mirror of
				https://github.com/subsurface/subsurface.git
				synced 2025-02-19 22:16:15 +00:00 
			
		
		
		
	This deals with the issue of initializing structs in C++. Signed-off-by: Dirk Hohndel <dirk@hohndel.org>
		
			
				
	
	
		
			837 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			837 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| #ifdef __clang__
 | |
| // Clang has a bug on zero-initialization of C structs.
 | |
| #pragma clang diagnostic ignored "-Wmissing-field-initializers"
 | |
| #endif
 | |
| 
 | |
| #include "ssrf.h"
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <unistd.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/stat.h>
 | |
| #include <fcntl.h>
 | |
| 
 | |
| #include "dive.h"
 | |
| #include "file.h"
 | |
| #include "units.h"
 | |
| #include "sha1.h"
 | |
| #include "gettext.h"
 | |
| #include "cochran.h"
 | |
| #include "divelist.h"
 | |
| 
 | |
| #include <libdivecomputer/parser.h>
 | |
| 
 | |
| #define POUND       0.45359237
 | |
| #define FEET        0.3048
 | |
| #define INCH        0.0254
 | |
| #define GRAVITY     9.80665
 | |
| #define ATM         101325.0
 | |
| #define BAR         100000.0
 | |
| #define FSW         (ATM / 33.0)
 | |
| #define MSW         (BAR / 10.0)
 | |
| #define PSI         ((POUND * GRAVITY) / (INCH * INCH))
 | |
| 
 | |
| // Some say 0x4a14 and 0x4b14 are the right number for this offset
 | |
| // This works with CAN files from Analyst 4.01v and computers
 | |
| // such as Commander, Gemini, EMC-16, and EMC-20H
 | |
| #define LOG_ENTRY_OFFSET 0x4914
 | |
| 
 | |
| enum cochran_type {
 | |
| 	TYPE_GEMINI,
 | |
| 	TYPE_COMMANDER,
 | |
| 	TYPE_EMC
 | |
| };
 | |
| 
 | |
| struct config {
 | |
| 	enum cochran_type type;
 | |
| 	unsigned int logbook_size;
 | |
| 	unsigned int sample_size;
 | |
| } config;
 | |
| 
 | |
| 
 | |
| // Convert 4 bytes into an INT
 | |
| #define array_uint16_le(p) ((unsigned int) (p)[0] \
 | |
| 			    + ((p)[1]<<8) )
 | |
| #define array_uint32_le(p) ((unsigned int) (p)[0] \
 | |
| 			    + ((p)[1]<<8) + ((p)[2]<<16) \
 | |
| 			    + ((p)[3]<<24))
 | |
| 
 | |
| /*
 | |
|  * The Cochran file format is designed to be annoying to read. It's roughly:
 | |
|  *
 | |
|  * 0x00000: room for 65534 4-byte words, giving the starting offsets
 | |
|  *   of the dives themselves.
 | |
|  *
 | |
|  * 0x3fff8: the size of the file + 1
 | |
|  * 0x3ffff: 0 (high 32 bits of filesize? Bogus: the offsets into the file
 | |
|  *   are 32-bit, so it can't be a large file anyway)
 | |
|  *
 | |
|  * 0x40000: byte 0x46
 | |
|  * 0x40001: "block 0": 256 byte encryption key
 | |
|  * 0x40101: the random modulus, or length of the key to use
 | |
|  * 0x40102: block 1: Version and date of Analyst and a feature string identifying
 | |
|  *          the computer features and the features of the file
 | |
|  * 0x40138: Computer configuration page 1, 512 bytes
 | |
|  * 0x40338: Computer configuration page 2, 512 bytes
 | |
|  * 0x40538: Misc data (tissues) 1500 bytes
 | |
|  * 0x40b14: Ownership data 512 bytes ???
