|
unsigned int depth;
|
|
double pressure_delta;
|
|
|
|
/* Avoid negative depths */
|
|
pressure_delta = tissues_tolerance > surface_pressure ? tissues_tolerance - surface_pressure : 0.0;
|
|
|
|
depth = rel_mbar_to_depth(pressure_delta * 1000, dive);
|
|
|
|
if (!smooth)
|
|
depth = ceil(depth / DECO_STOPS_MULTIPLIER_MM) * DECO_STOPS_MULTIPLIER_MM;
|
|
|
|
if (depth > 0 && depth < buehlmann_config.last_deco_stop_in_mtr * 1000)
|
|
depth = buehlmann_config.last_deco_stop_in_mtr * 1000;
|
|
|
|
return depth;
|
|
}
|
|
|
|
void set_gf(short gflow, short gfhigh, bool gf_low_at_maxdepth)
|
|
{
|
|
if (gflow != -1)
|
|
buehlmann_config.gf_low = (double)gflow / 100.0;
|
|
if (gfhigh != -1)
|
|
buehlmann_config.gf_high = (double)gfhigh / 100.0;
|
|
buehlmann_config.gf_low_at_maxdepth = gf_low_at_maxdepth;
|
|
}
|