 | |
|  *
 | |
|  * 0x4171c: Ownership data 512 bytes ??? <copy>
 | |
|  *
 | |
|  * 0x45415: Time stamp 17 bytes
 | |
|  * 0x45426: Computer configuration page 1, 512 bytes <copy>
 | |
|  * 0x45626: Computer configuration page 2, 512 bytes <copy>
 | |
|  *
 | |
|  */
 | |
| static unsigned int partial_decode(unsigned int start, unsigned int end,
 | |
| 				   const unsigned char *decode, unsigned offset, unsigned mod,
 | |
| 				   const unsigned char *buf, unsigned int size, unsigned char *dst)
 | |
| {
 | |
| 	unsigned i, sum = 0;
 | |
| 
 | |
| 	for (i = start; i < end; i++) {
 | |
| 		unsigned char d = decode[offset++];
 | |
| 		if (i >= size)
 | |
| 			break;
 | |
| 		if (offset == mod)
 | |
| 			offset = 0;
 | |
| 		d += buf[i];
 | |
| 		if (dst)
 | |
| 			dst[i] = d;
 | |
| 		sum += d;
 | |
| 	}
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| #ifdef COCHRAN_DEBUG
 | |
| 
 | |
| #define hexchar(n) ("0123456789abcdef"[(n) & 15])
 | |
| 
 | |
| static int show_line(unsigned offset, const unsigned char *data,
 | |
| 		     unsigned size, int show_empty)
 | |
| {
 | |
| 	unsigned char bits;
 | |
| 	int i, off;
 | |
| 	char buffer[120];
 | |
| 
 | |
| 	if (size > 16)
 | |
| 		size = 16;
 | |
| 
 | |
| 	bits = 0;
 | |
| 	memset(buffer, ' ', sizeof(buffer));
 | |
| 	off = sprintf(buffer, "%06x ", offset);
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		char *hex = buffer + off + 3 * i;
 | |
| 		char *asc = buffer + off + 50 + i;
 | |
| 		unsigned char byte = data[i];
 | |
| 
 | |
| 		hex[0] = hexchar(byte >> 4);
 | |
| 		hex[1] = hexchar(byte);
 | |
| 		bits |= byte;
 | |
| 		if (byte < 32 || byte > 126)
 | |
| 			byte = '.';
 | |
| 		asc[0] = byte;
 | |
| 		asc[1] = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (bits) {
 | |
| 		puts(buffer);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (show_empty)
 | |
| 		puts("...");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cochran_debug_write(const unsigned char *data, unsigned size)
 | |
| {
 | |
| 	return;
 | |
| 
 | |
| 	int show = 1,  i;
 | |
| 	for (i = 0; i < size; i += 16)
 | |
| 		show = show_line(i, data + i, size - i, show);
 | |
| }
 | |
| 
 | |
| static void cochran_debug_sample(const char *s, unsigned int sample_cnt)
 | |
| {
 | |
| 	switch (config.type) {
 | |
| 	case TYPE_GEMINI:
 | |
| 		switch (sample_cnt % 4) {
 | |
| 		case 0:
 | |
| 			printf("Hex: %02x %02x          ", s[0], s[1]);
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			printf("Hex: %02x    %02x       ", s[0], s[1]);
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			printf("Hex: %02x       %02x    ", s[0], s[1]);
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			printf("Hex: %02x          %02x ", s[0], s[1]);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case TYPE_COMMANDER:
 | |
| 		switch (sample_cnt % 2) {
 | |
| 		case 0:
 | |
| 			printf("Hex: %02x %02x    ", s[0], s[1]);
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			printf("Hex: %02x    %02x ", s[0], s[1]);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case TYPE_EMC:
 | |
| 		switch (sample_cnt % 2) {
 | |
| 		case 0:
 | |
| 			printf("Hex: %02x %02x    %02x ", s[0], s[1], s[2]);
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			printf("Hex: %02x    %02x %02x ", s[0], s[1], s[2]);
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	printf ("%02dh %02dm %02ds: Depth: %-5.2f, ", sample_cnt / 3660,
 | |
| 		(sample_cnt % 3660) / 60, sample_cnt % 60, depth);
 | |
| }
 | |
| 
 | |
| #endif  // COCHRAN_DEBUG
 | |
| 
 | |
| static void cochran_parse_header(const unsigned char *decode, unsigned mod,
 | |
| 				 const unsigned char *in, unsigned size)
 | |
| {
 | |
| 	unsigned char *buf = malloc(size);
 | |
| 
 | |
| 	/* Do the "null decode" using a one-byte decode array of '\0' */
 | |
| 	/* Copies in plaintext, will be overwritten later */
 | |
| 	partial_decode(0, 0x0102, (const unsigned char *)"", 0, 1, in, size, buf);
 | |
| 
 | |
| 	/*
 | |
| 	 * The header scrambling is different form the dive
 | |
| 	 * scrambling. Oh yay!
 | |
| 	 */
 | |
| 	partial_decode(0x0102, 0x010e, decode, 0, mod, in, size, buf);
 | |
| 	partial_decode(0x010e, 0x0b14, decode, 0, mod, in, size, buf);
 | |
| 	partial_decode(0x0b14, 0x1b14, decode, 0, mod, in, size, buf);
 | |
| 	partial_decode(0x1b14, 0x2b14, decode, 0, mod, in, size, buf);
 | |
| 	partial_decode(0x2b14, 0x3b14, decode, 0, mod, in, size, buf);
 | |
| 	partial_decode(0x3b14, 0x5414, decode, 0, mod, in, size, buf);
 | |
| 	partial_decode(0x5414,  size, decode, 0, mod, in, size, buf);
 | |
| 
 | |
| 	// Detect log type
 | |
| 	switch (buf[0x133]) {
 | |
| 	case '2':	// Cochran Commander, version II log format
 | |
| 		config.logbook_size = 256;
 | |
| 		if (buf[0x132] == 0x10) {
 | |
| 			config.type = TYPE_GEMINI;
 | |
| 			config.sample_size = 2;	// Gemini with tank PSI samples
 | |
| 		} else  {
 | |
| 			config.type = TYPE_COMMANDER;
 | |
| 			config.sample_size = 2;	// Commander
 | |
| 		}
 | |
| 		break;
 | |
| 	case '3':	// Cochran EMC, version III log format
 | |
| 		config.type = TYPE_EMC;
 | |
| 		config.logbook_size = 512;
 | |
| 		config.sample_size = 3;
 | |
| 		break;
 | |
| 	default:
 | |
| 		printf ("Unknown log format v%c\n", buf[0x137]);
 | |
| 		free(buf);
 | |
| 		exit(1);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| #ifdef COCHRAN_DEBUG
 | |
| 	puts("Header\n======\n\n");
 | |
| 	cochran_debug_write(buf, size);
 | |
| #endif
 | |
| 
 | |
| 	free(buf);
 | |
| }
 | |
| 
 | |
| /*
 | |
| * Bytes expected after a pre-dive event code
 | |
| */
 | |
| static int cochran_predive_event_bytes(unsigned char code)
 | |
| {
 | |
| 	int x = 0;
 | |
| 	int cmdr_event_bytes[15][2] = {{0x00, 16}, {0x01, 20}, {0x02, 17},
 | |
| 				       {0x03, 16}, {0x06, 18}, {0x07, 18},
 | |
| 				       {0x08, 18}, {0x09, 18}, {0x0a, 18},
 | |
| 				       {0x0b, 18}, {0x0c, 18}, {0x0d, 18},
 | |
| 				       {0x0e, 18}, {0x10, 20},
 | |
| 				       {-1,  0}};
 | |
| 	int emc_event_bytes[15][2] =  {{0x00, 18}, {0x01, 22}, {0x02, 19},
 | |
| 				       {0x03, 18}, {0x06, 20}, {0x07, 20},
 | |
| 				       {0x0a, 20}, {0x0b, 20}, {0x0f, 18},
 | |
| 				       {0x10, 20},
 | |
| 				       {-1,  0}};
 | |
| 
 | |
| 	switch (config.type) {
 | |
| 	case TYPE_GEMINI:
 | |
| 	case TYPE_COMMANDER:
 | |
| 		while (cmdr_event_bytes[x][0] != code && cmdr_event_bytes[x][0] != -1)
 | |
| 			x++;
 | |
| 		return cmdr_event_bytes[x][1];
 | |
| 		break;
 | |
| 	case TYPE_EMC:
 | |
| 		while (emc_event_bytes[x][0] != code && emc_event_bytes[x][0] != -1)
 | |
| 			x++;
 | |
| 		return emc_event_bytes[x][1];
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int cochran_dive_event_bytes(unsigned char event)
 | |
| {
 | |
| 	return (event == 0xAD || event == 0xAB) ? 4 : 0;
 | |
| }
 | |
| 
 | |
| static void cochran_dive_event(struct divecomputer *dc, const unsigned char *s,
 | |
| 			       unsigned int seconds, unsigned int *in_deco,
 | |
| 			       unsigned int *deco_ceiling, unsigned int *deco_time)
 | |
| {
 | |
| 	switch (s[0]) {
 | |
| 	case 0xC5:	// Deco obligation begins
 | |
| 		*in_deco = 1;
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_DECOSTOP,
 | |
| 			SAMPLE_FLAGS_BEGIN, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "deco stop"));
 | |
| 		break;
 | |
| 	case 0xDB:	// Deco obligation ends
 | |
| 		*in_deco = 0;
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_DECOSTOP,
 | |
| 			SAMPLE_FLAGS_END, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "deco stop"));
 | |
| 		break;
 | |
| 	case 0xAD:	// Raise deco ceiling 10 ft
 | |
| 		*deco_ceiling -= 10; // ft
 | |
| 		*deco_time = (array_uint16_le(s + 3) + 1) * 60;
 | |
| 		break;
 | |
| 	case 0xAB:	// Lower deco ceiling 10 ft
 | |
| 		*deco_ceiling += 10;	// ft
 | |
| 		*deco_time = (array_uint16_le(s + 3) + 1) * 60;
 | |
| 		break;
 | |
| 	case 0xA8:	// Entered Post Dive interval mode (surfaced)
 | |
| 		break;
 | |
| 	case 0xA9:	// Exited PDI mode (re-submierged)
 | |
| 		break;
 | |
| 	case 0xBD:	// Switched to normal PO2 setting
 | |
| 		break;
 | |
| 	case 0xC0:	// Switched to FO2 21% mode (generally upon surface)
 | |
| 		break;
 | |
| 	case 0xC1:	// "Ascent rate alarm
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_ASCENT,
 | |
| 			SAMPLE_FLAGS_BEGIN, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "ascent"));
 | |
| 		break;
 | |
| 	case 0xC2:	// Low battery warning
 | |
| #ifdef SAMPLE_EVENT_BATTERY
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_BATTERY,
 | |
| 			SAMPLE_FLAGS_NONE, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "battery"));
 | |
| #endif
 | |
| 		break;
 | |
| 	case 0xC3:	// CNS warning
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_OLF,
 | |
| 			SAMPLE_FLAGS_BEGIN, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "OLF"));
 | |
| 		break;
 | |
| 	case 0xC4:	// Depth alarm begin
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_MAXDEPTH,
 | |
| 			SAMPLE_FLAGS_BEGIN, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "maxdepth"));
 | |
| 		break;
 | |
| 	case 0xC8:	// PPO2 alarm begin
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_PO2,
 | |
| 			SAMPLE_FLAGS_BEGIN, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "pO₂"));
 | |
| 		break;
 | |
| 	case 0xCC:	// Low cylinder 1 pressure";
 | |
| 		break;
 | |
| 	case 0xCD:	// Switch to deco blend setting
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_GASCHANGE,
 | |
| 			SAMPLE_FLAGS_NONE, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "gaschange"));
 | |
| 		break;
 | |
| 	case 0xCE:	// NDL alarm begin
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_RBT,
 | |
| 			SAMPLE_FLAGS_BEGIN, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "rbt"));
 | |
| 		break;
 | |
| 	case 0xD0:	// Breathing rate alarm begin
 | |
| 		break;
 | |
| 	case 0xD3:	// Low gas 1 flow rate alarm begin";
 | |
| 		break;
 | |
| 	case 0xD6:	// Ceiling alarm begin
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_CEILING,
 | |
| 			SAMPLE_FLAGS_BEGIN, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "ceiling"));
 | |
| 		break;
 | |
| 	case 0xD8:	// End decompression mode
 | |
| 		*in_deco = 0;
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_DECOSTOP,
 | |
| 			SAMPLE_FLAGS_END, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "deco stop"));
 | |
| 		break;
 | |
| 	case 0xE1:	// Ascent alarm end
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_ASCENT,
 | |
| 			SAMPLE_FLAGS_END, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "ascent"));
 | |
| 		break;
 | |
| 	case 0xE2:	// Low transmitter battery alarm
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_TRANSMITTER,
 | |
| 			SAMPLE_FLAGS_BEGIN, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "transmitter"));
 | |
| 		break;
 | |
| 	case 0xE3:	// Switch to FO2 mode
 | |
| 		break;
 | |
| 	case 0xE5:	// Switched to PO2 mode
 | |
| 		break;
 | |
| 	case 0xE8:	// PO2 too low alarm
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_PO2,
 | |
| 			SAMPLE_FLAGS_BEGIN, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "pO₂"));
 | |
| 		break;
 | |
| 	case 0xEE:	// NDL alarm end
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_RBT,
 | |
| 			SAMPLE_FLAGS_END, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "rbt"));
 | |
| 		break;
 | |
| 	case 0xEF:	// Switch to blend 2
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_GASCHANGE,
 | |
| 			SAMPLE_FLAGS_NONE, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "gaschange"));
 | |
| 		break;
 | |
| 	case 0xF0:	// Breathing rate alarm end
 | |
| 		break;
 | |
| 	case 0xF3:	// Switch to blend 1 (often at dive start)
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_GASCHANGE,
 | |
| 			SAMPLE_FLAGS_NONE, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "gaschange"));
 | |
| 		break;
 | |
| 	case 0xF6:	// Ceiling alarm end
 | |
| 		add_event(dc, seconds, SAMPLE_EVENT_CEILING,
 | |
| 			SAMPLE_FLAGS_END, 0,
 | |
| 			QT_TRANSLATE_NOOP("gettextFromC", "ceiling"));
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
| * Parse sample data, extract events and build a dive
 | |
| */
 | |
| static void cochran_parse_samples(struct dive *dive, const unsigned char *log,
 | |
| 				  const unsigned char *samples, unsigned int size,
 | |
| 				  unsigned int *duration, double *max_depth,
 | |
| 				  double *avg_depth, double *min_temp)
 | |
| {
 | |
| 	const unsigned char *s;
 | |
| 	unsigned int offset = 0, profile_period = 1, sample_cnt = 0;
 | |
| 	double depth = 0, temp = 0, depth_sample = 0, psi = 0, sgc_rate = 0;
 | |
| 	int ascent_rate = 0;
 | |
| 	unsigned int ndl = 0;
 | |
| 	unsigned int in_deco = 0, deco_ceiling = 0, deco_time = 0;
 | |
| 
 | |
| 	struct divecomputer *dc = &dive->dc;
 | |
| 	struct sample *sample;
 | |
| 
 | |
| 	// Initialize stat variables
 | |
| 	*max_depth = 0, *avg_depth = 0, *min_temp = 0xFF;
 | |
| 
 | |
| 	// Get starting depth and temp (tank PSI???)
 | |
| 	switch (config.type) {
 | |
| 	case TYPE_GEMINI:
 | |
| 		depth = (double) (log[CMD_START_DEPTH]
 | |
| 			+ log[CMD_START_DEPTH + 1] * 256) / 4;
 | |
| 		temp = log[CMD_START_TEMP];
 | |
| 		psi = log[CMD_START_PSI] + log[CMD_START_PSI + 1] * 256;
 | |
| 		sgc_rate = (double)(log[CMD_START_SGC]
 | |
| 			+ log[CMD_START_SGC + 1] * 256) / 2;
 | |
| 		profile_period = log[CMD_PROFILE_PERIOD];
 | |
| 		break;
 | |
| 	case TYPE_COMMANDER:
 | |
| 		depth = (double) (log[CMD_START_DEPTH]
 | |
| 			+ log[CMD_START_DEPTH + 1] * 256) / 4;
 | |
| 		temp = log[CMD_START_TEMP];
 | |
| 		profile_period = log[CMD_PROFILE_PERIOD];
 | |
| 		break;
 | |
| 
 | |
| 	case TYPE_EMC:
 | |
| 		depth = (double) log [EMC_START_DEPTH] / 256
 | |
| 			+ log[EMC_START_DEPTH + 1];
 | |
| 		temp = log[EMC_START_TEMP];
 | |
| 		profile_period = log[EMC_PROFILE_PERIOD];
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	// Skip past pre-dive events
 | |
| 	unsigned int x = 0;
 | |
| 	unsigned int c;
 | |
| 	while (x < size && (samples[x] & 0x80) == 0 && samples[x] != 0x40) {
 | |
| 		c = cochran_predive_event_bytes(samples[x]) + 1;
 | |
| #ifdef COCHRAN_DEBUG
 | |
| 		printf("Predive event: ");
 | |
| 		for (unsigned int y = 0; y < c && x + y < size; y++) printf("%02x ", samples[x + y]);
 | |
| 		putchar('\n');
 | |
| #endif
 | |
| 			x += c;
 | |
| 	}
 | |
| 
 | |
| 	// Now process samples
 | |
| 	offset = x;
 | |
| 	while (offset + config.sample_size < size) {
 | |
| 		s = samples + offset;
 | |
| 
 | |
| 		// Start with an empty sample
 | |
| 		sample = prepare_sample(dc);
 | |
| 		sample->time.seconds = sample_cnt * profile_period;
 | |
| 
 | |
| 		// Check for event
 | |
| 		if (s[0] & 0x80) {
 | |
| 			cochran_dive_event(dc, s, sample_cnt * profile_period, &in_deco, &deco_ceiling, &deco_time);
 | |
| 			offset += cochran_dive_event_bytes(s[0]) + 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		// Depth is in every sample
 | |
| 		depth_sample = (double)(s[0] & 0x3F) / 4 * (s[0] & 0x40 ? -1 : 1);
 | |
| 		depth += depth_sample;
 | |
| 
 | |
| #ifdef COCHRAN_DEBUG
 | |
| 		cochran_debug_sample(s, sample_cnt);
 | |
| #endif
 | |
| 
 | |
| 		switch (config.type) {
 | |
| 		case TYPE_COMMANDER:
 | |
| 			switch (sample_cnt % 2) {
 | |
| 			case 0:	// Ascent rate
 | |
| 				ascent_rate = (s[1] & 0x7f) * (s[1] & 0x80 ? 1: -1);
 | |
| 				break;
 | |
| 			case 1:	// Temperature
 | |
| 				temp = s[1] / 2 + 20;
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 		case TYPE_GEMINI:
 | |
| 			// Gemini with tank pressure and SAC rate.
 | |
| 			switch (sample_cnt % 4) {
 | |
| 			case 0:	// Ascent rate
 | |
| 				ascent_rate = (s[1] & 0x7f) * (s[1] & 0x80 ? 1 : -1);
 | |
| 				break;
 | |
| 			case 2:	// PSI change
 | |
| 				psi -= (double)(s[1] & 0x7f) * (s[1] & 0x80 ? 1 : -1) / 4;
 | |
| 				break;
 | |
| 			case 1:	// SGC rate
 | |
| 				sgc_rate -= (double)(s[1] & 0x7f) * (s[1] & 0x80 ? 1 : -1) / 2;
 | |
| 				break;
 | |
| 			case 3:	// Temperature
 | |
| 				temp = (double)s[1] / 2 + 20;
 | |
| 				break;
 | |
| 			}
 | |
| 			break;
 | |
| 		case TYPE_EMC:
 | |
| 			switch (sample_cnt % 2) {
 | |
| 			case 0:	// Ascent rate
 | |
| 				ascent_rate = (s[1] & 0x7f) * (s[1] & 0x80 ? 1: -1);
 | |
| 				break;
 | |
| 			case 1:	// Temperature
 | |
| 				temp = (double)s[1] / 2 + 20;
 | |
| 				break;
 | |
| 			}
 | |
| 			// Get NDL and deco information
 | |
| 			switch (sample_cnt % 24) {
 | |
| 			case 20:
 | |
| 				if (offset + 5 < size) {
 | |
| 					if (in_deco) {
 | |
| 						// Fist stop time
 | |
| 						//first_deco_time = (s[2] + s[5] * 256 + 1) * 60; // seconds
 | |
| 						ndl = 0;
 | |
| 					} else {
 | |
| 						// NDL
 | |
| 						ndl = (s[2] + s[5] * 256 + 1) * 60; // seconds
 | |
| 						deco_time = 0;
 | |
| 					}
 | |
| 				}
 | |
| 				break;
 | |
| 			case 22:
 | |
| 				if (offset + 5 < size) {
 | |
| 					if (in_deco) {
 | |
| 						// Total stop time
 | |
| 						deco_time = (s[2] + s[5] * 256 + 1) * 60; // seconds
 | |
| 						ndl = 0;
 | |
| 					}
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Track dive stats
 | |
| 		if (depth > *max_depth) *max_depth = depth;
 | |
| 		if (temp < *min_temp) *min_temp = temp;
 | |
| 		*avg_depth = (*avg_depth * sample_cnt + depth) / (sample_cnt + 1);
 | |
| 
 | |
| 		sample->depth.mm = lrint(depth * FEET * 1000);
 | |
| 		sample->ndl.seconds = ndl;
 | |
| 		sample->in_deco = in_deco;
 | |
| 		sample->stoptime.seconds = deco_time;
 | |
| 		sample->stopdepth.mm = lrint(deco_ceiling * FEET * 1000);
 | |
| 		sample->temperature.mkelvin = C_to_mkelvin((temp - 32) / 1.8);
 | |
| 		sample->sensor[0] = 0;
 | |
| 		sample->pressure[0].mbar = lrint(psi * PSI / 100);
 | |
| 
 | |
| 		finish_sample(dc);
 | |
| 
 | |
| 		offset += config.sample_size;
 | |
| 		sample_cnt++;
 | |
| 	}
 | |
| 	UNUSED(ascent_rate); // mark the variable as unused
 | |
| 
 | |
| 	if (sample_cnt > 0)
 | |
| 		*duration = sample_cnt * profile_period - 1;
 | |
| }
 | |
| 
 | |
| static void cochran_parse_dive(const unsigned char *decode, unsigned mod,
 | |
| 			       const unsigned char *in, unsigned size,
 | |
| 			       struct dive_table *table)
 | |
| {
 | |
| 	unsigned char *buf = malloc(size);
 | |
| 	struct dive *dive;
 | |
| 	struct divecomputer *dc;
 | |
| 	struct tm tm = {0};
 | |
| 	uint32_t csum[5];
 | |
| 
 | |
| 	double max_depth, avg_depth, min_temp;
 | |
| 	unsigned int duration = 0, corrupt_dive = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The scrambling has odd boundaries. I think the boundaries
 | |
| 	 * match some data structure size, but I don't know. They were
 | |
| 	 * discovered the same way we dynamically discover the decode
 | |
| 	 * size: automatically looking for least random output.
 | |
| 	 *
 | |
| 	 * The boundaries are also this confused "off-by-one" thing,
 | |
| 	 * the same way the file size is off by one. It's as if the
 | |
| 	 * cochran software forgot to write one byte at the beginning.
 | |
| 	 */
 | |
| 	partial_decode(0, 0x0fff, decode, 1, mod, in, size, buf);
 | |
| 	partial_decode(0x0fff, 0x1fff, decode, 0, mod, in, size, buf);
 | |
| 	partial_decode(0x1fff, 0x2fff, decode, 0, mod, in, size, buf);
 | |
| 	partial_decode(0x2fff, 0x48ff, decode, 0, mod, in, size, buf);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is not all the descrambling you need - the above are just
 | |
| 	 * what appears to be the fixed-size blocks. The rest is also
 | |
| 	 * scrambled, but there seems to be size differences in the data,
 | |
| 	 * so this just descrambles part of it:
 | |
| 	 */
 | |
| 
 | |
| 	if (size < 0x4914 + config.logbook_size) {
 | |
| 		// Analyst calls this a "Corrupt Beginning Summary"
 | |
| 		free(buf);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Decode log entry (512 bytes + random prefix)
 | |
| 	partial_decode(0x48ff, 0x4914 + config.logbook_size, decode,
 | |
| 		0, mod, in, size, buf);
 | |
| 
 | |
| 	unsigned int sample_size = size - 0x4914 - config.logbook_size;
 | |
| 	int g;
 | |
| 	unsigned int sample_pre_offset = 0, sample_end_offset = 0;
 | |
| 
 | |
| 	// Decode sample data
 | |
| 	partial_decode(0x4914 + config.logbook_size, size, decode,
 | |
| 		0, mod, in, size, buf);
 | |
| 
 | |
| #ifdef COCHRAN_DEBUG
 | |
| 	// Display pre-logbook data
 | |
| 	puts("\nPre Logbook Data\n");
 | |
| 	cochran_debug_write(buf, 0x4914);
 | |
| 
 | |
| 	// Display log book
 | |
| 	puts("\nLogbook Data\n");
 | |
| 	cochran_debug_write(buf + 0x4914,  config.logbook_size + 0x400);
 | |
| 
 | |
| 	// Display sample data
 | |
| 	puts("\nSample Data\n");
 | |
| #endif
 | |
| 
 | |
| 	dive = alloc_dive();
 | |
| 	dc = &dive->dc;
 | |
| 
 | |
| 	unsigned char *log = (buf + 0x4914);
 | |
| 
 | |
| 	switch (config.type) {
 | |
| 	case TYPE_GEMINI:
 | |
| 	case TYPE_COMMANDER:
 | |
| 		if (config.type == TYPE_GEMINI) {
 | |
| 			cylinder_t cyl = empty_cylinder;
 | |
| 			dc->model = "Gemini";
 | |
| 			dc->deviceid = buf[0x18c] * 256 + buf[0x18d];	// serial no
 | |
| 			fill_default_cylinder(dive, &cyl);
 | |
| 			cyl.gasmix.o2.permille = (log[CMD_O2_PERCENT] / 256
 | |
| 				+ log[CMD_O2_PERCENT + 1]) * 10;
 | |
| 			cyl.gasmix.he.permille = 0;
 | |
| 			add_to_cylinder_table(&dive->cylinders, 0, cyl);
 | |
| 		} else {
 | |
| 			dc->model = "Commander";
 | |
| 			dc->deviceid = array_uint32_le(buf + 0x31e);	// serial no
 | |
| 			for (g = 0; g < 2; g++) {
 | |
| 				cylinder_t cyl = empty_cylinder;
 | |
| 				fill_default_cylinder(dive, &cyl);
 | |
| 				cyl.gasmix.o2.permille = (log[CMD_O2_PERCENT + g * 2] / 256
 | |
| 					+ log[CMD_O2_PERCENT + g * 2 + 1]) * 10;
 | |
| 				cyl.gasmix.he.permille = 0;
 | |
| 				add_to_cylinder_table(&dive->cylinders, g, cyl);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		tm.tm_year = log[CMD_YEAR];
 | |
| 		tm.tm_mon = log[CMD_MON] - 1;
 | |
| 		tm.tm_mday = log[CMD_DAY];
 | |
| 		tm.tm_hour = log[CMD_HOUR];
 | |
| 		tm.tm_min = log[CMD_MIN];
 | |
| 		tm.tm_sec = log[CMD_SEC];
 | |
| 		tm.tm_isdst = -1;
 | |
| 
 | |
| 		dive->when = dc->when = utc_mktime(&tm);
 | |
| 		dive->number = log[CMD_NUMBER] + log[CMD_NUMBER + 1] * 256 + 1;
 | |
| 		dc->duration.seconds = (log[CMD_BT] + log[CMD_BT + 1] * 256) * 60;
 | |
| 		dc->surfacetime.seconds = (log[CMD_SIT] + log[CMD_SIT + 1] * 256) * 60;
 | |
| 		dc->maxdepth.mm = lrint((log[CMD_MAX_DEPTH] +
 | |
| 			log[CMD_MAX_DEPTH + 1] * 256) / 4 * FEET * 1000);
 | |
| 		dc->meandepth.mm = lrint((log[CMD_AVG_DEPTH] +
 | |
| 			log[CMD_AVG_DEPTH + 1] * 256) / 4 * FEET * 1000);
 | |
| 		dc->watertemp.mkelvin = C_to_mkelvin((log[CMD_MIN_TEMP] / 32) - 1.8);
 | |
| 		dc->surface_pressure.mbar = lrint(ATM / BAR * pow(1 - 0.0000225577
 | |
| 			* (double) log[CMD_ALTITUDE] * 250 * FEET, 5.25588) * 1000);
 | |
| 		dc->salinity = 10000 + 150 * log[CMD_WATER_CONDUCTIVITY];
 | |
| 
 | |
| 		SHA1(log + CMD_NUMBER, 2, (unsigned char *)csum);
 | |
| 		dc->diveid = csum[0];
 | |
| 
 | |
| 		if (log[CMD_MAX_DEPTH] == 0xff && log[CMD_MAX_DEPTH + 1] == 0xff)
 | |
| 			corrupt_dive = 1;
 | |
| 
 | |
| 		sample_pre_offset = array_uint32_le(log + CMD_PREDIVE_OFFSET);
 | |
| 		sample_end_offset = array_uint32_le(log + CMD_END_OFFSET);
 | |
| 
 | |
| 		break;
 | |
| 	case TYPE_EMC:
 | |
| 		dc->model = "EMC";
 | |
| 		dc->deviceid = array_uint32_le(buf + 0x31e);	// serial no
 | |
| 		for (g = 0; g < 4; g++) {
 | |
| 			cylinder_t cyl = empty_cylinder;
 | |
| 			fill_default_cylinder(dive, &cyl);
 | |
| 			cyl.gasmix.o2.permille =
 | |
| 				(log[EMC_O2_PERCENT + g * 2] / 256
 | |
| 				+ log[EMC_O2_PERCENT + g * 2 + 1]) * 10;
 | |
| 			cyl.gasmix.he.permille =
 | |
| 				(log[EMC_HE_PERCENT + g * 2] / 256
 | |
| 				+ log[EMC_HE_PERCENT + g * 2 + 1]) * 10;
 | |
| 			add_to_cylinder_table(&dive->cylinders, g, cyl);
 | |
| 		}
 | |
| 
 | |
| 		tm.tm_year = log[EMC_YEAR];
 | |
| 		tm.tm_mon = log[EMC_MON] - 1;
 | |
| 		tm.tm_mday = log[EMC_DAY];
 | |
| 		tm.tm_hour = log[EMC_HOUR];
 | |
| 		tm.tm_min = log[EMC_MIN];
 | |
| 		tm.tm_sec = log[EMC_SEC];
 | |
| 		tm.tm_isdst = -1;
 | |
| 
 | |
| 		dive->when = dc->when = utc_mktime(&tm);
 | |
| 		dive->number = log[EMC_NUMBER] + log[EMC_NUMBER + 1] * 256 + 1;
 | |
| 		dc->duration.seconds = (log[EMC_BT] + log[EMC_BT + 1] * 256) * 60;
 | |
| 		dc->surfacetime.seconds = (log[EMC_SIT] + log[EMC_SIT + 1] * 256) * 60;
 | |
| 		dc->maxdepth.mm = lrint((log[EMC_MAX_DEPTH] +
 | |
| 			log[EMC_MAX_DEPTH + 1] * 256) / 4 * FEET * 1000);
 | |
| 		dc->meandepth.mm = lrint((log[EMC_AVG_DEPTH] +
 | |
| 			log[EMC_AVG_DEPTH + 1] * 256) / 4 * FEET * 1000);
 | |
| 		dc->watertemp.mkelvin = C_to_mkelvin((log[EMC_MIN_TEMP] - 32) / 1.8);
 | |
| 		dc->surface_pressure.mbar = lrint(ATM / BAR * pow(1 - 0.0000225577
 | |
| 			* (double) log[EMC_ALTITUDE] * 250 * FEET, 5.25588) * 1000);
 | |
| 		dc->salinity = 10000 + 150 * (log[EMC_WATER_CONDUCTIVITY] & 0x3);
 | |
| 
 | |
| 		SHA1(log + EMC_NUMBER, 2, (unsigned char *)csum);
 | |
| 		dc->diveid = csum[0];
 | |
| 
 | |
| 		if (log[EMC_MAX_DEPTH] == 0xff && log[EMC_MAX_DEPTH + 1] == 0xff)
 | |
| 			corrupt_dive = 1;
 | |
| 
 | |
| 		sample_pre_offset = array_uint32_le(log + EMC_PREDIVE_OFFSET);
 | |
| 		sample_end_offset = array_uint32_le(log + EMC_END_OFFSET);
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	// Use the log information to determine actual profile sample size
 | |
| 	// Otherwise we will get surface time at end of dive.
 | |
| 	if (sample_pre_offset < sample_end_offset && sample_end_offset != 0xffffffff)
 | |
| 		sample_size = sample_end_offset - sample_pre_offset;
 | |
| 
 | |
| 	cochran_parse_samples(dive, buf + 0x4914, buf + 0x4914
 | |
| 		+ config.logbook_size, sample_size,
 | |
| 		&duration, &max_depth, &avg_depth, &min_temp);
 | |
| 
 | |
| 	// Check for corrupt dive
 | |
| 	if (corrupt_dive) {
 | |
| 		dc->maxdepth.mm = lrint(max_depth * FEET * 1000);
 | |
| 		dc->meandepth.mm = lrint(avg_depth * FEET * 1000);
 | |
| 		dc->watertemp.mkelvin = C_to_mkelvin((min_temp - 32) / 1.8);
 | |
| 		dc->duration.seconds = duration;
 | |
| 	}
 | |
| 
 | |
| 	record_dive_to_table(dive, table);
 | |
| 
 | |
| 	free(buf);
 | |
| }
 | |
| 
 | |
| int try_to_open_cochran(const char *filename, struct memblock *mem, struct dive_table *table, struct trip_table *trips, struct dive_site_table *sites)
 | |
| {
 | |
| 	UNUSED(filename);
 | |
| 	UNUSED(trips);
 | |
| 	UNUSED(sites);
 | |
| 	unsigned int i;
 | |
| 	unsigned int mod;
 | |
| 	unsigned int *offsets, dive1, dive2;
 | |
| 	unsigned char *decode = mem->buffer + 0x40001;
 | |
| 
 | |
| 	if (mem->size < 0x40000)
 | |
| 		return 0;
 | |
| 
 | |
| 	offsets = (unsigned int *) mem->buffer;
 | |
| 	dive1 = offsets[0];
 | |
| 	dive2 = offsets[1];
 | |
| 
 | |
| 	if (dive1 < 0x40000 || dive2 < dive1 || dive2 > mem->size)
 | |
| 		return 0;
 | |
| 
 | |
| 	mod = decode[0x100] + 1;
 | |
| 	cochran_parse_header(decode, mod, mem->buffer + 0x40000, dive1 - 0x40000);
 | |
| 
 | |
| 	// Decode each dive
 | |
| 	for (i = 0; i < 65534; i++) {
 | |
| 		dive1 = offsets[i];
 | |
| 		dive2 = offsets[i + 1];
 | |
| 		if (dive2 < dive1)
 | |
| 			break;
 | |
| 		if (dive2 > mem->size)
 | |
| 			break;
 | |
| 
 | |
| 		cochran_parse_dive(decode, mod, mem->buffer + dive1,
 | |
| 						dive2 - dive1, table);
 | |
| 	}
 | |
| 
 | |
| 	return 1; // no further processing needed
 | |
| }
 |